1
|
Zhu W, Yang W, Sun G, Huang J. RNA-binding protein quaking: a multifunctional regulator in tumour progression. Ann Med 2025; 57:2443046. [PMID: 39711373 DOI: 10.1080/07853890.2024.2443046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous. OBJECTIVES This review aims to analyze the isoform and function of QKI, the impact of QKI-regulated gene expression or signalling pathway alterations on tumour progression, and its potential clinical applications as a predictive marker or target for tumour therapy. METHODS We reviewed recent studies and summarized the function of QKI alteration in tumour progression. RESULTS QKI mediate post-transcriptional gene regulation including alternative splicing, polyadenylation, mRNA stabilization, mRNA subcellular location, and noncoding RNA by binding to the QRE elements of targeted nucleotide. The dysregulation of QKI is intricately correlated to tumour proliferation, metastasis, angiogenesis, tumor stem cells, the tumour microenvironment, and treatment sensitivity, and represents as a potential biological predictor in tumour diagnosis and prognosis. CONCLUSIONS QKI play a critical role as tumour suppressor or an oncogene in tumour progression due to the different splicing sites and transcripts with various tumour subtype or tumor micorenvironment. Ongoing research about QKI's functions and mechanisms persist is required to conduct for better understanding the role of QKI in tumour regulation.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Weiwei Yang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Guoping Sun
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Geng J, Huang F, Liu Q, Wang B, Xiong X, Wang S, Dong Y, Yu Y, Zhao W. CircBRWD1 promotes hepatitis B virus replication and hepatocellular carcinoma progression by regulating the miR-513a-5p/TNPO1 axis. Exp Cell Res 2025; 448:114554. [PMID: 40216011 DOI: 10.1016/j.yexcr.2025.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Hepatocellular carcinoma (HCC), primarily caused by chronic hepatitis B virus (HBV) infection, remains a leading cause of liver cancer worldwide. Despite advances in antiviral therapies, persistent HBV replication, mediated by covalently closed circular DNA (cccDNA), contributes to poor prognoses and frequent recurrence of HCC. This study investigates for the first time the role of circular RNA circBRWD1 in HBV-related HCC, aiming to elucidate its function and regulatory mechanism in HBV replication and hepatocarcinogenesis. Results showed that circBRWD1 was significantly overexpressed in HBV-positive HCC tissues and cell lines compared to HBV-negative controls and promoted HBV replication by increasing cccDNA accumulation. Silencing circBRWD1 markedly reduced the levels of HBV DNA, HBV surface antigen (HBsAg), HBV e antigen (HBeAg), and HBV core antigen (HBcAg), indicating its critical role in HBV replication. Functionally, circBRWD1 knockdown led to reduced cell proliferation, colony formation, and migration while increasing apoptosis in HCC cells. Mechanistic studies revealed that circBRWD1 acts as a sponge for miR-513a-5p, thereby upregulating TNPO1, a key player in promoting HCC malignancy. Rescue experiments confirmed that TNPO1 overexpression reversed the effects of circBRWD1 depletion, restoring cell proliferation, migration, and HBV replication. Additionally, circBRWD1 depletion significantly reduced tumor growth with reduced expression of TNPO1 and increased miR-513a-5p levels in a mouse xenograft model. Collectively, this study identifies circBRWD1 as a key oncogenic circRNA that facilitates HBV replication and HCC progression via the miR-513a-5p/TNPO1 axis. Targeting circBRWD1 may offer a novel therapeutic strategy for HBV-related HCC, potentially addressing the challenge of HBV persistence and improving patient outcomes.
Collapse
Affiliation(s)
- Jiabao Geng
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Department of Infectious Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Fei Huang
- Department of Liver Diseases, Jiangyin Hepatobiliary Hospital of Traditional Chinese Medicine, Jiangyin, Wuxi, Jiangsu, 214400, China
| | - Qiannan Liu
- Department of Physical Examination Center, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Bingji Wang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Xi Xiong
- Department of Infectious Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Shouming Wang
- Department of Infectious Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yuan Dong
- Department of Infectious Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yuecheng Yu
- Department of Infectious Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
3
|
Wang L, Cheng Y, Li W, Wang J, Liu Z, Xiang Y, Liu X, Wang K, Yan D. Knockdown NEK7 stimulates anti-tumor immune responses by NLRP3/PD-L1 signaling in esophageal cancer. Cancer Immunol Immunother 2025; 74:197. [PMID: 40347232 PMCID: PMC12065700 DOI: 10.1007/s00262-025-04057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/14/2025] [Indexed: 05/12/2025]
Abstract
BACKGROUND Esophageal cancer is a prevalent malignancy with limited treatment options. The study aimed to understand the role and mechanism of NEK7 in esophageal cancer development. METHODS RNA sequencing compared esophageal cancer tissues with adjacent tissues, and real-time PCR validated NEK7 expression. Co-IP identified NLRP3 as NEK7's binding partner. We also study the effects of NEK7 knockdown on cell viability, apoptosis, migration, invasion, and the expression of NLRP3/PD-L1 in esophageal carcinoma cell lines. TIMER 2.0 analyzed immune infiltration. An animal model was used to investigate the impact of NEK7 knockdown on tumor size, survival rates, and immune cell infiltration. Licochalcone B blocked NEK7/NLRP3, enhancing CD8 T cell-mediated tumor killing. PD-1's role in T cell viability was also assessed. RESULTS NEK7 was observed to be markedly elevated in both tumor tissues of esophageal cancer and EC109 cells. Moreover, silencing NEK7 reduced cell viability, migration, and invasion, while enhancing cell apoptosis in vitro. Knockdown of NEK7 caused a notable reduction in levels of NLRP3 and PD-L1 in EC109 cells. NEK7 expression showed a positive correlation with immune cell infiltration. Knockdown of NEK7 decreased PD-L1 expression, while upregulation of NEK7 increased PD-L1 expression, then reversed by NLRP3 knockdown. In animal studies, NEK7 knockdown reduced tumor size and volume while improving survival. It also promoted CD4 and CD8 T cell infiltration while inhibiting Treg cells and PD-1 + CD4 and CD8 T cells. Licochalcone B blocked NEK7/NLRP3 binding, decreased cell viability of EC109 cells, and enhanced the activity of co-cultured CD8 T cells. Furthermore, Licochalcone B and anti-PD-1 treatment increased the killing ratio of EC109 cells. CONCLUSION In conclusion, NEK7 is a key regulator in the progression of esophageal cancer and the immune evasion. Targeting the NEK7/NLRP3 pathway may have therapeutic potential for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Li Wang
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China
| | - Weiqiang Li
- Department of Thoracic Surgery, Beijing Luhe Hospital of Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China
| | - Zhe Liu
- Beijing Frontier Research Center for Biological Structure, Department of Thoracic Surgery, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China
| | - Xin Liu
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China
| | - Kangjie Wang
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital of Capital Medical University, No.82, Xinhua South Road, Tongzhou District, Beijing, 101100, China.
| |
Collapse
|
4
|
Owida HA, Saleh RO, Mohammad SI, Vasudevan A, Roopashree R, Kashyap A, Nanda A, Ray S, Hussein A, Yasin HA. Deciphering the role of circular RNAs in cancer progression under hypoxic conditions. Med Oncol 2025; 42:191. [PMID: 40314834 DOI: 10.1007/s12032-025-02727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
Hypoxia, characterized by reduced oxygen levels, plays a pivotal role in cancer progression, profoundly influencing tumor behavior and therapeutic responses. A hallmark of solid tumors, hypoxia drives significant metabolic adaptations in cancer cells, primarily mediated by hypoxia-inducible factor-1α (HIF-1α), a key transcription factor activated in low-oxygen conditions. This hypoxic environment promotes epithelial-mesenchymal transition (EMT), enhancing cancer cell migration, metastasis, and the development of cancer stem cell-like properties, which contribute to therapy resistance. Moreover, hypoxia modulates the expression of circular RNAs (circRNAs), leading to their accumulation in the tumor microenvironment. These hypoxia-responsive circRNAs regulate gene expression and cellular processes critical for cancer progression, making them promising candidates for diagnostic and prognostic biomarkers in various cancers. This review delves into the intricate interplay between hypoxic circRNAs, microRNAs, and RNA-binding proteins, emphasizing their role as molecular sponges that modulate gene expression and signaling pathways involved in cell proliferation, apoptosis, and metastasis. It also explores the relationship between circRNAs and the tumor microenvironment, particularly how hypoxia influences their expression and functional dynamics. Additionally, the review highlights the potential of circRNAs as diagnostic and prognostic tools, as well as their therapeutic applications in innovative cancer treatments. By consolidating current knowledge, this review underscores the critical role of circRNAs in cancer biology and paves the way for future research aimed at harnessing their unique properties for clinical advancements. Specifically, this review examines the biogenesis, expression patterns, and mechanistic actions of hypoxic circRNAs, focusing on their ability to act as molecular sponges for microRNAs and their interactions with RNA-binding proteins. These interactions impact key signaling pathways related to tumor growth, metastasis, and drug resistance, offering new insights into the complex regulatory networks governed by circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, Jordan
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800, Negeri Sembilan, Malaysia.
