1
|
Gazeau ST, Deng X, Brunet-Ratnasingham E, Kaufmann DE, Larochelle C, Morel PA, Heffernan JM, Davis CL, Smith AM, Jenner AL, Craig M. Using virtual patient cohorts to uncover immune response differences in cancer and immunosuppressed COVID-19 patients. PLoS Comput Biol 2025; 21:e1013170. [PMID: 40489562 DOI: 10.1371/journal.pcbi.1013170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer treatments experience worse infections and more severe COVID-19. It is difficult to conduct clinical studies in these populations, resulting in a restricted amount of data that can be used to relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of COVID-19 severity in individuals with cancer and immunosuppression, we adapted our mathematical model of the immune response during COVID-19 and generated virtual patient cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients recapitulated available longitudinal clinical data collected from patients in Montréal, Canada area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients with severe COVID-19 had decreased CD8 + T cells, elevated interleukin-6 concentrations, and delayed type I interferon peaks compared to those with mild COVID-19 outcomes. Additionally, our results suggest that cancer patients experience higher viral loads (however, with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and immunosuppressed virtual patients suffered a high degree of tissue damage associated with elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by infected cells were found to be elevated in severe cancer and immunosuppressed patients with respect to the COVID-19 reference group. Together, our study highlights that dysfunctions in type I interferon and CD8 + T cells are key drivers of immune dysregulation in COVID-19, particularly in cancer patients and immunosuppressed individuals.
Collapse
Affiliation(s)
- Sonia T Gazeau
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Xiaoyan Deng
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | | | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and Université de Lausanne, Lausanne, Switzerland
| | - Catherine Larochelle
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Penelope A Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jane M Heffernan
- Centre for Disease Modelling, Department of Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Courtney L Davis
- Natural Science Division, Pepperdine University, Malibu, California, United States of America
| | - Amber M Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Amara A, Trabelsi S, Hai A, Zaidi SHH, Siddiqui F, Alsaeed S. Equivocating and Deliberating on the Probability of COVID-19 Infection Serving as a Risk Factor for Lung Cancer and Common Molecular Pathways Serving as a Link. Pathogens 2024; 13:1070. [PMID: 39770330 PMCID: PMC11728627 DOI: 10.3390/pathogens13121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
The COVID-19 infection caused by SARS-CoV-2 in late 2019 posed unprecedented global health challenges of massive proportions. The persistent effects of COVID-19 have become a subject of significant concern amongst the medical and scientific community. This article aims to explore the probability of a link between the COVID-19 infection and the risk of lung cancer development. First, this article reports that SARS-CoV-2 induces severe inflammatory response and cellular stress, potentially leading to tumorigenesis through common pathways between SARS-CoV-2 infection and cancer. These pathways include the JAK/STAT3 pathway which is activated after the initiation of cytokine storm following SARS-CoV-2 infection. This pathway is involved in cellular proliferation, differentiation, and immune homeostasis. The JAK/STAT3 pathway is also hyperactivated in lung cancer which serves as a link thereof. It predisposes patients to lung cancer through myriad molecular mechanisms such as DNA damage, genomic instability, and cell cycle dysregulation. Another probable pathway to tumorigenesis is based on the possibility of an oncogenic nature of SARS-CoV-2 through hijacking the p53 protein, leading to cell oxidative stress and interfering with the DNA repair mechanisms. Finally, this article highlights the overexpression of the SLC22A18 gene in lung cancer. This gene can be overexpressed by the ZEB1 transcription factor, which was found to be highly expressed during COVID-19 infection.
Collapse
Affiliation(s)
- Abdelbasset Amara
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia;
| | - Saoussen Trabelsi
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia;
- Department of Community Health, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia;
| | - Farah Siddiqui
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
| | - Sami Alsaeed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
| |
Collapse
|
3
|
Subbarayan K, Al-Samadi A, Schäfer H, Massa C, Salo T, Biehl K, Vaxevanis CK, Ulagappan K, Wahbi W, Reimers M, Drexler F, Moreira-Soto A, Bachmann M, Seliger B. Altered ACE2 and interferon landscape in the COVID-19 microenvironment correlate with the anti-PD-1 response in solid tumors. Cell Mol Life Sci 2024; 81:473. [PMID: 39625479 PMCID: PMC11615173 DOI: 10.1007/s00018-024-05520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Angiotensensin-converting enzyme-2 (ACE2) is a receptor for SARS-CoV-2, allowing the virus to enter cells. Although tumor patients infected by SARS-CoV-2 often have a worse outcome, the expression, function and clinical relevance of ACE2 in tumors has not yet been thoroughly analyzed. In this study, RNA sequencing (RNA-seq) data from tumors, adjacent tissues and whole blood samples of COVID-19 patients from genome databases and from tumor cell lines and endothelial cells infected with different SARS-CoV-2 variants or transfected with an ACE2 expression vector (ACE2high) or mock (ACE2low) were analyzed for the expression of ACE2 and immune response relevant molecules in silico or by qPCR, flow cytometry, Western blot and/or RNA-seq. The differential expression profiles in ACE2high vs. ACE2low cells correlated with available SARS-CoV-2 RNA-seq datasets. ACE2high cells demonstrated upregulated mRNA and/or protein levels of HLA class I, programmed death ligand 1 (PD-L1), components of the antigen processing machinery (APM) and the interferon (IFN) signaling pathway compared to ACE2low cells. Co-cultures of ACE2high cells with peripheral blood mononuclear cells increased immune cell migration and infiltration towards ACE2high cells, apoptosis of ACE2high cells, release of innate immunity-related cytokines and altered NK cell-mediated cytotoxicity. Thus, ACE2 expression was associated in different model systems and upon SARS-CoV-2 infection with an altered host immunogenicity, which might influence the efficacy of immune checkpoint inhibitors. These results provide novel insights into the (patho)physiological role of ACE2 on immune response-relevant mechanisms and suggest an alternative strategy to reduce COVID-19 severity in infected tumor patients targeting the ACE2-induced IFN-PD-L1 axis.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Ahmed Al-Samadi
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Helene Schäfer
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
- Institute of Translational Immunology, Brandenburg an der Havel, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, 90014, Finland
| | - Katharina Biehl
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Christoforos K Vaxevanis
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Kamatchi Ulagappan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Matthias Reimers
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | | | | | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Institute of Translational Immunology, Brandenburg an der Havel, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Translational Medicine, Medical School Theodor Fontane, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| |
Collapse
|
4
|
Mortazavi SMJ, Mortazavi SA, Welsh JS, Sihver L. Should We Fear A Wave of Cancers After the COVID-19 Pandemic? J Biomed Phys Eng 2024; 14:517-518. [PMID: 39726879 PMCID: PMC11668930 DOI: 10.31661/jbpe.v0i0.2310-1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2024]
Affiliation(s)
- Seyed Mohammad Javad Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - James S Welsh
- Department of Radiation Oncology Edward Hines Jr VA Hospital Hines, Illinois. United States
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, United States
| | - Lembit Sihver
- Department of Radiation Physics, Technische Universität Wien, Atominstitut, 1040 Vienna, Austria
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
- Department of Radiation Dosimetry, Nuclear Physics Institute (NPI) of the Czech Academy of Sciences (CAS), 18000 Prague, Czech Republic
| |
Collapse
|
5
|
Pagliuca A, Kaul S, Goodyear CS, Lee L. Prevention is better than cure: immunocompromised people need COVID-19 prevention therapies now. Infect Dis (Lond) 2024; 56:1107-1110. [PMID: 39482903 DOI: 10.1080/23744235.2024.2405210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024] Open
Abstract
Immunocompromised people are facing ongoing inequality in health outcomes because of COVID-19. Let's remain ambitious and improve availability and access to COVID-19 prevention therapies that protect patients and aid management. This article brings together opinions from four experts based in the United Kingdom who specialise in immunology, solid organ transplantation, respiratory medicine and critical care, oncology and haematology. In this article, they communicate the impact of SARS-CoV-2 infection on vulnerable patients with underlying conditions and the need for immediate policies to protect vulnerable people from COVID-19.
Collapse
Affiliation(s)
- Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital & Kings College, London, UK
| | - Sundeep Kaul
- Departments of Respiratory Medicine and Intensive Care, Royal Brompton and Harefield Hospital, London, UK
| | - Carl S Goodyear
- School of Infection & Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lennard Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Gazeau S, Deng X, Brunet-Ratnasingham E, Kaufmann DE, Larochelle C, Morel PA, Heffernan JM, Davis CL, Smith AM, Jenner AL, Craig M. Using virtual patient cohorts to uncover immune response differences in cancer and immunosuppressed COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605860. [PMID: 39131351 PMCID: PMC11312602 DOI: 10.1101/2024.08.01.605860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer treatments experience worse infections and more severe COVID-19. It is difficult to conduct clinical studies in these populations, resulting in a restricted amount of data that can be used to relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of COVID-19 severity in individuals with cancer and immunosuppression, we adapted our mathematical model of the immune response during COVID-19 and generated virtual patient cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients recapitulated available longitudinal clinical data collected from patients in Montréal, Canada area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and delayed type I interferon peaks compared to those with mild COVID-19 outcomes. Additionally, our results suggest that cancer patients experience higher viral loads (however, with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and immunosuppressed virtual patients suffered a high degree of tissue damage associated with elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by infected cells were found to be elevated in severe cancer and immunosuppressed patients with respect to the COVID-19 reference group. Together, our study highlights that dysfunction in type I interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19, particularly in cancer patients and immunosuppressed individuals.
Collapse
Affiliation(s)
- Sonia Gazeau
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Xiaoyan Deng
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | | | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and Université de Lausanne, Lausanne, Switzerland
| | - Catherine Larochelle
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jane M. Heffernan
- Centre for Disease Modelling, Department of Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Courtney L. Davis
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Adrianne L. Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Tanrıverdi Ö, Alkan A, Karaoglu T, Kitaplı S, Yildiz A. COVID-19 and Carcinogenesis: Exploring the Hidden Links. Cureus 2024; 16:e68303. [PMID: 39350850 PMCID: PMC11441415 DOI: 10.7759/cureus.68303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has been studied predominantly in terms of its immediate respiratory and systemic effects. However, emerging evidence suggests possible long-term effects, including its role in carcinogenesis. This comprehensive review explores the complex relationship between COVID-19 and cancer development, focusing on immune dysregulation, chronic inflammation, genetic and epigenetic alterations, and the impact of therapeutic interventions. We also focused on the molecular mechanisms by which SARS-CoV-2 may facilitate cancer progression, including the roles of angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and FURIN. Additionally, we examined the possible carcinogenic effects of long-term COVID-19 treatments and the interaction between co-infections and cancer risk. Our findings highlight the need for increased cancer surveillance in COVID-19 survivors. In the post-COVID-19 period, it can be thought that inflammation associated with excessive cytokine release, especially interleukin-6, genetic and epigenetic changes, and co-infections with oncogenic viruses such as Epstein-Barr virus or human papillomavirus may be effective in the development and progression of cancer. Further research is needed to explain the mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Özgür Tanrıverdi
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | - Ali Alkan
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | | | - Sait Kitaplı
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | - Aysegul Yildiz
- Molecular Biology and Genetics, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| |
Collapse
|
8
|
Chen Q, Lu C, Jiang F, Wang C, Yu L. The association of COVID-19 with diffuse large B-cell lymphoma: a Mendelian randomization study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2378-2386. [PMID: 37634141 DOI: 10.1080/09603123.2023.2251406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
With the outbreak of coronavirus disease 2019 (COVID-19), there has been an increasing focus on exploring the relationship between SARS-CoV-2 infection and tumors. However, there is no consensus on the association between COVID-19 and lymphoma. In this study, genome-wide association study (GWAS) summary data sets for COVID-19 and lymphoma were obtained from the OPEN GWAS website. Single nucleotide polymorphisms (SNPs) were selected as genetic instrument variants for fulling P < 5 × 10-8 and linkage disequilibrium [LD] r2 < 0.001. Both palindromic and outlier SNPs were removed. Cochran's Q test, the MR‒Egger intercept test, and leave-one-out analysis were employed to assess the sensitivity of the effect of COVID-19 on lymphoma. The results showed that COVID-19 patients with very severe respiratory symptoms have an increased risk of developing diffuse large B-cell lymphoma (IVW, OR = 1.765, 95% CI 1.174-2.651, P = 0.006). There was no association between COVID-19 with very severe respiratory symptoms and Hodgkin's lymphoma or other types of non-Hodgkin's lymphoma. No horizontal or directional pleiotropy was observed in the Mendelian randomization analysis. In conclusion, SARS-CoV-2 infection with very severe respiratory symptoms may be a potential risk factor for diffuse large B-cell lymphoma (DLBCL), and follow-up studies with larger samples are needed.