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hussein
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
5
|
Liu S, Wan X, Gou Y, Yang W, Xu W, Du Y, Peng X, Wang X, Zhang X. The emerging functions and clinical implications of circRNAs in acute myeloid leukaemia. Cancer Cell Int 2025; 25:167. [PMID: 40296024 PMCID: PMC12038945 DOI: 10.1186/s12935-025-03772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Acute myeloid leukaemia (AML) is a prevalent haematologic malignancy characterized by significant heterogeneity. Despite the application of aggressive therapeutic approaches, AML remains associated with poor prognosis. Circular RNAs (circRNAs) constitute a unique class of single-stranded RNAs featuring covalently closed loop structures that are ubiquitous across species. These molecules perform crucial regulatory functions in the pathogenesis of various diseases through diverse mechanisms, including acting as miRNA sponges, interacting with DNA or proteins, and encoding functional proteins/polypeptides. Recently, numerous circRNAs have been confirmed to have aberrant expression patterns in AML patients. In particular, certain circRNAs are closely associated with specific clinicopathological characteristics and thus have great potential as diagnostic/prognostic biomarkers and therapeutic targets in AML. Herein, we systematically summarize the biogenesis, degradation, and functional mechanisms of circRNAs while highlighting their clinical relevance. We also outline a series of online databases and analytical tools available to facilitate circRNA research. Finally, we discuss the current challenges and future research priorities in this evolving field.
Collapse
Affiliation(s)
- Shuiqing Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xingyu Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Wuchen Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Wei Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yuxuan Du
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiangui Peng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
Liu Z, Liu X, Yin C, Liu Z, Yu H. Identification of circRNA-Based Biomarkers and ceRNA Mechanism in Non-Small Cell Lung Cancer. Cell Biochem Biophys 2025:10.1007/s12013-025-01753-y. [PMID: 40251360 DOI: 10.1007/s12013-025-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
We aimed to identify circRNA as a biomarker in non-small cell lung cancer (NSCLC) and explore the underlying mechanism. circRNA and mRNA data were retrieved from GEO database. A series of bioinformatics analyses including differentially expressed analysis, weighted gene co-expression network analysis (WGCNA), Random Forest, and support vector machine algorithm were applied to identify the key circRNAs in NSCLC. ROC curves were used to evaluate and distinguish the roles of key circRNAs in cancer. The expression levels of circRNAs were validated via qPCR analysis. Finally, a ceRNA network was constructed. Herein, si-hsa_circ_0084443 was transfected into NSCLC cells to investigate its function in NSCLC. Five circRNAs (hsa_circ_0049271, hsa_circ_0029426, hsa_circ_0084443, hsa_circ_0015278, and hsa_circ_0024731) were identified as biomarkers in NSCLC. They exhibited potent diagnostic ability in identifying NSCLC, with AUC > 0.85. qPCR results suggested that hsa_circ_0049271, hsa_circ_0029426, and hsa_circ_0015278 were significantly downregulated and hsa_circ_0084443 and hsa_circ_0024731 were significantly upregulated in tumor tissue compared with the levels in normal tissues (P < 0.05). A ceRNA network was finally constructed. Knockdown of hsa_circ_0084443 inhibited cell growth, migration, invasion, and colony formation, and promoted apoptosis in NSCLC cell line. Five circRNAs were identified as biomarkers and demonstrated abnormal expression in NSCLC. Furthermore, ceRNA network was constructed, which can aid the mechanism exploration in the future.
Collapse
Affiliation(s)
- Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiyu Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Cong Yin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zihao Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Luo YY, Guan YP, Zhan HF, Sun CY, Cai LY, Tao KG, Lin Y, Zeng X. Circ_0098181 binds PKM2 to attenuate liver fibrosis. Front Pharmacol 2025; 16:1517250. [PMID: 40248098 PMCID: PMC12003362 DOI: 10.3389/fphar.2025.1517250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Background Liver cirrhosis seriously harms human health and fibrosis is the essential pathological process of cirrhosis. Recently, circular RNAs (circRNAs) were found to play critical roles in liver fibrosis, but the key circRNAs and precise mechanisms remained unclear. This study aimed to investigate the effect of circ_0098181 in fibrogenesis and explore its mechanism. Methods RNA sequencing was conducted to identify circRNA signatures in human liver cirrhotic tissues. Hepatic stellate cells (HSCs) (including primary rat HSCs, LX2, HSC-T6) and carbon tetrachloride (CCl4) induced liver cirrhosis model were used to explore the role of circ_0098181 on HSC activation and liver fibrogenesis in vitro and in vivo. RNA sequencing, RNA pull-down, mass spectrometry, and RNA immunoprecipitation (RIP) experiments were performed to elucidate the mechanism. Results Circ_0098181 was obviously reduced in human fibrotic liver tissues and activated HSCs. Exogenous administration of circ_0098181 blocked the activation, proliferation, and migration of HSCs in vitro and mitigated the progression of CCl4-induced liver fibrosis in vivo. Mechanistically, adenosine deaminase acting on RNA1 (ADAR1) combined with the intronic complementary sequences (ICSs) in the flanking regions, thereby regulating the biogenesis of circ_0098181. RNA sequencing and qRT-PCR revealed the suppression of circ_0098181 on pro-inflammation cytokines expression (TNFα, Fas, Cxcl11, etc.). RNA pull-down, mass spectrometry, and RIP experiments indicated that pyruvate kinase M2 (PKM2) was the direct target of circ_0098181. Circ_0098181 bound to PKM2, restrained its nuclear translocation and phosphorylation. Conclusion In conclusion, circ_0098181 exerts a significant anti-fibrotic effect by binding PKM2 to repress its nuclear translocation and inhibiting hepatic inflammation, suggesting the promising therapeutic merit in liver cirrhosis.
Collapse
Affiliation(s)
- Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Ping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Fei Zhan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun-Yan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke-Gong Tao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2025; 67:1310-1320. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
9
|
Liu C, Liu X, Cao P, Xin H, Li X, Zhu S. Circadian rhythm related genes identified through tumorigenesis and immune infiltration-guided strategies as predictors of prognosis, immunotherapy response, and candidate drugs in skin cutaneous malignant melanoma. Front Immunol 2025; 16:1513750. [PMID: 40191195 PMCID: PMC11968383 DOI: 10.3389/fimmu.2025.1513750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Background Skin cutaneous malignant melanoma (SKCM) is among the most aggressive forms of skin cancer, notorious for its rapid progression and poor prognosis under late diagnosis. This study investigates the role of circadian rhythm-related genes (CRGs) in SKCM addressing a gap in understanding how CRGs affect tumor progression and patient outcomes. Methods An analysis of CRGs expression was conducted on SKCM samples derived from The Cancer Genome Atlas datasets(TCGA). Moreover, a correlation between various subtypes and their clinical features was identified. The study employed various bioinformatics methods, including differential expression analysis, consensus clustering, and survival analysis, to investigate the role of CRGs. The functional consequences of various CRG expression patterns were further investigated using immune infiltration analysis and gene set variation analysis (GSVA). A scoring system based on CRGs was developed to predict overall survival (OS) and treatment responses in SKCM patients. The predictive accuracy of this score system was then tested, and a nomogram was used to improve its clinical usefulness. Results Key findings from this study include significant genetic alterations in circadian rhythm-related genes (CRGs) in skin cutaneous melanoma (SKCM), such as mutations and CNVs. Two molecular subtypes with distinct clinical outcomes and immune profiles were identified. A prognostic model based on six CRGs (CMTM, TNPO1, CTBS, UTRN, HK2, and LIF) was developed and validated with TCGA and GEO datasets, showing high predictive accuracy for overall survival (OS). A high CRGs score correlated with poor OS, immune checkpoint expression, and reduced sensitivity to several chemotherapeutics, including AKT inhibitor VIII and Camptothecin. Conclusions This work provides valuable insights into the circadian regulation of SKCM and underscores the potential of CRGs as biomarkers for prognosis and targets for therapeutic interventions. The novel molecular subtypes and CRGs prognostic scoring model introduced in this study offer significant contributions to the understanding and management of SKCM.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xingchen Liu
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Pengjuan Cao
- Department of Endocrinology and Traditional Chinese Medicine, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Sailing Zhu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| |
Collapse
|
10
|
Qiu D, Yan B, Xue H, Xu Z, Tan G, Liu Y. Perspectives of exosomal ncRNAs in the treatment of bone metabolic diseases: Focusing on osteoporosis, osteoarthritis, and rheumatoid arthritis. Exp Cell Res 2025; 446:114457. [PMID: 39986599 DOI: 10.1016/j.yexcr.2025.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Bone metabolic disorders, constituting a group of prevalent and grave conditions, currently have a scarcity of therapeutic alternatives. Over the recent past, exosomes have been at the forefront of research interest, owing to their nanoparticulate nature and potential for therapeutic intervention. ncRNAs are a class of heterogeneous transcripts that they lack protein-encoding capacity, yet they can modulate the expression of other genes through multiple mechanisms. Mounting evidence underscores the intricate role of exosomes as ncRNAs couriers implicated in the pathogenesis of bone metabolic disorders. In this review, we endeavor to elucidate recent insights into the roles of three ncRNAs - miRNAs, lncRNAs, and circRNAs - in bone metabolic ailments such as osteoporosis, osteoarthritis, and rheumatoid arthritis. Additionally, we examine the viability of exosomal ncRNAs as innovative, cell-free modalities in the diagnosis and therapeutic management of bone metabolic disorders. We aim to uncover the critical function of exosomal ncRNAs within the context of bone metabolic diseases.