Collapse
Affiliation(s)
- Qiuni Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Chuanyang Lu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Division of Infection Control, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Das R, Sinnarasan VSP, Paul D, Venkatesan A. A Machine Learning Approach to Identify Potential miRNA-Gene Regulatory Network Contributing to the Pathogenesis of SARS-CoV-2 Infection. Biochem Genet 2024; 62:987-1006. [PMID: 37515735 DOI: 10.1007/s10528-023-10458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Worldwide, many lives have been lost in the recent outbreak of coronavirus disease. The pathogen responsible for this disease takes advantage of the host machinery to replicate itself and, in turn, causes pathogenesis in humans. Human miRNAs are seen to have a major role in the pathogenesis and progression of viral diseases. Hence, an in-silico approach has been used in this study to uncover the role of miRNAs and their target genes in coronavirus disease pathogenesis. This study attempts to perform the miRNA seq data analysis to identify the potential differentially expressed miRNAs. Considering only the experimentally proven interaction databases TarBase, miRTarBase, and miRecords, the target genes of the miRNAs have been identified from the mirNET analytics platform. The identified hub genes were subjected to gene ontology and pathway enrichment analysis using EnrichR. It is found that a total of 9 miRNAs are deregulated, out of which 2 were upregulated (hsa-mir-3614-5p and hsa-mir-3614-3p) and 7 were downregulated (hsa-mir-17-5p, hsa-mir-106a-5p, hsa-mir-17-3p, hsa-mir-181d-5p, hsa-mir-93-3p, hsa-mir-28-5p, and hsa-mir-100-5p). These miRNAs help us to classify the diseased and healthy control patients accurately. Moreover, it is also found that crucial target genes (UBC and UBB) of 4 signature miRNAs interact with viral replicase polyprotein 1ab of SARS-Coronavirus. As a result, it is noted that the virus hijacks key immune pathways like various cancer and virus infection pathways and molecular functions such as ubiquitin ligase binding and transcription corepressor and coregulator binding.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Bioinformatics, Pondicherry University, RV Nagar, Kalapet, Puducherry, 605014, India
| | | | - Dahrii Paul
- Department of Bioinformatics, Pondicherry University, RV Nagar, Kalapet, Puducherry, 605014, India
| | - Amouda Venkatesan
- Department of Bioinformatics, Pondicherry University, RV Nagar, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
10
|
Zhang X, Chen J, Sun J, Gao S, Zhao F, Qian N. Tumor reduction after SARS‑CoV‑2 infection in a patient with lung cancer: A case report. Oncol Lett 2024; 27:169. [PMID: 38455664 PMCID: PMC10918517 DOI: 10.3892/ol.2024.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 03/09/2024] Open
Abstract
Lung cancer is one of the most common malignancies worldwide. Since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic in 2020, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on lung cancer has been extensively studied. Despite reports about SARS-CoV-2 infection inducing a significant increase in the number of medical visits for patients with cancer, the virus has also been reported to produce some unknown benefits. The present study reports the case of a patient with lung cancer whose tumor lesion was reduced in size after SARS-CoV-2 infection even though the therapeutic regimen remained unchanged. Although the mechanism involved is not yet understood, this case supports the novel idea of applying SARS-CoV-2 in oncolytic virotherapy.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000, P.R. China
| | - Jingyu Chen
- Department of College English, School of Languages and Communication Studies, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Jie Sun
- Department of Oncology, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, P.R. China
| | - Shuyue Gao
- Department of Oncology, Graduate School of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Feiyu Zhao
- Department of Oncology, Graduate School of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Niansong Qian
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100091, P.R. China
| |
Collapse
|
11
|
Liu W, Li W, Zhao Z. Single-Cell Transcriptomics Reveals Pre-existing COVID-19 Vulnerability Factors in Lung Cancer Patients. Mol Cancer Res 2024; 22:240-253. [PMID: 38063850 PMCID: PMC10922768 DOI: 10.1158/1541-7786.mcr-23-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Coronavirus disease 2019 (COVID-19) and cancer are major health threats, and individuals may develop both simultaneously. Recent studies have indicated that patients with cancer are particularly vulnerable to COVID-19, but the molecular mechanisms underlying the associations remain poorly understood. To address this knowledge gap, we collected single-cell RNA-sequencing data from COVID-19, lung adenocarcinoma, small cell lung carcinoma patients, and normal lungs to perform an integrated analysis. We characterized altered cell populations, gene expression, and dysregulated intercellular communication in diseases. Our analysis identified pathologic conditions shared by COVID-19 and lung cancer, including upregulated TMPRSS2 expression in epithelial cells, stronger inflammatory responses mediated by macrophages, increased T-cell response suppression, and elevated fibrosis risk by pathologic fibroblasts. These pre-existing conditions in patients with lung cancer may lead to more severe inflammation, fibrosis, and weakened adaptive immune response upon COVID-19 infection. Our findings revealed potential molecular mechanisms driving an increased COVID-19 risk in patients with lung cancer and suggested preventive and therapeutic targets for COVID-19 in this population. IMPLICATIONS Our work reveals the potential molecular mechanisms contributing to the vulnerability to COVID-19 in patients with lung cancer.
Collapse
Affiliation(s)
- Wendao Liu
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenbo Li
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Shbeer AM. Mystery of COVID 19: Focusing on important ncRNAs and effective signaling pathways. Pathol Res Pract 2024; 255:155155. [PMID: 38354486 DOI: 10.1016/j.prp.2024.155155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
This article provides a thorough investigation of the essential role of non-coding RNAs (ncRNAs) in the context of COVID-19, emphasizing their impact on the complex molecular dynamics of the viral infection. By conducting a systematic review of existing literature, we identify key ncRNAs involved in different stages of the viral life cycle, modulation of host immune response, and disease progression. The importance of microRNAs, long non-coding RNAs, and other ncRNA types emerges as influential factors in shaping the interaction between the host and the virus. Additionally, the study delves into the effective signaling pathways linked to COVID-19 pathogenesis, uncovering intricate molecular cascades that govern viral entry, replication, and host cell response. This exploration encompasses established pathways such as IL-6/JAK/STAT signaling, highlighting their interplay within the context of COVID-19. By synthesizing this knowledge, our aim is not only to enhance our understanding of the molecular complexities of COVID-19 but also to reveal potential therapeutic targets. Through elucidating the interaction between ncRNAs and signaling pathways, our article seeks to contribute to ongoing efforts in developing targeted interventions against COVID-19, ultimately advancing our ability to address this global health crisis.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
13
|
Yendewa GA, Perez JA, Patil N, McComsey GA. Associations between post-acute sequelae of SARS-CoV-2, COVID-19 vaccination and HIV infection: a United States cohort study. Front Immunol 2024; 15:1297195. [PMID: 38318191 PMCID: PMC10838972 DOI: 10.3389/fimmu.2024.1297195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background People with HIV (PWH) are at higher risk of complications from acute COVID-19, but their risk of subsequent post-acute sequelae of SARS-CoV2 (PASC) remains unclear. Although vaccination is protective of PASC among survivors in the general population, its effectiveness in PWH has not been explored. Methods We used the TriNetX health research database to identify patients with and without HIV aged ≥18 years with confirmed SARS-CoV-2 between January 1, 2020 and July 20, 2023. We employed 1:1 propensity score matching to balance HIV and non-HIV cohorts based on demographics and key comorbidities. The primary outcomes accessed odds of PASC and mortality and secondary outcomes assessed odds of PASC and mortality by vaccination status. PASC was defined as new-onset conditions ≥ 28 days after COVID-19 diagnosis. We reported odd ratios (OR) of outcomes with 95% confidence intervals (CI), with statistical significance set at p < 0.05. Results Of 3,029,340 people with confirmed SARS-CoV-2 infection, 0.5% (n=13,214) were PWH, with 7.5% of PWH (n=989) vaccinated. After 28 days post-COVID-19, PWH had higher odds of mortality compared with their non-HIV counterparts (OR 1.22, 95% CI 1.06-1.40) and developing new-onset HTN (OR 1.18, 95% CI 1.03-1.36), heart disease (OR 1.35 95% CI 1.18-1.54), malignancy (OR 1.49, 95% CI 1.22-1.81), and mental disorders (OR 1.62, 95% CI 1.42-1.85). Furthermore, vaccinated PWH had significantly lower odds of death (OR 0.63, 95% CI 0.42-0.93) and new-onset PASC outcomes: DM (OR 0.65, 95% CI 0.43-0.99), heart disease (OR 0.58, 95% CI 0.4-0.85), mental disorders (OR 0.66, 95% CI 0.43-1.00), fatigue (OR 0.82, 95% CI 0.67-0.98), respiratory (OR 0.82, 95% CI 0.70-0.95) and gastrointestinal symptoms (OR 0.78, 95% CI 0.67-0.90). Conclusion HIV-positive status increased PASC odds, while COVID-19 vaccination reduced PASC and all-cause mortality risks in PWH.