Collapse
Affiliation(s)
- Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Binghan Yan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yajuan Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
| |
Collapse
|
11
|
Liu YR, Wang JQ, Zhou TS, Fang L, Li J, Xia Q. LncRNA-MEG3/miR-93-5p/SMAD7 axis mediates proliferative and inflammatory phenotypes of fibroblast-like synoviocytes in rheumatoid arthritis. Int J Biol Macromol 2025; 294:139390. [PMID: 39755314 DOI: 10.1016/j.ijbiomac.2024.139390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium. Multilevel experiments were conducted to investigate the role and mechanism of MEG3 in the aggravation and reversal of RA. We screened 97 intergroup differential genes of single-cell transcriptome profiles in the RA versus PsA comparison, which were principally associated with metabolism, inflammation, and proliferation. Clustering and annotation analysis defined 7 key cell subpopulations (monocytes, epithelial cells, CD8+T cells, granulocytes, fibroblasts, HSC_CD34+, and B cells) and their marker genes. Pseudotime analysis demonstrated that fibroblasts could be the end-effector cells, and that downregulation of MEG3 may be responsible for cell differentiation and state transition, followed by the malignant manifestations in the RA synovium. Mechanistically, overexpression of MEG3 could alleviate the proliferative and inflammatory phenotypes of RA synovial fibroblasts by competitively sponging miR-93-5p to promote SMAD7 expression. Taken together, our findings underscore the biological significance of MEG3/miR-93-5p/SMAD7 axis, providing valuable insights into the pathogenesis of RA.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China
| | - Tong-Sheng Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ling Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| |
Collapse
|
12
|
Yin J, Pei Z, Wu C, Liu J, Huang J, Xia R, Xiang D. M2 Macrophage-Derived Exosomal circ_0088494 Inhibits Ferroptosis via Promoting H3K4me1 Modification of STEAP3 in Cutaneous Squamous Cell Carcinoma. Mol Carcinog 2025; 64:513-525. [PMID: 39692268 DOI: 10.1002/mc.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of cutaneous cancer globally. M2 macrophage-derived exosomes (M2 exosomes) facilitate the development of cancer. Ferroptosis, a newly uncovered form of cell death, is linked to cancer progression. The present research planned to study the function and potential mechanism of M2 exosomes on ferroptosis in cSCC. Patients with cSCC were recruited to gather adjacent noncancerous specimens and cSCC tissues. Mononuclear macrophage (THP-1) cells were differentiated into M2 macrophages before exosome extraction, and then the exosomes were added into cSCC cells (A431 and SCL-1). Erastin was applied to induce ferroptosis. Cell viability, mitochondrial superoxide, lipid-ROS, malondialdehyde (MDA), and iron level were detected to validate ferroptosis in cSCC cells. Proteins and RNAs were tested by applying western blot and RT-qPCR. The combination between molecules was validated by ChIP and RIP. Six-transmembrane epithelial antigen of the prostate 3 (STEAP3) was elevated in cSCC specimens, which correlated to reduced ferroptosis. cSCC tissues presented an increase in the number of M2 macrophages. Erastin-elicited ferroptosis was repressed by M2 macrophages, while exosome inhibitor GW4869 neutralized the outcome of M2 macrophages. Furthermore, M2 exosomes repressed ferroptosis of cSCC cells via circ_0088494, which might be related to the upregulation of STEAP3. M2 exosomes-derived circ_0088494 promoted histone 3 lysine 4 monomethylation (H3K4me1) modification of STEAP3 by recruiting histone-lysine N-methyltransferase 2D (KMT2D). The effect of circ_0088494-silenced M2 exosomes on ferroptosis was antagonized by STEAP3 overexpression. M2 exosomes-derived circ_0088494 recruited KMT2D to promote H3K4me1 modification of STEAP3, thereby inhibiting ferroptosis in cSCC. This study might provide a novel target for cSCC treatment.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Zhigang Pei
- Department of Pathology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Jie Liu
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Jianxiang Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, jiangjin, P. R. China
| | - Rui Xia
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, P. R. China
| |
Collapse
|
13
|
Liang J, Zhai P, Cheng G, Han J, Song X. N-Acetyltransferase 10 Promotes Gastric Cancer Progression by Mediating the N4-Acetylcytidine Modification of Lactate Dehydrogenase A. J Biochem Mol Toxicol 2025; 39:e70227. [PMID: 40079254 DOI: 10.1002/jbt.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The N4-acetylcytidine (ac4C) modification, which is catalyzed by NAT10, represents a significant posttranscriptional modification of mRNA in multiple cancers. However, the significance of this modification in gastric cancer (GC) progression remains unclear. To evaluate the potential of differential NAT10 expression in GC, RT-qPCR and western blot were employed. Dot blot and acRIP were utilized for total ac4C and LDHA mRNA ac4C detection. Subsequently, the effects of NAT10 on GC cell viability and glycolysis were assessed by Cell Counting Kit-8 and glycolysis-related indicator detection Kits. Furthermore, rescue experiments and mice xenograft experiments were conducted to investigate the mechanism underlying the NAT10/LDHA signaling axis in GC. This study identified upregulated NAT10 and ac4C levels in GC. Knockdown of NAT10 led to inhibited cell viability and glycolysis. Additionally, NAT10 directly bound to LDHA mRNA. NAT10 silencing decreased the expression and stability of LDHA mRNA, as well as its ac4C modification level. Interestingly, LDHA overexpression partially reversed the effects of NAT10 knockdown on cell viability and glycolysis. Eventually, the oncogenic effect of NAT10/ac4C/LDHA axis was confirmed in xenograft experiments. NAT10 promoted the GC progression by mediating the ac4C modification of LDHA mRNA, which could serve as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Juan Liang
- Oncology Department, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Zhai
- Nutrition Department, Shanxi Children's Hospital, Taiyuan, Shanxi, China
| | - Guohua Cheng
- Oncology Department, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinlong Han
- Oncology Department, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiang Song
- Oncology Department, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Chen H, Wang X, Liu S, Tang Z, Xie F, Yin J, Sun P, Wang H. Circular RNA in Pancreatic Cancer: Biogenesis, Mechanism, Function and Clinical Application. Int J Med Sci 2025; 22:1612-1629. [PMID: 40093798 PMCID: PMC11905278 DOI: 10.7150/ijms.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs) are a class of novel RNA molecules featured by single-strand covalently closed circular structure, which not only are extensively found in eukaryotes and are highly conserved, but also conduct paramount roles in the occurrence and progression of pancreatic cancer (PC) through diverse mechanisms. As recent studies have demonstrated, circRNAs typically exhibit tissue-specific and cell specific expression patterns, with strong potential as biomarkers for disease diagnosis and prognosis. On the basis of their localization and specific interactions with DNA, RNA, and proteins, circRNAs are considered to possess specific biological functions by acting as microRNA (miRNA) sponges, RNA binding protein (RBP) sponges, transcriptional regulators, molecular scaffolds and translation templates. On that account, further addressing the technical difficulties in the detection and research of circRNAs and filling gaps in their biological knowledge will definitely push ahead this comparatively young research field and bring circRNAs to the forefront of clinical practice. Thus, this review systematically summarizes the biogenesis, function, molecular mechanisms, biomarkers and therapeutic targets of circRNAs in PC.
Collapse
Affiliation(s)
- Hang Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Shan Liu
- Department of Anesthesiology, Chongqing Seventh People's Hospital, Chongqing University of Technology, Chongqing, 400054, China
| | - Ziwei Tang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
- Chongqing Medical University, Chongqing, 400016, China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jingyang Yin
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Pijiang Sun
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
16
|
Chen W, Fang S, Wu X, Fang T, Chen Z, Su W, Zhu Y, Zhao X, Zhou C. circZNF707 promoted glycolysis and tumor progression through miR-668-3p-PFKM axis in NSCLC. Eur J Med Res 2025; 30:141. [PMID: 40016838 PMCID: PMC11866724 DOI: 10.1186/s40001-025-02359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Circular RNA (circRNA) plays an important regulatory role in the development of human malignancies, but the potential mechanisms of circRNA in non-small cell lung cancer (NSCLC) remain largely unknown. METHODS Microarray analysis was used to test for circRNAs differing in expression between NSCLC tumors and healthy adjacent tissues. Using qRT-PCR, the expression of circZNF707 was determined. Through a number of loss-of-function and gain-of-function investigations, the biological behavior of NSCLC cells was evaluated. Finally, tests using Western blotting, RIP, qRT-PCR, and luciferase reporter gene detection and rescue assays revealed the potential mechanism of circZNF707. RESULTS Increased expression of circZNF707 was found in NSCLC tissues. Functionally, circZNF707 enhances proliferation, migration, invasion, and glycolysis of NSCLC cells. Mechanistically, circZNF707 can upregulate PFKM by acting as a sponge for miR-668-3p, thus contributing to the progression of NSCLC. CONCLUSIONS Through the circZNF707/miR-668-3p/PFKM axis, upregulation of circZNF707 promotes tumor development. CircZNF707 may provide new insights into the treatment and diagnosis of NSCLC.
Collapse
Affiliation(s)
- Wei Chen
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China
- Ningbo University School of Medicine, Ningbo, Zhejiang Province, People's Republic of China
| | - Shuai Fang
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China
| | - Xianqiao Wu
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China
- Ningbo University School of Medicine, Ningbo, Zhejiang Province, People's Republic of China
| | - Tianzheng Fang
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China
- Ningbo University School of Medicine, Ningbo, Zhejiang Province, People's Republic of China
| | - Ziyuan Chen
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China
- Ningbo University School of Medicine, Ningbo, Zhejiang Province, People's Republic of China
| | - Wenmin Su
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China
| | - Yuchao Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xiaodong Zhao
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China.
- Ningbo University School of Medicine, Ningbo, Zhejiang Province, People's Republic of China.
| | - Chengwei Zhou
- Thoracic Surgery Department, The First Affiliated Hospital of Ningbo University, No.247 Renmin Road, Ningbo, 315020, Zhejiang Province, People's Republic of China.