Collapse
Affiliation(s)
- George A. Yendewa
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Jaime Abraham Perez
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Nirav Patil
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Grace A. McComsey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
14
|
Liao YT, Shen HC, Huang JR, Sun CY, Ko HJ, Chang CJ, Chen YM, Feng JY, Chen WC, Yang KY. Clinical characteristics and outcomes among critically ill patients with cancer and COVID-19-related acute respiratory failure. BMC Pulm Med 2024; 24:34. [PMID: 38225613 PMCID: PMC10789018 DOI: 10.1186/s12890-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has affected individuals worldwide, and patients with cancer are particularly vulnerable to COVID-19-related severe illness, respiratory failure, and mortality. The relationship between COVID-19 and cancer remains a critical concern, and a comprehensive investigation of the factors affecting survival among patients with cancer who develop COVID-19-related respiratory failure is warranted. We aim to compare the characteristics and outcomes of COVID-19-related acute respiratory failure in patients with and without underlying cancer, while analyzing factors affecting in-hospital survival among cancer patients. METHODS We conducted a retrospective observational study at Taipei Veterans General Hospital in Taiwan from May to September 2022, a period during which the omicron variant of the severe acute respiratory syndrome coronavirus 2 was circulating. Eligible patients had COVID-19 and acute respiratory failure. Clinical data, demographic information, disease severity markers, treatment details, and outcomes were collected and analyzed. RESULTS Of the 215 enrolled critically ill patients with COVID-19, 65 had cancer. The patients with cancer were younger and had lower absolute lymphocyte counts, higher ferritin and lactate dehydrogenase (LDH) concentrations, and increased vasopressor use compared with those without cancer. The patients with cancer also received more COVID-19 specific treatments but had higher in-hospital mortality rate (61.5% vs 36%, P = 0.002) and longer viral shedding (13 vs 10 days, P = 0.007) than those without cancer did. Smoking [odds ratio (OR): 5.804, 95% confidence interval (CI): 1.847-39.746], elevated LDH (OR: 1.004, 95% CI: 1.001-1.012), vasopressor use (OR: 5.437, 95% CI: 1.202-24.593), and new renal replacement therapy (OR: 3.523, 95% CI: 1.203-61.108) were independent predictors of in-hospital mortality among patients with cancer and respiratory failure. CONCLUSION Critically ill patients with cancer experiencing COVID-19-related acute respiratory failure present unique clinical features and worse clinical outcomes compared with those without cancer. Smoking, elevated LDH, vasopressor use, and new renal replacement therapy were risk factors for in-hospital mortality in these patients.
Collapse
Affiliation(s)
- Ying-Ting Liao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Chin Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jhong-Ru Huang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chuan-Yen Sun
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Jui Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Jung Chang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chih Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Anastasopoulou A, Diamantopoulos PT, Kouzis P, Saridaki M, Sideris K, Samarkos M, Gogas H. COVID-19 in Patients with Melanoma: A Single-Institution Study. Cancers (Basel) 2023; 16:96. [PMID: 38201522 PMCID: PMC10778439 DOI: 10.3390/cancers16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
We conducted a single-center, non-interventional retrospective study of melanoma patients with COVID-19 (1 March 2020 until 17 March 2023). The cohort was further divided into three groups according to the periods of SARS-CoV-2 variant dominance in Greece. We recorded demographics, comorbidities, vaccination data, cancer diagnosis/stage, types of systemic melanoma treatments, date of COVID-19 diagnosis and survival. We identified 121 patients. The vast majority (87.6%) had advanced disease (stages III or IV). A total of 80.1% of the patients were receiving immune checkpoint inhibitor-based therapies, 92.5% had asymptomatic/mild COVID-19 and 7.4% had moderate/severe/critical disease, while 83.5% contracted COVID-19 during the third period of the pandemic. Sixteen patients (13.2%) were hospitalized for COVID-19 with a median length of stay of 12 days (range: 1-55 days). Advanced age, heart failure, number of comorbidities (≤1 vs. >1), vaccination status and the time period of the infection correlated with more severe COVID-19, whereas only heart failure and time period were independently correlated with severity. The 30-day mortality rate after COVID-19 was 4.2%. With a median follow-up of 340 days post-COVID-19, 17.4% of patients were deceased. In this cohort of melanoma patients with COVID-19, the 30-day mortality rate was low. There was no association between melanoma stage, treatment receipt and type of treatment with COVID-19 severity.
Collapse
Affiliation(s)
- Amalia Anastasopoulou
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.D.); (P.K.); (M.S.); (K.S.); (M.S.); (H.G.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
17
|
Chatterjee S, Sanjeev BS. Over-representation analysis of angiogenic factors in immunosuppressive mechanisms in neoplasms and neurological conditions during COVID-19. Microb Pathog 2023; 185:106386. [PMID: 37865274 DOI: 10.1016/j.micpath.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Recent studies emphasized the necessity to identify key (human) biological processes and pathways targeted by the Coronaviridae family of viruses, especially Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus Disease (COVID-19) caused up to 33-55 % death rates in COVID-19 patients with malignant neoplasms and Alzheimer's disease. Given this scenario, we identified biological processes and pathways involved in various diseases which are most likely affected by COVID-19. METHODS The COVID-19 DisGeNET data set (v4.0) contains the associations between various diseases and human genes known to interact with viruses from Coronaviridae family and were obtained from the IntAct Coronavirus data set annotated with DisGeNET data. We constructed the disease-gene network to identify genes that are involved in various comorbid diseased states. Communities from the disease-gene network were identified using Louvain method and functional enrichment through over-representation analysis methodology was used to discover significant biological processes and pathways shared between COVID-19 and other diseases. RESULT The COVID-19 DisGeNET data set (v4.0) comprised of 828 human genes and 10,473 diseases (including various phenotypes) that together constituted nodes in the disease-gene network. Each of the 70,210 edges connects a human gene with an associated disease. The top 10 genes linked to most number of diseases were VEGFA, BCL2, CTNNB1, ALB, COX2, AGT, HLA-A, HMOX1, FGF2 and COMT. The most vulnerable group of patients thus discovered had comorbid conditions such as carcinomas, malignant neoplasms and Alzheimer's disease. Finally, we identified 15 potentially useful biological processes and pathways for improved therapies. Vascular endothelial growth factor (VEGF) is the key mediator of angiogenesis in cancer. It is widely distributed in the brain and plays a crucial role in brain inflammation regulating the level of angiopoietins. With a degree of 1899, VEGFA was associated with maximum number of diseases in the disease-gene network. Previous studies have indicated that increased levels of VEGFA in the blood results in dyspnea, Pulmonary Edema (PE), Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). In case of COVID-19 patients with neoplasms and other neurological symptoms, our results indicate VEGFA as a therapeutic target for inflammation suppression. As VEGFs are known to disproportionately affect cancer patients, improving endothelial permeability and vasodilation with anti-VEGF therapy could lead to suppression of inflammation and also improve oxygenation. As an outcome of our study, we make case for clinical investigations towards anti-VEGF therapies for such comorbid conditions affected by COVID-19 for better therapeutic outcomes.
Collapse
Affiliation(s)
- S Chatterjee
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| | - B S Sanjeev
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| |
Collapse
|
18
|
Zhao X, Wu X, Xiao J, Zhang L, Hao Y, Xiao C, Zhang B, Li J, Jiang X. A large-scale genome-wide cross-trait analysis for the effect of COVID-19 on female-specific cancers. iScience 2023; 26:107497. [PMID: 37636041 PMCID: PMC10450412 DOI: 10.1016/j.isci.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Little is known regarding the long-term adverse effects of COVID-19 on female-specific cancers, nor the shared genetic influences underlying these conditions. We performed a comprehensive genome-wide cross-trait analysis to investigate the shared genetic architecture between COVID-19 (infection, hospitalization, and critical illness) with three female-specific cancers (breast cancer (BC), epithelial ovarian cancer (EOC), and endometrial cancer (EC)). We identified significant genome-wide genetic correlations with EC for both hospitalization (r g = 0.19, p = 0.01) and critical illness (r g = 0.29, p = 3.00 × 10-4). Mendelian randomization demonstrated no valid association of COVID-19 with any cancer of interest, except for suggestive associations of genetically predicted hospitalization (ORIVW = 1.09, p = 0.04) and critical illness (ORIVW = 1.06, p = 0.04) with EC risk, none withstanding multiple correction. Cross-trait meta-analysis identified 20 SNPs shared between COVID-19 with BC, 15 with EOC, and 5 with EC; and transcriptome-wide association studies revealed multiple shared genes. Findings support intrinsic links underlying these complex traits, highlighting shared mechanisms rather than causal associations.
Collapse
Affiliation(s)
- Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Hao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Mariniello DF, Aronne L, Vitale M, Schiattarella A, Pagliaro R, Komici K. Current challenges and perspectives in lung cancer care during COVID-19 waves. Curr Opin Pulm Med 2023; 29:239-247. [PMID: 37132294 PMCID: PMC10241323 DOI: 10.1097/mcp.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PURPOSE OF REVIEW In the era of the SARS-Cov2 pandemic, the multidisciplinary care of patients with lung cancer is the main challenge for clinicians. The depiction of complex networking between SARS-CoV2 and cancer cells is crucial to understanding the downstream signalling pathways leading to more severe clinical behaviour of COVID-19 among lung cancer patients. RECENT FINDINGS The immunosuppressive status caused by both blunted immune response and active anticancer treatments (e.g. radiotherapy, chemotherapy) affects also the response to vaccines. Furthermore, the COVID-19 pandemic has significantly influenced early detection, therapeutic management, and clinical research for patients with lung cancer. SUMMARY SARS-CoV-2 infection does undoubtedly represent a challenge for care of patients with lung cancer. Since symptoms of infection may overlap with underlying condition, diagnosis must be reached and treatment should start as soon as possible. Although any cancer treatment should be procrastinated as long as infection is not cured, every choice must be pondered on individual basis, according to clinical conditions. Underdiagnosis should be avoided, and both surgical and medical treatment must be tailored to each patient. Therapeutic scenario standardization represents a major challenge for clinicians and researchers.
Collapse
Affiliation(s)
| | - Luigi Aronne
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Maria Vitale
- CEINGE, Biotecnologie Avanzate
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples
| | - Angela Schiattarella
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Raffaella Pagliaro
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Klara Komici
- Department of Medicine and Health Sciences University of Molise, Campobasso, Italy
| |
Collapse
|
20
|
Zandi M, Shafaati M, Shenagari M, Naziri H. Targeting CD47 as a therapeutic strategy: A common bridge in the therapy of COVID-19-related cancers. Heliyon 2023; 9:e17959. [PMID: 37456027 PMCID: PMC10344805 DOI: 10.1016/j.heliyon.2023.e17959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Macrophages are essential mediators of innate immunity. Non-self-cells resist phagocytosis through the expression of the checkpoint molecule CD47. CD47, as the integrin-associated protein, is overexpressed on tumor and SARS-CoV-2-infected cells as a potential surface biomarker for immune surveillance evasion. CD47-signal-regulating protein alpha (SIRPα) interaction is a promising innate immunotarget. Previous findings based on monoclonal antibodies (mAbs) or fusion proteins that block CD47 or SIRPα have been developed in cancer research. While CD47 efficacy in infectious diseases, especially severe COVID-19 studies, is lacking, focus on macrophage-mediated immunotherapy that increases "eat me" signals in combination therapy with mAbs is optimistic. This integrin-related protein can be as a potential target to therapy for COVID-19. Here, we concentrate on the role of the CD47 signaling pathway as a novel therapeutic strategy for COVID-19-associated cancer treatment.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shafaati
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Shenagari
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Naziri
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
21
|
Meo C, Palma G, Bruzzese F, Budillon A, Napoli C, de Nigris F. Spontaneous cancer remission after COVID-19: insights from the pandemic and their relevance for cancer treatment. J Transl Med 2023; 21:273. [PMID: 37085802 PMCID: PMC10119533 DOI: 10.1186/s12967-023-04110-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Early in the COVID-19 pandemic, it emerged that the risk of severe outcomes was greater in patients with co-morbidities, including cancer. The huge effort undertaken to fight the pandemic, affects the management of cancer care, influencing their outcome. Despite the high fatality rate of COVID-19 disease in cancer patients, rare cases of temporary or prolonged clinical remission from cancers after SARS-CoV-2 infection have been reported. We have reviewed sixteen case reports of COVID-19 disease with spontaneous cancer reduction of progression. Fourteen cases of remission following viral infections and two after anti-SARS-CoV-2 vaccination. The immune response to COVID-19, may be implicated in both tumor regression, and progression. Specifically, we discuss potential mechanisms which include oncolytic and priming hypotheses, that may have contributed to the cancer regression in these cases and could be useful for future options in cancer treatment.
Collapse
Affiliation(s)
- Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate - National Institute of Cancer - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138, Naples, Italy
- Advanced Medical and Surgical Science (DAMSS), School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
22
|
Błaszczuk A, Sikora D, Kiś J, Stępień E, Drop B, Polz-Dacewicz M. Humoral Response after SARS-CoV-2 Vaccination in Prostate Cancer Patients. Vaccines (Basel) 2023; 11:vaccines11040770. [PMID: 37112682 PMCID: PMC10144447 DOI: 10.3390/vaccines11040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is an important public health problem. Prostate cancer is one of the most common cancers among men. In Poland, the incidence of this type of cancer is constantly growing. Considering the appearance of a new coronavirus in December 2019 (SARS-CoV-2) and the fact that oncology patients, including those with prostate cancer, are particularly vulnerable to infection, it is recommended to get vaccinated against COVID-19. In our study, we determined the level and prevalence of antibodies against SARS-CoV-2 IgG in patients with prostate cancer compared to the control group and whether the patients’ ages affected the level of antibodies. PCa patients and controls were divided into two age groups: 50–59 years and 60–70 years. We also analyzed the level of antibodies in patients belonging to the relevant risk groups for prostate cancer (the European Society of Urology risk group classification of prostate cancer). For the study, we used the Microblot-Array COVID-19 IgG test to detect antibodies against the three main SARS-CoV-2 antigens: NCP, RBD, and S2. Our results showed that prostate cancer patients had significantly lower levels of anti-SARS-CoV-2 IgG antibodies compared to controls. In addition, age also affected the decrease in the number of IgG antibodies. The level of antibodies in the intermediate/high-risk group was lower compared to the low-risk group.