- Ningbo University School of Medicine, Ningbo, Zhejiang Province, People's Republic of China.
| |
Collapse
|
17
|
Wu J, Zhang Z, Zhang L. Regarding "Risk of Cancers Proximal to the Colon in Fecal Immunochemical Test Positive Screenees in a Colorectal Cancer Screening Program". Gastroenterology 2025; 168:436. [PMID: 39489194 DOI: 10.1053/j.gastro.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Jixuan Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zili Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lei Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Gong L, Zou C, Zhang H, Yang F, Qi G, Ma Z. Landscape of Noncoding RNA in the Hypoxic Tumor Microenvironment. Genes (Basel) 2025; 16:140. [PMID: 40004471 PMCID: PMC11855738 DOI: 10.3390/genes16020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Amidst the prevalent and notable characteristic of a hypoxic microenvironment present in the majority of solid tumors, a burgeoning number of studies have revealed the significance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. The transcriptome of cancers is highly heterogeneous, with noncoding transcripts playing crucial roles. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are two distinctive classes of ncRNA that are garnering increasing attention. Biologically, they possess intriguing properties and possess significant regulatory functions. Clinically, they present as promising biomarkers and therapeutic targets. Additionally, recent research has evaluated the clinical applications of these ncRNAs in RNA-based treatments and noninvasive liquid biopsies. This review provides a comprehensive summary of recent studies on lncRNAs and circRNAs within the hypoxic tumor microenvironment. Furthermore, the clinical significance of lncRNAs and circRNAs in cancer diagnosis and treatment is emphasized, which could pave the way for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (L.G.); (C.Z.); (H.Z.); (F.Y.); (G.Q.)
| |
Collapse
|
20
|
XIA LIANGJIANG, LI GUANGBIN, ZHOU QINGWU, FENG YU, MA HAITAO. CircRNA circ_0015278 induces ferroptosis in lung adenocarcinoma through the miR-1228/P53 axis. Oncol Res 2025; 33:465-475. [PMID: 39866239 PMCID: PMC11753987 DOI: 10.32604/or.2024.050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/11/2024] [Indexed: 01/28/2025] Open
Abstract
Background Circular RNAs play an important role in regulating lung adenocarcinoma (LUAD). Bioinformatics analysis identified circ_0015278 as differentially expressed in LUAD. However, the biological mechanism of circ_0015278 in LUAD has not been fully clarified, especially in ferroptosis. Materials and Methods Bioinformatics analysis was employed to explore the downstream mechanisms of Circ_0015278, subsequently confirmed by luciferase reporter assays. The impact of Circ_0015278 on cell proliferation, migration, invasion, and ferroptosis was investigated through a loss-of-function experiment. A xenotransplantation mouse model elucidated the effect of Circ_0015278 on tumour growth. Results Circ_0015278 exhibited downregulation in LUAD. It inhibited cell proliferation, migration, and invasion while promoting ferroptosis by interacting with miR-1228 to regulate P53 expression through a competitive endogenous RNA mechanism. Moreover, circ_0015278 suppressed tumour growth in mice. Conclusions Circ_0015278 was identified as a novel factor promoting ferroptosis in LUAD. Furthermore, it suppressed the malignant progression of LUAD through the miR-1228/P53 axis.
Collapse
Affiliation(s)
- LIANGJIANG XIA
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - GUANGBIN LI
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - QINGWU ZHOU
- The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YU FENG
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HAITAO MA
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
21
|
Mortoglou M, Lian M, Miralles F, Dart DA, Uysal-Onganer P. miR-210 Mediated Hypoxic Responses in Pancreatic Ductal Adenocarcinoma. ACS OMEGA 2024; 9:47872-47883. [PMID: 39651070 PMCID: PMC11618397 DOI: 10.1021/acsomega.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one among the most lethal malignancies due to its aggressive behavior and resistance to conventional therapies. Hypoxia significantly contributes to cancer progression and therapeutic resistance of PDAC. microRNAs (miRNAs/miRs) have emerged as critical regulators of various biological processes. miR-210 is known as the "hypoxamir" due to its prominent role in cellular responses to hypoxia. In this study, we investigated the multifaceted role of miR-210 in PDAC using miR-210 knockout (KO) cellular models to elucidate its functions under hypoxic conditions. Hypoxia-inducible factor-1α (HIF1-α), a key transcription factor activated in response to low oxygen levels, upregulates miR-210. miR-210 maintains cancer stem cell (CSC) phenotypes and promotes epithelial-mesenchymal transition (EMT), which is essential for tumor initiation, metastasis, and therapeutic resistance. Our findings demonstrate that miR-210 regulates the expression of CSC markers, such as CD24, CD44, and CD133, and EMT markers, including E-cadherin, Vimentin, and Snail. Specifically, depletion of miR-210 reversed EMT and CSC marker expression levels in hypoxic Panc-1 and MiaPaCa-2 PDAC cells. These regulatory actions facilitate a more invasive and treatment-resistant PDAC phenotype. Understanding the regulatory network involving miR-210 under hypoxic conditions may reveal new therapeutic targets for combating PDAC and improving patient outcomes. Our data suggest that miR-210 is a critical regulator of HIF1-α expression, EMT, and the stemness of PDAC cells in hypoxic environments.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Mutian Lian
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Francesc Miralles
- School
of Health and Medical Sciences, City St
George’s, University of London, Cranmer Terrace, London SW17 0RE, U.K.
| | - D. Alwyn Dart
- UCL
Cancer Institute, University College London, Paul O’Gorman Building, 72
Huntley Street, London WC1E 6DD, U.K.
| | - Pinar Uysal-Onganer
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| |
Collapse
|
22
|
Tian B, Bian Y, Pang Y, Gao Y, Yu C, Zhang X, Zhou S, Li Z, Xin L, Lin H, Wang L. Dysregulated inclusion of BOLA3 exon 3 promoted by HNRNPC accelerates the progression of esophageal squamous cell carcinoma. Front Med 2024; 18:1035-1053. [PMID: 39455467 DOI: 10.1007/s11684-024-1068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 10/28/2024]
Abstract
Dysregulated RNA splicing events produce transcripts that facilitate esophageal squamous cell carcinoma (ESCC) progression, but how this splicing process is abnormally regulated remains elusive. Here, we unveiled a novel alternative splicing axis of BOLA3 transcripts and its regulator HNRNPC in ESCC. The long-form BOLA3 (BOLA3-L) containing exon 3 exhibited high expression levels in ESCC and was associated with poor prognosis. Functional assays demonstrated the protumorigenic function of BOLA3-L in ESCC cells. Additionally, HNRNPC bound to BOLA3 mRNA and promoted BOLA3 exon 3 inclusion forming BOLA3-L. High HNRNPC expression was positively correlated with the presence of BOLA3-L and associated with an unfavorable prognosis. HNRNPC knockdown effectively suppressed the malignant biological behavior of ESCC cells, which were significantly rescued by BOLA3-L overexpression. Moreover, BOLA3-L played a significant role in mitochondrial structural and functional stability. E2F7 acted as a key transcription factor that promoted the upregulation of HNRNPC and inclusion of BOLA3 exon 3. Our findings provided novel insights into how alternative splicing contributes to ESCC progression.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuting Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siwei Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Zheng Q, Zhang D, Xing J. NRF1-induced mmu_circ_0001388/hsa_circ_0029470 confers ferroptosis resistance in ischemic acute kidney injury via the miR-193b-3p/TCF4/GPX4 axis. Life Sci 2024; 358:123190. [PMID: 39481837 DOI: 10.1016/j.lfs.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS Circular RNAs (circRNAs) are critical in the progression of ischemic acute kidney injury (AKI). Nevertheless, the specific functions and regulatory pathways of mmu_circ_0001388 and hsa_circ_0029470 remain elusive. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to assess the expression patterns of mmu_circ_0001388, hsa_circ_0029470, and miR-139b-3p. Protein expressions of nuclear respiratory factor 1 (NRF1), transcription factor 4 (TCF4), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family member 4 (ACSL4) were identified via immunoblotting. Furthermore, the functions and control mechanisms of mmu_circ_003062 and hsa_circ_0075663 were examined via diverse cell and animal studies, encompassing bioinformatics prediction, dual-luciferase reporter (DLR), chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization (FISH), flow cytometry (FCM), hematoxylin and eosin (H&E) staining, dihydroethidium (DHE), TUNEL, immunohistochemistry, and transmission electron microscopy (TEM), and Fe2+ assay. KEY FINDINGS Initially, the induction of mmu_circ_0001388 by NRF1 was observed in vitro and in vivo following ischemia/reperfusion (I/R) injury. Subsequently, knockdown or overexpression of mmu_circ_0001388 was found to either promote or inhibit ferroptosis caused by I/R in Boston University mouse proximal tubule (BUMPT) cells, respectively. From a mechanistic standpoint, mmu_circ_0001388 was found to function as a sponge for miR-193b-3p, which promoted TCF4 and subsequently enhanced GPX4, thereby suppressing ferroptosis. Finally, the overexpression of mmu_circ_0001388 was shown to ameliorate I/R-induced AKI in mice. In parallel, hsa_circ_0029470, homologous to mmu_circ_0001388, demonstrated an identical control pathway in human renal tubular epithelial (HK-2) cells. SIGNIFICANCE The NRF1/mmu_circ_0001388, hsa_circ_0029470/miR-193b-3p/TCF4/GPX4 axis is pivotal in regulating ferroptosis induced by ischemic AKI and holds potential as a therapeutic target.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China; Department of Nephrology, The Second Xiangyi Hospital of Central South University, Changsha 410000, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun 130000, Jilin, China.
| |
Collapse
|
24
|
Zhang A, Deng W, Shang H, Wu J, Zhang Y, Zhuang Q, Zhang C, Chen Y. miR-5100 Overexpression Inhibits Prostate Cancer Progression by Inducing Cell Cycle Arrest and Targeting E2F7. Curr Issues Mol Biol 2024; 46:13151-13164. [PMID: 39590378 PMCID: PMC11592579 DOI: 10.3390/cimb46110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Despite advances in treatment, prostate cancer remains a leading cause of cancer-related deaths among men, highlighting the urgent need for innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulatory molecules in cancer biology. In this research, we investigated the tumor-suppressive role of miR-5100 in PCa and its underlying molecular mechanism. By using RT-qPCR, we observed lower miR-5100 expression in PCa cell lines than in benign prostate cells. Functional assays demonstrated that miR-5100 overexpression significantly suppressed PCa cell proliferation, migration, and invasion. By using RNA-sequencing, we identified 446 down-regulated and 806 upregulated candidate miR-5100 target genes overrepresenting cell cycle terms. Mechanistically, E2F7 was confirmed as a direct target of miR-5100 using the reporter gene assay and RIP assay. By conducting flow cytometry analysis, cell cycle progression was blocked at the S phase. E2F7 overexpression partially mitigated the suppressive impact of miR-5100 in PCa cells. In conclusion, miR-5100 is a tumor suppressor in PCa by blocking cell cycle and targeting E2F7.