Collapse
Affiliation(s)
- Agata Błaszczuk
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dominika Sikora
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Kiś
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland
| | - Ewa Stępień
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | | |
Collapse
|
23
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Ntambara J, Munyanshongore C, Ndahindwa V. Severity Status of COVID-19 and Its Associated Factors at the Nyarugenge Treatment Center in Rwanda. Cureus 2023; 15:e35627. [PMID: 37007413 PMCID: PMC10064020 DOI: 10.7759/cureus.35627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Background The COVID-19 pandemic has continued to be a public health emergency currently; on March 11, 2020, the World Health Organization (WHO) declared it a global pandemic. Despite the Rwanda National Health Measures that have been put in place to protect the public including lockdowns, curfew, face mask mandate, handwashing sensitization, etc., severe morbidity and mortality cases of COVID-19 are continued to be seen. Some studies have linked COVID-19 complications to its direct chain of mechanism; however, other studies have linked comorbidity or underlying disease conditions to its poor prognosis. Studies have not yet been conducted in Rwanda on the severe status of COVID-19 and its associated factors among patients. Therefore, this study aimed to assess the severe status of COVID-19 and its associated factors at the Nyarugenge Treatment Center. Methods A descriptive cross-sectional study was done. All patients admitted to the Nyarugenge Treatment Center from January 8, 2021, when the hospital opened, until the end of May 2021 were recruited in the study. The eligible participants were all patients who were admitted and tested positive for COVID-19 by RT-PCR method according to the Rwanda Ministry of Health criteria. Results All data were analyzed using the Statistical Package for the Social Sciences (SPSS) software, version 25 (IBM Corp., Armonk, NY). The number of patients admitted during the study period was 648, with a median age of 53; 45.2% of them were females, and 54.2% were males. Of these, 81.2% (526) were discharged from the hospital, while 18.8% (122) died. The proportion of severe status of COVID-19 was 42.1%. The factors that showed a risk of severe COVID-19 status were age and the number of comorbidities. Patients aged above 60 years (OR = 11.7, 95% CI: 5.35-25.67, p-value < 0.001) and those between the age of 51 and 60 (OR = 6.86, 95% CI: 2.96-15.93, p-value < 0.001) were 12 and seven times more likely to have severe COVID-19 status compared to those aged below 30 years. Having two comorbidities had twice the risk of developing a severe COVID-19 status compared to those with no comorbidity (OR = 2.13, 95% CI: 1.20-3.77, p-value < 0.001). Conclusion Elderly people and those with comorbidities are encouraged to obtain all standard operating procedures and comply with the vaccination program.
Collapse
|
25
|
Xiong N, Sun Q. How does SARS-CoV-2 infection impact on immunity, procession and treatment of pan cancers. J Med Virol 2023; 95:e28487. [PMID: 36625395 DOI: 10.1002/jmv.28487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
We identified 14 immune-related differentially Expressed Genes (DEGs) between COVID-19 patients and normal controls and the receiver operator characteristic curve results showed that they could be used to discriminate COVID-19 patients from healthy controls. Single-sample gene set enrichment analysis and CIBERSORT analysis displayed immune landscape of COVID-19 patients that the fraction of immune cells (like B cell subtypes and T cell subtypes) decreased distinctly in the first SARS-CoV-2 infection which may further weaken immunity of cancer patients and increasing inflammatory cells (Neutrophils and Macrophages) may further promote inflammatory response of cancer patients. Based on expression levels of 14 DEGs we found that first SARS-CoV-2 infection may accelerate progression of cancer patients by Kaplan-Meier survival, immune subtypes and tumor microenvironment analyses, and may weaken anti-PD-1 monoclonal antibody treatment effect of cancer patients by weighted gene co-expression network, tumor mutation burden and microsatellite instability analysis. The second SARS-CoV-2 infection was beneficial to control development of tumor seemingly, but it may be difficult for cancer patients to experience destroy successfully from first SARS-CoV-2 infection, let alone benefits from second SARS-CoV-2 infection. In addition, this study also emphasized significance of multi-factor analysis when analyzing impacts of SARS-CoV-2 infection on cancer patients.
Collapse
Affiliation(s)
- Nan Xiong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Graduate School of Kunming Medical University, Kunming, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| |
Collapse
|
26
|
Assessment of Clinical Indicators Registered on Admission to the Hospital Related to Mortality Risk in Cancer Patients with COVID-19. J Clin Med 2023; 12:jcm12030878. [PMID: 36769525 PMCID: PMC9917478 DOI: 10.3390/jcm12030878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Oncology patients are a particularly vulnerable group to the severe course of COVID-19 due to, e.g., the suppression of the immune system. The study aimed to find links between parameters registered on admission to the hospital and the risk of later death in cancer patients with COVID-19. METHODS The study included patients with a reported history of malignant tumor (n = 151) and a control group with no history of cancer (n = 151) hospitalized due to COVID-19 between March 2020 and August 2021. The variables registered on admission were divided into categories for which we calculated the multivariate Cox proportional hazards models. RESULTS Multivariate Cox proportional hazards models were successfully obtained for the following categories: Patient data, Comorbidities, Signs recorded on admission, Medications used before hospitalization and Laboratory results recorded on admission. With the models developed for oncology patients, we identified the following variables that registered on patients' admission were linked to significantly increased risk of death. They are: male sex, presence of metastases in neoplastic disease, impaired consciousness (somnolence or confusion), wheezes/rhonchi, the levels of white blood cells and neutrophils. CONCLUSION Early identification of the indicators of a poorer prognosis may serve clinicians in better tailoring surveillance or treatment among cancer patients with COVID-19.
Collapse
|
27
|
Ai Y, Wang H, Zheng Q, Li S, Liu J, Huang J, Tang J, Meng X. Add fuel to the fire: Inflammation and immune response in lung cancer combined with COVID-19. Front Immunol 2023; 14:1174184. [PMID: 37033918 PMCID: PMC10076709 DOI: 10.3389/fimmu.2023.1174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The corona virus disease 2019 (COVID-19) global pandemic has had an unprecedented and persistent impact on oncological practice, especially for patients with lung cancer, who are more vulnerable to the virus than the normal population. Indeed, the onset, progression, and prognosis of the two diseases may in some cases influence each other, and inflammation is an important link between them. The original chronic inflammatory environment of lung cancer patients may increase the risk of infection with COVID-19 and exacerbate secondary damage. Meanwhile, the acute inflammation caused by COVID-19 may induce tumour progression or cause immune activation. In this article, from the perspective of the immune microenvironment, the pathophysiological changes in the lungs and whole body of these special patients will be summarised and analysed to explore the possible immunological storm, immunosuppression, and immune escape phenomenon caused by chronic inflammation complicated by acute inflammation. The effects of COVID-19 on immune cells, inflammatory factors, chemokines, and related target proteins in the immune microenvironment of tumours are also discussed, as well as the potential role of the COVID-19 vaccine and immune checkpoint inhibitors in this setting. Finally, we provide recommendations for the treatment of lung cancer combined with COVID-19 in this special group.
Collapse
Affiliation(s)
- Yanling Ai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hengyi Wang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao Zheng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jianyuan Tang, ; Xiangrui Meng,
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jianyuan Tang, ; Xiangrui Meng,
| |
Collapse
|
28
|
Alaeddini M, Etemad-Moghadam S. SARS-Cov-2 infection in cancer patients, susceptibility, outcome and care. Am J Med Sci 2022; 364:511-520. [PMID: 35605680 PMCID: PMC9119956 DOI: 10.1016/j.amjms.2022.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023]
Abstract
The COVID-19 pandemic has led to many problems in cancer patients, which in part are due to insufficient knowledge of the exact implications of the virus on these individuals. Perceptions based on known facts about previous pandemics and coronaviruses might not agree with actual real-life experience and objective findings. We present a compilation of scientific facts and actual observations on different aspects of SARS-CoV-2 infection in cancer patients. These patients are at increased risk of viral contraction and have higher chances of severe disease/mortality. The latter is impacted by other factors and is still debated. In contrast to preliminary impressions, the benefits of anti-cancer treatments outweigh their risks and should be continued. Cancer patients generate antibodies in response to vaccination but in lower amounts than healthy people, especially those with hematologic cancers. Boosters, including third doses, have shown increased immune-responses in most patients. Vaccination should be prioritized in these individuals.