Collapse
Affiliation(s)
- An Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianyuan Zhuang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| |
Collapse
|
25
|
Hu H, Tang J, Wang H, Guo X, Tu C, Li Z. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 2024; 29:142. [PMID: 39550559 PMCID: PMC11568689 DOI: 10.1186/s11658-024-00662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
Collapse
Affiliation(s)
- Hongkun Hu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hua Wang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoning Guo
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Chao Tu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
26
|
Zhao M, Jin Y, Yan Z, He C, You W, Zhu Z, Wang R, Chen Y, Luo J, Zhang Y, Yao Y. The splicing factor QKI inhibits metastasis by modulating alternative splicing of E-Syt2 in papillary thyroid carcinoma. Cancer Lett 2024; 604:217270. [PMID: 39306227 DOI: 10.1016/j.canlet.2024.217270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Alternative splicing (AS) plays a crucial role in the hallmarks of cancer and can open new avenues for targeted therapies. However, the aberrant AS events and the metastatic cascade in papillary thyroid carcinoma (PTC) remain largely unclear. Here, we identify the splicing factor, quaking protein (QKI), which was significantly downregulated in PTC and correlated with poor survival outcomes in patients with PTC. Functional studies indicated that low expression of QKI promoted the PTC cell growth and metastasis in vitro and in vivo. Mechanistically, low QKI induced exon 14 retention of extended synaptotagmin 2 (E-Syt2) and produced a long isoform transcript (termed E-Syt2L) that acted as an important oncogenic factor of PTC metastasis. Notably, overexpression of long non-coding RNA eosinophil granule ontogeny transcript (EGOT) physically binds to QKI and suppressed its activity by inhibiting ubiquitin specific peptidase 25 (USP25) mediated deubiquitination and subsequent degradation of QKI. Collectively, these data demonstrate the novel mechanistic links between the splicing factor QKI and splicing event in PTC metastasis and support the potential utility of targeting splicing events as a therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing, Nanjing Medical University, Nanjing, China; Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Jin
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Zhongyi Yan
- Department of Oral and Maxillofacial Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, China
| | - Chunyan He
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, Jiangsu, China
| | - Wenhua You
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Zilong Zhu
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Ren Wang
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Wuxi People's Hospital, Wuxi Medical Center Nanjing & Department of Immunology, School of Basic Medical Science & Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Nanjing, China.
| | - Judong Luo
- Department of Radiotherapy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Yuan Zhang
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing, Nanjing Medical University, Nanjing, China.
| | - Yao Yao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
27
|
Li W, Zheng L, Luo P, Chen T, Zou J, Chen Q, Cheng L, Gan L, Zhang F, Qian B. Critical role of non-coding RNA-mediated ferroptosis in urologic malignancies. Front Immunol 2024; 15:1486229. [PMID: 39544949 PMCID: PMC11560455 DOI: 10.3389/fimmu.2024.1486229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Urologic malignancies, characterized by their high aggressiveness and metastatic potential, pose a significant public health challenge globally. Ferroptosis, a novel mode of cell death, typically arises from intracellular iron ion overload and the accumulation of lipid peroxides. This process has been shown to play a crucial regulatory role in various pathological conditions, particularly in cancer, including urologic cancers. However, the comprehensive regulatory mechanisms underlying ferroptosis remain poorly understood, which somewhat limits its broader application in cancer therapy. Non-coding RNAs (ncRNAs), which encompass microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are non-coding transcripts that play pivotal roles in various physiological processes, such as proliferation, differentiation, apoptosis, and cell cycle regulation, by modulating the expression of target genes. The biological functions and potential regulatory mechanisms of ncRNAs in the context of cancer-related ferroptosis have been partially elucidated. Research indicates that ncRNAs can influence the progression of urologic cancers by affecting cell proliferation, migration, and drug resistance through the regulation of ferroptosis. Consequently, this review aims to clarify the functions and mechanisms of the ncRNA-ferroptosis axis in urologic cancers and to evaluate the clinical significance of ferroptosis-related ncRNAs, thereby providing new insights into cancer biology and therapeutic strategies that may ultimately benefit a diverse range of cancer patients.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Jiangxi, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
28
|
Jin Y, He Y, Wu Y, Wang X, Lyu L, Zhang K, Ao C, Xu L. CircRNA_SLC8A1 alleviates hypertrophic scar progression by mediating the Nrf2-ARE pathway. Mol Biol Rep 2024; 51:1067. [PMID: 39422836 DOI: 10.1007/s11033-024-10018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Hypertrophic scar (HS) is associated with cosmetic defects, mobility, and functional impairments, pruritus, and pain. Previous circRNA microarray analysis identified reduced expression of circRNA_SLC8A1 in HS tissues. Therefore, this study aims to investigate the role of circRNA_SLC8A1 in modulating the abnormal behavior of HS-derived fibroblasts (HSFs) in vitro. METHODS RT-qPCR and FISH assays were used to assess the differential expression and localization of circRNA_SLC8A1 in normal and HS tissues. Following modulation of circRNA_SLC8A1 expression, CCK-8, flow cytometry, Transwell, and wound healing assays were employed to evaluate the effects of circRNA_SLC8A1 on the biological behaviors of HSFs. The Starbase database, dual-luciferase reporter assays, and Ago2-RIP assays were utilized to predict and validate the interaction between circRNA_SLC8A1 and downstream miRNAs. RESULTS CircRNA_SLC8A1 was found to be downregulated in HS tissues and was primarily localized in the cytoplasm. Overexpression of circRNA_SLC8A1 reduced cell viability, cell invasion, wound healing, and the expression of Vimentin, N-cadherin, Col I, and Col III, while enhancing apoptosis and E-cadherin expression in HSFs. CircRNA_SLC8A1 activates the Nrf2-ARE pathway by competitively binding to miRNA-27a-3p. miRNA-27a-3p and Nrf2 exhibited high and low expression, respectively in HS tissues, with an inverse correlation between their levels. Overexpression of miRNA-27a-3p counteracted the effects of circRNA_SLC8A1 in HSF proliferation, apoptosis, migration, EMT, collagen deposition, and Nrf2-ARE pathway activity. CONCLUSION CircRNA_SLC8A1 inhibits the proliferation, migration, EMT, and collagen deposition of HSF through competitive binding with miRNA-27a-3p, thereby activating the Nrf2-ARE pathway. The circRNA_SLC8A1/miRNA-27a-3p/Nrf2-ARE axis may offer a promising molecular target for HS therapy.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongjing He
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Ke Zhang
- Department of Urinary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Urinary Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunping Ao
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Liangheng Xu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
29
|
Guo Z, Liu B, Wei Y, Wang H, Zhang Q, Hong X. The multifaceted role of quaking protein in neuropsychiatric disorders and tumor progression. Front Neurosci 2024; 18:1341114. [PMID: 39479357 PMCID: PMC11521838 DOI: 10.3389/fnins.2024.1341114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
The Quaking protein (QKI) belongs to the STAR protein family and plays a significant role in the development of the nervous system. It serves as a crucial regulator in the processes of tumor progression and cardiovascular system development. Within the central nervous system, QKI has been associated with the onset and progression of numerous neuropsychiatric disorders, including schizophrenia, depression, ataxia, and Alzheimer's disease. In malignant tumors, the methylation of the QKI promoter inhibits its expression. QKI primarily involves in the generation, stability, and selective splicing of non-coding RNA, as well as in mRNA translation. The role of QKI in the tumor microenvironment should not be overlooked. Especially in Glioblastoma Multiforme (GBM), although QKI is not the primary mutation, it still plays a vital role in maintaining the stemness of GBM. However, the mechanisms and further studies on this topic demand extensive basic and clinical trials.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - HeFei Wang
- Cancer Center, First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qingquan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Zhang X, Bian Y, Li Q, Yu C, Gao Y, Tian B, Xia W, Wang W, Xin L, Lin H, Wang L. EIF4A3-mediated oncogenic circRNA hsa_circ_0001165 advances esophageal squamous cell carcinoma progression through the miR-381-3p/TNS3 pathway. Cell Biol Toxicol 2024; 40:84. [PMID: 39382613 PMCID: PMC11481643 DOI: 10.1007/s10565-024-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a major clinical challenge due to its poor prognosis and the scarcity effective therapeutic targets. Circular RNAs (circRNAs) are crucial in cancer progression. In this study, high-throughput sequencing was employed to profile ESCC tissues, revealing that hsa_circ_0001165 is notably elevated in both ESCC tumor samples and cell lines, with its expression is positively associated with patients' TNM staging. Knockdown of hsa_circ_0001165 resulted in reduced malignant biological behavior of ESCC cells in vitro and also inhibited tumor growth in vivo. Mechanism experimental analysis found that hsa_circ_0001165 expression is positively enhanced by eukaryotic translation initiation factor 4A3 (EIF4A3). Hsa_circ_0001165 acts as a miRNA sponge for miR-381-3p, increasing the expression of tensin-3 (TNS3) through a series of related mechanism assays include dual-luciferase reporter gene, RNA Immunoprecipitation and RNA-pulldown. The downregulation in miR-381-3p expression was observed in ESCC tissues, and the cell proliferation, invasion, and migration of ESCC were suppressed. The upregulated expression of hsa_circ_0001165 modulates the miR-381-3p/TNS3 axis and promotes aggressive phenotypes of ESCC. Hsa_circ_0001165 is regarded as a encouraging biomarker and potential therapeutic target for ESCC, presenting innovative options for both diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qiuxin Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chuting Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bo Tian
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wenqiang Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
31
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
32
|
Zhang C, Hu J, Liu Z, Deng H, Xiao J, Yi Z, He Y, Xiao Z, Huang J, Liang H, Fan B, Wang Z, Chen J, Zu X. Hsa_circ_0000520 suppresses vasculogenic mimicry formation and metastasis in bladder cancer through Lin28a/PTEN/PI3K signaling. Cell Mol Biol Lett 2024; 29:118. [PMID: 39237880 PMCID: PMC11378395 DOI: 10.1186/s11658-024-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) is a potential cause of resistance to antiangiogenic therapy and is closely related to the malignant progression of tumors. It has been shown that noncoding RNAs play an important role in the formation of VM in malignant tumors. However, the role of circRNAs in VM of bladder cancer and the regulatory mechanisms are unclear. METHODS Firstly, hsa_circ_0000520 was identified to have circular character by Sanger sequencing and Rnase R assays. Secondly, the potential clinical value of hsa_circ_0000520 was explored by quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) of clinical specimens. Thirdly, the role of hsa_circ_0000520 in bladder cancer invasion, migration, and VM formation was examined by in vivo and in vitro experiments. Finally, the regulatory mechanisms of hsa_circ_0000520 in the malignant progression of bladder cancer were elucidated by RNA binding protein immunoprecipitation (RIP), RNA pulldown, co-immunoprecipitation (co-IP), qRT-PCR, Western blot (WB), and fluorescence co-localization. RESULTS Hsa_circ_0000520 was characterized as a circular RNA and was lowly expressed in bladder cancer compared with the paracancer. Bladder cancer patients with high expression of hsa_circ_0000520 had better survival prognosis. Functionally, hsa_circ_0000520 inhibited bladder cancer invasion, migration, and VM formation. Mechanistically, hsa_circ_0000520 acted as a scaffold to promote binding of UBE2V1/UBC13 to Lin28a, further promoting the ubiquitous degradation of Lin28a, improving PTEN mRNA stability, and inhibiting the phosphorylation of the PI3K/AKT pathway. The formation of hsa_circ_0000520 in bladder cancer was regulated by RNA binding protein QKI. CONCLUSIONS Hsa_circ_0000520 inhibits metastasis and VM formation in bladder cancer and is a potential target for bladder cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haisu Liang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
33
|
Liang X, Long L, Guan F, Xu Z, Huang H. Research status and potential applications of circRNAs affecting colorectal cancer by regulating ferroptosis. Life Sci 2024; 352:122870. [PMID: 38942360 DOI: 10.1016/j.lfs.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Ferroptosis is an emerging form of non-apoptotic programmed cell death (PCD), characterized by iron-mediated oxidative imbalance. This process plays a significant role in the development and progression of various tumors, including colorectal cancer, gastric cancer, and others. Circular RNA (circRNA) is a stable, non-coding RNA type with a single-stranded, covalently closed loop structure, which is intricately linked to the proliferation, invasion, and metastasis of tumor cells. Recent studies have shown that many circRNAs regulate various pathways leading to cellular ferroptosis. Colorectal cancer, known for its high incidence and mortality among cancers, is marked by a poor prognosis and pronounced chemoresistance. To enhance our understanding of how circRNA-mediated regulation of ferroptosis influences colorectal cancer development, this review systematically examines the mechanisms by which specific circRNAs regulate ferroptosis and their critical role in the progression of colorectal cancer. Furthermore, it explores the potential of circRNAs as biomarkers and therapeutic targets in colorectal cancer treatment, offering a novel approach to clinical management.
Collapse
Affiliation(s)
- Xiyuan Liang
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Linna Long
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Fan Guan
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zilu Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - He Huang
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
34
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S, Tao K. Circular RNAs in tumor immunity and immunotherapy. Mol Cancer 2024; 23:171. [PMID: 39169354 PMCID: PMC11337656 DOI: 10.1186/s12943-024-02082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNAs that have a closed and stable loop structure generated through backsplicing. Due to their conservation, stability and tissue specificity, circRNAs can potentially be used as diagnostic indicators and therapeutic targets for certain tumors. Many studies have shown that circRNAs can act as microRNA (miRNA) sponges, and engage in interactions with proteins and translation templates to regulate gene expression and signal transduction, thereby participating in the occurrence and development of a variety of malignant tumors. Immunotherapy has revolutionized the treatment of cancer. Early researches have indicated that circRNAs are involved in regulating tumor immune microenvironment and antitumor immunity. CircRNAs may have the potential to be important targets for increasing sensitivity to immunotherapy and expanding the population of patients who benefit from cancer immunotherapy. However, few studies have investigated the correlation between circRNAs and tumor immunity. In this review, we summarize the current researches on circRNAs involved in antitumor immune regulation through different mechanisms and their potential value in increasing immunotherapy efficacy with the goal of providing new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhipeng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
36
|
Li Q, Lin G, Zhang K, Liu X, Li Z, Bing X, Nie Z, Jin S, Guo J, Min X. Hypoxia exposure induces lactylation of Axin1 protein to promote glycolysis of esophageal carcinoma cells. Biochem Pharmacol 2024; 226:116415. [PMID: 38972426 DOI: 10.1016/j.bcp.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The hypoxic microenvironment in esophageal carcinoma is an important factor promoting the rapid progression of malignant tumor. This study was to investigate the lactylation of Axin1 on glycolysis in esophageal carcinoma cells under hypoxia exposure. Hypoxia treatment increases pan lysine lactylation (pan-kla) levels of both TE1 and EC109 cells. Meanwhile, ECAR, glucose consumption and lactate production were also upregulated in both TE1 and EC109 cells. The expression of embryonic stem cell transcription factors NANOG and SOX2 were enhanced in the hypoxia-treated cells. Axin1 overexpression partly reverses the induction effects of hypoxia treatment in TE1 and EC109 cells. Moreover, lactylation of Axin1 protein at K147 induced by hypoxia treatment promotes ubiquitination modification of Axin1 protein to promote glycolysis and cell stemness of TE1 and EC109 cells. Mutant Axin1 can inhibit ECAR, glucose uptake, lactate secretion, and cell stemness in TE1 and EC109 cells under normal or hypoxia conditions. Meanwhile, mutant Axin1 further enhanced the effects of 2-DG on inhibiting glycolysis and cell stemness. Overexpression of Axin1 also inhibited tumor growth in vivo, and was related to suppressing glycolysis. In conclusion, hypoxia treatment promoted the glycolysis and cell stemness of esophageal carcinoma cells, and increased the lactylation of Axin1 protein. Overexpression of Axin1 functioned as a glycolysis inhibitor, and suppressed the effects of hypoxia exposure in vitro and inhibited tumor growth in vivo. Mechanically, hypoxia induces the lactylation of Axin1 protein and promotes the ubiquitination of Axin1 to degrade the protein, thereby exercising its anti-glycolytic function.
Collapse
Affiliation(s)
- Qian Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China; Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xinbo Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Jin Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Xianjun Min
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China.
| |
Collapse
|
37
|
Yang H, Chen XW, Song XJ, Du HY, Si FC. Baitouweng decoction suppresses growth of esophageal carcinoma cells through miR-495-3p/BUB1/STAT3 axis. World J Gastrointest Oncol 2024; 16:3193-3210. [PMID: 39072160 PMCID: PMC11271792 DOI: 10.4251/wjgo.v16.i7.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Esophageal carcinoma (EC) is one of the most prevalent cancers in human populations worldwide. Baitouweng decoction is one of the most important Chinese medicine formulas, with the potential to treat cancer. AIM To investigate the role and mechanism of Baitouweng decoction on EC cells. METHODS Differentially expressed genes (DEGs) in EC tissues and normal tissues were screened by the cDNA microarray technique and by bioinformatics methods. The target genes of microRNAs were predicted based on the TargetScan database and verified by dual luciferase gene reporter assay. We used Baitouweng decoction to intervene EC cells, and detected the activity of EC9706 and KYSE150 cells by the MTT method. Cell cycle and apoptosis were measured by flow cytometry. The expression of BUB1 mRNA and miR-495-3p was measured by qRT-PCR. The protein levels of BUB1, STAT3, p-STAT3, CCNB1, CDK1, Bax, Caspase3, and Caspase9 were measured by Western blot analysis. The migration and invasion abilities of the cells were measured by wound-healing assay and Transwell invasion assay, respectively. RESULTS DEGs identified are involved in biological processes, signaling pathways, and network construction, which are mainly related to mitosis. BUB1 was the key hub gene, and it is also a target gene of miR-495-3p. Baitouweng decoction could upregulate miR-495-3p and inhibit BUB1 expression. In vitro experiments showed that Baitouweng decoction significantly inhibited the migration and invasion of EC cells and induced apoptosis and G2/M phase arrest. After treatment with Baitouweng decoction, the expression of Bax, Caspase 3, and Caspase 9 in EC cells increased significantly, while the expression of BUB1, CCNB1, and CDK1 decreased significantly. Moreover, the STAT3 signaling pathway may play an important role in this process. CONCLUSION Baitouweng decoction has a significant inhibitory effect on EC cell growth. BUB1 is a potential therapeutic target for EC. Further analysis showed that Baitouweng decoction may inhibit the growth of EC cells by upregulating miR-495-3p targeting the BUB1-mediated STAT3 signal pathway.