Collapse
Affiliation(s)
| | - Shahroo Etemad-Moghadam
- Corresponding author at: Shahroo Etemad-Moghadam, Dentistry Research Institute, Dental Research Centre, Ghods St, Enghelab Ave, P.O. Box: 14155-5583; Postal code: 14174, Tehran, Iran
| |
Collapse
|
29
|
Health influence of SARS-CoV-2 (COVID-19) on cancer: a review. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1395-1405. [PMID: 36269132 PMCID: PMC9828497 DOI: 10.3724/abbs.2022147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The novel coronavirus, namely, SARS-CoV-2 (COVID-19), broke out two years ago and has caused major global health issues. Adequate treatment options are still lacking for the management of COVID-19 viral infections. Many patients afflicted with COVID-19 may range from asymptomatic to severe symptomatic, triggering poor clinical outcomes, morbidity, and mortality. Cancer is one of the leading causes of death worldwide. It is pertinent to re-examine cancer prevalence during the COVID-19 pandemic to prevent mortality and complications. Understanding the impact of SARS-CoV-2 on cancer is key to appropriate healthcare measures for the treatment and prevention of this vulnerable population. Data was acquired from PubMed using key search terms. Additional databases were utilized, such as the Centers for Disease Prevention and Control, American Cancer Society (ACS), and National Cancer Institute (NCI). Cancer patients are more prone to SARS-CoV-2 infection and exhibit poor health outcomes, possibly due to a chronic immunosuppressive state and anticancer therapies. Male sex, older age, and active cancer disease or previous cancer are risk factors for COVID-19 infection, leading to possible severe complications, including morbidity or mortality. The speculated mechanism for potentially higher mortality or COVID-19 complications is through reduced immune system function and inflammatory processes through cancer disease, anticancer therapy, and active COVID-19 infection. This review includes prostate, breast, ovarian, hematologic, lung, colorectal, esophageal, bladder, pancreatic, cervical, and head and neck cancers. This review should help better maintain the health of cancer patients and direct clinicians for COVID-19 prevention to improve the overall health outcomes.
Collapse
|
30
|
Abraham S, Manohar SA, Patel R, Saji AM, Dani SS, Ganatra S. Strategies for Cardio-Oncology Care During the COVID-19 Pandemic. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2022; 24:137-153. [PMID: 36090762 PMCID: PMC9446588 DOI: 10.1007/s11936-022-00965-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Purpose of review The COVID-19 pandemic has disrupted healthcare and has disproportionately affected the marginalized populations. Patients with cancer and cardiovascular disease (cardio-oncology population) are uniquely affected. In this review, we explore the current data on COVID-19 vulnerability and outcomes in these patients and discuss strategies for cardio-oncology care with a focus on healthcare innovation, health equity, and inclusion. Recent findings The growing evidence suggest increased morbidity and mortality from COVID-19 in patients with comorbid cancer and cardiovascular disease. Additionally, de novo cardiovascular complications such as myocarditis, myocardial infarction, arrhythmia, heart failure, and thromboembolic events have increasingly emerged, possibly due to an accentuated host immune response and cytokine release syndrome. Summary Patient-centric policies are helpful for cardio-oncology surveillance like remote monitoring, increased use of biomarker-based surveillance, imaging modalities like CT scan, and point-of-care ultrasound to minimize the exposure for high-risk patients. Abundant prior experience in cancer therapy scaffolded the repurposed use of corticosteroids, IL-6 inhibitors, and Janus kinase inhibitors in the treatment of COVID-19 infection. COVID-19 vaccine timing and dose frequency present a challenge due to overlapping toxicities and immune cell depletion in patients receiving cancer therapies. The SARS-CoV-2 pandemic laid bare social and ethnic disparities in healthcare but also steered in innovation to combat problems of patient outreach, particularly with virtual care. In the recovery phase, the backlog in cardio-oncology care, interplay of cancer therapy-related side effects, and long COVID-19 syndrome are crucial issues to address.
Collapse
Affiliation(s)
- Sonu Abraham
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| | | | - Rushin Patel
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| | - Anu Mariam Saji
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA USA
| | - Sourbha S. Dani
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| | - Sarju Ganatra
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| |
Collapse
|
31
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
32
|
Goubran H, Stakiw J, Seghatchian J, Ragab G, Burnouf T. SARS-CoV-2 and cancer: the intriguing and informative cross-talk. Transfus Apher Sci 2022; 61:103488. [PMID: 35753906 PMCID: PMC9192107 DOI: 10.1016/j.transci.2022.103488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has significantly disrupted and burdened the diagnostic workup and delivery of care, including transfusion, to cancer patients across the globe. Furthermore, cancer patients suffering from solid tumors or hematologic malignancies were more prone to the infection and had higher morbidity and mortality than the rest of the population. Major signaling pathways have been identified at the intersection of SARS-CoV-2 and cancer cells, often leading to tumor progression or alteration of the tumor response to therapy. The reactivation of oncogenic viruses has also been alluded to in the context and following COVID-19. Paradoxically, certain tumors responded better following the profound infection-induced immune modulation. Unveiling the mechanisms of the virus-tumor cell interactions will lead to a better understanding of the pathophysiology of both cancer progression and virus propagation. It would be challenging to monitor, through the different cancer registries, retrospectively, the response of patients who have been previously exposed to the virus in contrast to those who have not contracted the infection.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Julie Stakiw
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety, Audit/Inspection and DDR Strategy, London, UK
| | - Gaafar Ragab
- Internal Medicine Department, Rheumatology, and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt; School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
33
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
Agrawal P, Sambaturu N, Olgun G, Hannenhalli S. A Path-Based Analysis of Infected Cell Line and COVID-19 Patient Transcriptome Reveals Novel Potential Targets and Drugs Against SARS-CoV-2. Front Immunol 2022; 13:918817. [PMID: 35844595 PMCID: PMC9284228 DOI: 10.3389/fimmu.2022.918817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India
| | - Gulden Olgun
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Herrmann L, Yaremenko IA, Çapcı A, Struwe J, Tailor D, Dheeraj A, Hodek J, Belyakova YY, Radulov PS, Weber J, Malhotra SV, Terent'ev AO, Ackermann L, Tsogoeva SB. Synthesis and in vitro Study of Artemisinin/Synthetic Peroxide-Based Hybrid Compounds against SARS-CoV-2 and Cancer. ChemMedChem 2022; 17:e202200005. [PMID: 35187791 PMCID: PMC9086992 DOI: 10.1002/cmdc.202200005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 12/24/2022]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 μm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 μM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Dhanir Tailor
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Arpit Dheeraj
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo namesti 216610PragueCzech Republic
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo namesti 216610PragueCzech Republic
| | - Sanjay V. Malhotra
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- German Center for Cardiovascular Research (DZHK)Potsdamer Str. 5810785BerlinGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| |
Collapse
|
36
|
Zhu G, Zhou S, Xu Y, Gao R, Li H, Su W, Han G, Wang R. Mendelian randomization study on the causal effects of COVID-19 on childhood intelligence. J Med Virol 2022; 94:3233-3239. [PMID: 35322423 PMCID: PMC9088592 DOI: 10.1002/jmv.27736] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Although individuals with coronavirus disease 2019 (COVID‐19) are known to be at increased risk for other conditions resulting from pathogenic changes (including metaplastic or anaplastic) in the lungs and other organs and organ systems, it is still unknown whether COVID‐19 affects childhood intelligence. The present two‐sample Mendelian randomization study aims to identify the genetic causal link between COVID‐19 and childhood intelligence. Four COVID‐19 genetic instrumental variants (IVs) were chosen from the largest genome‐wide association studies (GWAS) for COVID‐19 (hospitalized vs. population) (6406 cases and 902 088 controls of European ancestry). The largest childhood intelligence GWAS (n = 12 441 individuals of European ancestry) was used to evaluate the effect of the identified COVID‐19‐associated genetic IVs on childhood intelligence. We found that as the genetic susceptibility to COVID‐19 increased, childhood intelligence followed a decreasing trend, according to mr_egger (β = −0.156; p = 0.601; odds ratio [OR] = 0.856; 95% confidence interval [CI]: 0.522–1.405), simple mode (β = −0.126; p = 0.240; OR = 0.882; 95% CI: 0.745–1.044), and weighted mode (β = −0.121; p = 0.226; OR = 0.886; 95% CI: 0.758–1.036) analyses. This trend was further demonstrated by the weighted median (β = −0.134; p = 0.031; OR = 0.875; 95% CI: 0.774–0.988) and the inverse variance weighted (β = −0.152; p = 0.004; OR = 0.859; 95% CI: 0.776–0.952). Our analysis suggests a causal link between genetically increased COVID‐19 and decreased childhood intelligence. Thus, COVID‐19 may be a risk factor for declines in childhood intelligence.