Collapse
Affiliation(s)
- Hui Yang
- Henan Key Laboratory of Traditional Chinese Medicine Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Xiao-Wei Chen
- Henan Key Laboratory of Traditional Chinese Medicine Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Xue-Jie Song
- Henan Key Laboratory of Traditional Chinese Medicine Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Hai-Yang Du
- Henan Key Laboratory of Traditional Chinese Medicine Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Fu-Chun Si
- Henan Key Laboratory of Traditional Chinese Medicine Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
38
|
Liu Z, Zhang Y, Yu L, Zhang Z, Li G. A miR-361-5p/ ORC6/ PLK1 axis regulates prostate cancer progression. Exp Cell Res 2024; 440:114130. [PMID: 38885805 DOI: 10.1016/j.yexcr.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both in vivo and in vitro, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p/ORC6/PLK1 axis may be a viable therapy option for PCa.
Collapse
Affiliation(s)
- Zhiqi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China; Anhui Public Health Clinical Center, Hefei, 230000, China; Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China; Department of Urology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Lin Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China; Anhui Public Health Clinical Center, Hefei, 230000, China.
| |
Collapse
|
39
|
Yao GS, Fu LM, Dai JS, Chen JW, Liu KZ, Liang H, Wang Z, Deng Q, Wang JY, Jin MY, Chen W, Fang Y, Luo JH, Cao JZ, Wei JH. Exploring the oncogenic potential of circSOD2 in clear cell renal cell carcinoma: a novel positive feedback loop. J Transl Med 2024; 22:596. [PMID: 38926764 PMCID: PMC11209967 DOI: 10.1186/s12967-024-05290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Ke-Zhi Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie-Yan Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei-Yu Jin
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jia-Zheng Cao
- Department of Urology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No.23 Haibang Street, Jiangmen, 529030, Guangdong, China.
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
40
|
He J, Yu K, Liang G, Shen W, Tian H. circ_0000592 facilitates the progression of esophageal squamous cell carcinoma via miR-155-5p/FZD5 axis. J Biochem Mol Toxicol 2024; 38:e23742. [PMID: 38780005 DOI: 10.1002/jbt.23742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/10/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the gastrointestinal malignancies with high prevalence and poor prognosis. Previous reports suggested that circular ribose nucleic acids might exert regulatory functions in ESCC. This study aims to explore the role of circ_0000592 in ESCC progression, providing novel insights into the diagnosis and therapeutic avenues for ESCC. The GSE131969 data set was utilized to assess circ_0000592 expression in ESCC. The validation was performed in the tumorous tissues of ESCC patients (n = 80) and human-immortalized ESCC cell lines. The correlation between circ_0000592 expression and prognosis was analyzed. The impact of circ_0000592 on ESCC cell activity was evaluated through downregulating circ_0000592, as well as encompassing cell viability, migration, and invasion abilities. The downstream pathway of circ_0000592 was explored by binding site prediction from the TargetScan database, followed by in vitro and in vivo experiments. An in vivo xenograft tumor model was established to highlight the role of circ_0000592 in ESCC. Patients with ESCC exhibited higher circ_0000592 expression levels compared to noncancerous patients, which were associated with reduced survival time, higher TNM stage, and increased lymph node metastasis. The circ_0000592 downregulation suppressed cell viability, migration, and invasion abilities in vitro. Mechanistically, circ_0000592 countered the inhibitory effects on the target gene Frizzled 5 (FZD5) through interactions with miR-155-5p. The overexpression of miR-155-5p curtailed the luciferase activity of circ_0000592 in ESCC cells, inhibiting downstream molecule FZD5 protein expression and subsequently mitigating the detrimental consequences of escalated circ_0000592 expression in ESCC cells. Consistently, circ_0000592 downregulation curbed proliferation and metastasis of ESCC tumors in vivo. In summary, circ_0000592 promoted the progress of ESCC by counteracting the inhibitory impact on FZD5 through its interaction with miR-155-5p. Together, our findings highlighted circ_0000592 as a prospective therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jinxian He
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Kaizhong Yu
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Gaofeng Liang
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Hui Tian
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
41
|
Fang R, Yuan W, Mao C, Cao J, Chen H, Shi X, Cong H. Human circular RNA hsa_circ_0000231 clinical diagnostic effectiveness as a new tumor marker in gastric cancer. Cancer Rep (Hoboken) 2024; 7:e2081. [PMID: 38703060 PMCID: PMC11069127 DOI: 10.1002/cnr2.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Owing to the subtlety of initial symptoms associated with gastric cancer (GC), the majority of patients are diagnosed at later stages. Given the absence of reliable diagnostic markers, it is imperative to identify novel markers that exhibit high sensitivity and specificity. Circular RNA, a non-coding RNA, plays an important role in tumorigenesis and development and is well expressed in body fluids. AIMS In this study, we aimed to identify hsa_circ_0000231 as a new biomarker for the diagnosis of GC and to assess its clinical diagnostic value in serum. METHODS AND RESULTS The stability and correctness of hsa_circ_0000231 was determined by agarose gel electrophoresis, Rnase R assay and Sanger sequencing. Real-time quantitative polymerase chain reaction (qRT-PCR) was designed to discover the expression level of hsa_circ_0000231 and whether it has dynamic serum monitoring capability. The correlation between hsa_circ_0000231 and clinicopathological parameters was analyzed by collecting clinical and pathological data from GC patients. In addition, diagnostic efficacy was assessed by constructing receiver operating characteristic curves (ROC). Hsa_circ_0000231 exhibits a stable and consistently expressed structure. In GC serum, cells, and tissues, it demonstrates reduced expression levels. Elevated expression levels observed postoperatively suggest its potential for dynamic monitoring. Additionally its expression level correlates with TNM staging and neuro/vascular differentiation. The area under ROC curve (AUC) for hsa_circ_0000231 is 0.781, indicating its superior diagnostic value compared to CEA, CA19-9, and CA72-4. The combination of these four indicators enhances diagnostic accuracy, with an AUC of 0.833. CONCLUSIONS The stable expression of hsa_circ_0000231 in the serum of gastric cancer patients holds promise as a novel biomarker for both the diagnosis and dynamic monitoring of GC.
Collapse
Affiliation(s)
- Ronghua Fang
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical MedicineMedical School of Nantong UniversityNantongChina
| | - Wentao Yuan
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical MedicineMedical School of Nantong UniversityNantongChina
| | - Chunyan Mao
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical MedicineMedical School of Nantong UniversityNantongChina
| | - Jing Cao
- Department of Blood TransfusionAffiliated Hospital of Nantong UniversityNantongChina
| | - Hongmei Chen
- Vip WardAffiliated Hospital of Nantong UniversityNantongChina
| | - Xiuying Shi
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Hui Cong
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Blood TransfusionAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
42
|
Song W, Fu J, Wu J, Ren J, Xiang R, Kong C, Fu T. CircFBXW4 Suppresses Colorectal Cancer Progression by Regulating the MiR-338-5p/SLC5A7 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300129. [PMID: 38461489 PMCID: PMC11095154 DOI: 10.1002/advs.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/04/2024] [Indexed: 03/12/2024]
Abstract
Dysregulated circular RNAs (circRNAs) contribute to tumourigenesis and cancer progression. However, the expression patterns and biological functions of circRNAs in colorectal cancer (CRC) remain elusive. Here, RNA sequencing and bioinformatics analyses are applied to screen for aberrantly expressed circRNAs. The expression of circFBXW4 in CRC tissues and cell lines is determined by quantitative real-time PCR. A series of in vitro and in vivo biological function assays are implemented to assess the functions of circFBXW4. The regulatory mechanisms linking circFBXW4, miR-338-5p, and SLC5A7 are explored by western blotting, dual luciferase reporter assays, and RNA pull-down assays. CircFBXW4 is dramatically downregulated in CRC tissues and cell lines. circFBXW4 downregulation is clearly correlated with malignant features and patient overall survival in CRC. Functionally, ectopic expression of circFBXW4 strikingly impairs the proliferation, migration, and invasion capacities of CRC cells in vitro and in vivo, whereas circFBXW4 knockdown has the opposite effects. Mechanistically, circFBXW4 competitively binds to miR-338-5p and prevents it from interacting with and repressing its target SLC5A7, thus suppressing the progression of CRC. This study reveals the specific critical role of circFBXW4 in inhibiting CRC progression via the miR-338-5p/SLC5A7 axis and provides an additional target for eradicating CRC.