Collapse
Affiliation(s)
- Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Huan Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Gencheng Han
- Beijing Institute of Basic Medical SciencesBeijingChina
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
37
|
Latif MB, Shukla S, Del Rio Estrada PM, Ribeiro SP, Sekaly RP, Sharma AA. Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2 infection. Transl Res 2022; 241:83-95. [PMID: 34871809 PMCID: PMC8641406 DOI: 10.1016/j.trsl.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 02/09/2023]
Abstract
Patients with cancers have been severely affected by the COVID-19 pandemic. This is highlighted by the adverse outcomes in cancer patients with COVID-19 as well as by the impact of the COVID-19 pandemic on cancer care. Patients with cancer constitute a heterogeneous population that exhibits distinct mechanisms of immune dysfunction, associated with distinct systemic features of hot (T-cell-inflamed/infiltrated) and cold (Non-T-cell-inflamed and/or infiltrated) tumors. The former show hyper immune activated cells and a highly inflammatory environment while, contrastingly, the latter show the profile of a senescent and/or quiescent immune system. Thus, the evolution of SARS-CoV-2 infection in different types of cancers can show distinct trajectories which could lead to a variety of clinical and pathophysiological outcomes. The altered immunological environment including cytokines that characterizes hot and cold tumors will lead to different mechanisms of immune dysfunction, which will result in downstream effects on the course of SARS-CoV-2 infection. This review will focus on defining the known contributions of soluble pro- and anti-inflammatory mediators on immune function including altered T-cells and B-cells responses and as well on how these factors modulate the expression of SARS-CoV-2 receptor ACE2, TMPRSS2 expression, and lymph node fibrosis in cancer patients. We will propose immune mechanisms that underlie the distinct courses of SARS-CoV-2 infection in cancer patients and impact on the success of immune based therapies that have significantly improved cancer outcomes. Better understanding of the immune mechanisms prevalent in cancer patients that are associated to the outcomes of SARS-CoV-2 infection will help to identify the high-risk cancer patients and develop immune-based approaches to prevent significant adverse outcomes by targeting these pathways.
Collapse
Affiliation(s)
- Muhammad Bilal Latif
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Sudhanshu Shukla
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Susan Pereira Ribeiro
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia.
| | - Ashish Arunkumar Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
38
|
López-Sánchez M, Loucera C, Peña-Chilet M, Dopazo J. Discovering potential interactions between rare diseases and COVID-19 by combining mechanistic models of viral infection with statistical modeling. Hum Mol Genet 2022; 31:2078-2089. [PMID: 35022696 PMCID: PMC9239744 DOI: 10.1093/hmg/ddac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.
Collapse
Affiliation(s)
- Macarena López-Sánchez
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain.,FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| |
Collapse
|
39
|
Seneviratne SL, Wijerathne W, Yasawardene P, Somawardana B. OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:767-797. [PMID: 35276734 PMCID: PMC8992310 DOI: 10.1093/trstmh/trac015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has currently affected >220 million individuals worldwide. The complex interplay of immune dysfunction, active malignancy, the effect of cancer treatment on the immune system and additional comorbidities associated with cancer and COVID-19 all affect the outcomes of COVID-19 in patients with cancer. We have discussed the published findings (through the end of September 2021) on the effects of cancer on the morbidity and mortality of COVID-19, common factors between cancer and COVID-19, the interaction of cancer and COVID-19 treatments, the impact of COVID-19 on cancer clinical services, immune test findings in cancer patients with COVID-19 and the long-term effects of COVID-19 on cancer survivors.
Collapse
|
40
|
Tissue Pathogens and Cancers: A Review of Commonly Seen Manifestations in Histo- and Cytopathology. Pathogens 2021; 10:pathogens10111410. [PMID: 34832566 PMCID: PMC8624235 DOI: 10.3390/pathogens10111410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue pathogens are commonly encountered in histopathology and cytology practice, where they can present as either benign mimickers of malignancy or true malignancies. The aim of this review is to provide a timely synthesis of our understanding of these tissue pathogens, with an emphasis on pertinent diagnostic conundrums associated with the benign mimickers of malignancy that can be seen with viral infections and those which manifest as granulomas. The oncogenic pathogens, including viruses, bacteria, and parasites, are then discussed with relationship to their associated malignancies. Although not exhaustive, the epidemiology, clinical manifestations, pathogenesis, and histological findings are included, along with a short review of emerging therapies.
Collapse
|
41
|
Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol 2021; 14:147. [PMID: 34526102 PMCID: PMC8444356 DOI: 10.1186/s13045-021-01161-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint therapy has achieved significant efficacy by blocking inhibitory pathways to release the function of T lymphocytes. In the clinic, anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies (mAbs) have progressed to first-line monotherapies in certain tumor types. However, the efficacy of anti-PD-1/PD-L1 mAbs is still limited due to toxic side effects and de novo or adaptive resistance. Moreover, other immune checkpoint target and biomarkers for therapeutic response prediction are still lacking; as a biomarker, the PD-L1 (CD274, B7-H1) expression level is not as accurate as required. Hence, it is necessary to seek more representative predictive molecules and potential target molecules for immune checkpoint therapy. Fibrinogen-like protein 1 (FGL1) is a proliferation- and metabolism-related protein secreted by the liver. Multiple studies have confirmed that FGL1 is a newly emerging checkpoint ligand of lymphocyte activation gene 3 (LAG3), emphasizing the potential of targeting FGL1/LAG3 as the next generation of immune checkpoint therapy. In this review, we summarize the substantial regulation mechanisms of FGL1 in physiological and pathological conditions, especially tumor epithelial to mesenchymal transition, immune escape and immune checkpoint blockade resistance, to provide insights for targeting FGL1 in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Qian
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China. .,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China.
| | - Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|