Collapse
Affiliation(s)
- Wei Song
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Jincheng Fu
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
- Department of General SurgeryQingdao Municipal HospitalQingdao266071P. R. China
| | - Jing Wu
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Rensheng Xiang
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Can Kong
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Tao Fu
- Department of General SurgeryQingdao Municipal HospitalQingdao266071P. R. China
| |
Collapse
|
43
|
Sun X, Zhao X, Xu Y, Yan Y, Han L, Wei M, He M. Potential therapeutic strategy for cancer: Multi-dimensional cross-talk between circRNAs and parental genes. Cancer Lett 2024; 588:216794. [PMID: 38453043 DOI: 10.1016/j.canlet.2024.216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
In many ways, circular RNAs (circRNAs) have been demonstrated to be crucial in the onset and advancement of cancer throughout the last ten years and have become a new focus of intense research in the field of RNAs. Accumulating studies have demonstrated that circRNAs can regulate parental gene expression via a variety of biological pathways. Furthermore, research into the complex interactions between circRNAs and their parental genes will shed light on their biological roles and open up new avenues for circRNAs' potential clinical translational uses. However, to date, multi-dimensional cross-talk between circRNAs and parental genes have not been systematically elucidated. Particularly intriguing is circRNA's exploration of tumor targeting, and potential therapeutic uses based on the parental gene regulation perspective. Here, we discuss their biogenesis, take a fresh look at the molecular mechanisms through which circRNAs control the expression of their parental genes in cancer. We further highlight We further highlight the latest circRNA clinical translational applications, including prognostic diagnostic markers, cancer vaccines, gDNA, and so on. Demonstrating the potential benefits and future applications of circRNA therapy.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Xinyi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
44
|
Moon DO. Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications. Cancers (Basel) 2024; 16:1674. [PMID: 38730626 PMCID: PMC11083344 DOI: 10.3390/cancers16091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
45
|
Bhat AA, Kukreti N, Afzal M, Goyal A, Thapa R, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Ferroptosis and circular RNAs: new horizons in cancer therapy. EXCLI JOURNAL 2024; 23:570-599. [PMID: 38887390 PMCID: PMC11180955 DOI: 10.17179/excli2024-7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| |
Collapse
|
46
|
Zhao JL, Zhao L, Zhan QN, Liu M, Zhang T, Chu WW. BMSC-derived Exosomes Ameliorate Peritoneal Dialysis-associated Peritoneal Fibrosis via the Mir-27a-3p/TP53 Pathway. Curr Med Sci 2024; 44:333-345. [PMID: 38622424 DOI: 10.1007/s11596-024-2853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Peritoneal fibrosis (PF) is the main cause of declining efficiency and ultrafiltration failure of the peritoneum, which restricts the long-term application of peritoneal dialysis (PD). This study aimed to investigate the therapeutic effects and mechanisms of bone marrow mesenchymal stem cells-derived exosomes (BMSC-Exos) on PF in response to PD. METHODS Small RNA sequencing analysis of BMSC-Exos was performed by second-generation sequencing. C57BL/6J mice were infused with 4.25% glucose-based peritoneal dialysis fluid (PDF) for 6 consecutive weeks to establish a PF model. A total of 36 mice were randomly divided into 6 groups: control group, 1.5% PDF group, 2.5% PDF group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to measure the expression level of miR-27a-3p in BMSC-Exos and peritoneum of mice treated with different concentrations of PDF. HE and Masson staining were performed to evaluate the extent of PF. The therapeutic potential of BMSC-Exos for PF was examined through pathological examination, RT-qPCR, Western blotting, and peritoneal function analyses. Epithelial-mesenchymal transition (EMT) of HMrSV5 was induced with 4.25% PDF. Cells were divided into control group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Cell Counting Kit-8 assay was used to measure cell viability, and transwell migration assay was used to verify the capacity of BMSC-Exos to inhibit EMT in HMrSV5 cells. RESULTS Small RNA sequencing analysis showed that miR-27a-3p was highly expressed in BMSC-derived exosomes compared to BMSCs. The RT-qPCR results showed that the expression of miR-27a-3p was upregulated in BMSC-Exos, but decreased in PD mice. We found that PF was glucose concentration-dependently enhanced in the peritoneum of the PD mice. Compared with the control mice, the PD mice showed high solute transport and decreased ultrafiltration volume as well as an obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-SMA, collagen-I, fibronectin, and ECM1. The mice with PD showed decreased miR-27a-3p. Peritoneal structural and functional damage was significantly attenuated after BMSC-Exos treatment, while PF and mesothelial damage were significantly ameliorated. Additionally, markers of fibrosis (α-SMA, collagen-I, fibronectin, ECM1) and profibrotic cytokines (TGF-β1, PDGF) were downregulated at the mRNA and protein levels after BMSC-Exos treatment. In HMrSV5 cells, BMSC-Exos reversed the decrease in cell viability and the increase in cell migratory capacity caused by high-glucose PDF. Western blotting and RT-qPCR analysis revealed that BMSC-Exos treatment resulted in increased expression of E-cadherin (epithelial marker) and decreased expression of α-SMA, Snail, and vimentin (mesenchymal markers) compared to those of the 4.25% PDF-treated cells. Importantly, a dual-luciferase reporter assay showed that TP53 was a target gene of miR-27a-3p. TP53 overexpression significantly reversed the decreases in PF and EMT progression induced by BMSC-Exos. CONCLUSION The present results demonstrate that BMSC-Exos showed an obvious protective effect on PD-related PF and suggest that BMSC-derived exosomal miR-27a-3p may exert its inhibitory effect on PF and EMT progression by targeting TP53.
Collapse
Affiliation(s)
- Jun-Li Zhao
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Lin Zhao
- Orthopedic Department, Guangming Traditional Chinese Medicine Hospital of Pudong New Area, Shanghai, 201399, China
| | - Qiu-Nan Zhan
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Miao Liu
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Ting Zhang
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Wen-Wen Chu
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| |
Collapse
|
47
|
Tang C, He X, Jia L, Zhang X. Circular RNAs in glioma: Molecular functions and pathological implications. Noncoding RNA Res 2024; 9:105-115. [PMID: 38075205 PMCID: PMC10700123 DOI: 10.1016/j.ncrna.2023.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2025] Open
Abstract
Circular RNAs (circRNAs) are a special class of non-coding RNAs with the ring structure. They are stable, abundant and conservative across mammals. The biogenesis and molecular properties of circRNAs are being elucidated, which exert regulatory functions not only through miRNA and protein sponge, but also via translation and exosomal interaction. Accumulating studies have demonstrated that circRNAs are aberrantly expressed in various diseases, especially in cancer. Glioma is one of the most common malignant cerebral neoplasms with poor prognosis. The accurate diagnosis and effective therapies of glioma have always been challenged, there is an urgent need for developing promising therapeutic intervention. Therefore, exploring novel biomarkers is crucial for diagnosis, treatment and prognosis of the glioma which can provide better assistance in guiding treatment. Recent findings found that circRNAs are systematically altered in glioma and may play critical roles in glioma tumorigenesis, proliferation, invasion and metastasis. Due to their distinct functional properties, they are considered as the potential therapeutic targets, diagnostic and prognostic biomarkers. This review elaborates on current advances towards the biogenesis, translation and interaction of circRNAs in many diseases and focused on the role of their involvement in glioma progression, highlighting the potential value of circRNAs in glioma.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
48
|
Nie A, Shen C, Zhou Z, Wang J, Sun B, Zhu C. Ferroptosis: Potential opportunities for natural products in cancer therapy. Phytother Res 2024; 38:1173-1190. [PMID: 38116870 DOI: 10.1002/ptr.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cancer cells often exhibit defects in the execution of cell death, resulting in poor clinical outcomes for patients with many cancer types. Ferroptosis is a newly discovered form of programmed cell death characterized by intracellular iron overload and lipid peroxidation in the cell membrane. Increasing evidence suggests that ferroptosis is closely associated with a wide variety of physiological and pathological processes, particularly in cancer. Notably, various bioactive natural products have been shown to induce the initiation and execution of ferroptosis in cancer cells, thereby exerting anticancer effects. In this review, we summarize the core regulatory mechanisms of ferroptosis and the multifaceted roles of ferroptosis in cancer. Importantly, we focus on natural products that regulate ferroptosis in cancer cells, such as terpenoids, polyphenols, alkaloids, steroids, quinones, and polysaccharides. The clinical efficacy, adverse effects, and drug-drug interactions of these natural products need to be evaluated in further high-quality studies to accelerate their application in cancer treatment.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
50
|
Kaushik K, Kumar H, Mehta S, Palanichamy JK. Hypoxia increases the biogenesis of IGF2BP3-bound circular RNAs. Mol Biol Rep 2024; 51:288. [PMID: 38329630 DOI: 10.1007/s11033-024-09230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Insulin-like Growth Factor 2 Binding Protein 3 (IGF2BP3) promotes cancer migration and invasion by binding to several coding and non-coding RNAs. Hypoxia stimulates tumor progression by upregulating Hypoxia Inducible Factors and downstream signaling. Quaking (QKI) gene, which is upregulated in hypoxia and promotes epithelial to mesenchymal transition (EMT), induces circular RNAs. Therefore, the axis between IGF2BP3, QKI, circular RNAs and their respective host genes under hypoxia was studied. METHODS AND RESULTS Several IGF2BP3-bound circular RNAs were previously identified in HepG2. There were 13 circRNAs originating from 8 host genes bound to IGF2BP3. We confirmed their binding to IGF2BP3 in U87MG using an RNA Immunoprecipitation assay. MALAT1, an oncogenic lncRNA was also found to be associated with IGF2BP3. Three adherent cell lines expressing high levels of IGF2BP3 viz., HeLa, HepG2 and U87MG were cultured under normoxia (20%O2) and hypoxia (<0.2%O2) for 48-168 h. Expression of IGF2BP3, QKI, EMT markers, IGF2BP3-bound circRNAs and their host mRNAs expression were assessed by quantitative real-time PCR (qRT-PCR) in both normoxia and hypoxia. The hypoxia markers viz., VEGF and CA9 were upregulated in all the cell lines in hypoxia at all time points along with an increase in SNAIL. We found 6 genes, viz., PHC3, CDYL, ANKRD17, ARID1A, NEIL3 and FNDC3B with increased expression both at the mRNA and circRNA level indicating their synergistic role in tumor initiation. Overall, we found that circRNA to mRNA expression was observed to be increased for most of the genes and time points of hypoxia in all the cell lines. IGF2BP3 and QKI were also upregulated in hypoxia indicating their role in circRNA biogenesis and stability. CONCLUSION Our data implies that hypoxia augments circRNA biogenesis which might subsequently play a role in tumor progression.
Collapse
Affiliation(s)
- Kriti Kaushik
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India
| | - Hemant Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India
| | - Samriddhi Mehta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|