1
|
Su X, Kang D, Wang J, Li L, Huang R, Zou Z. Tertiary lymphoid structures associated with improved survival and enhanced antitumor immunity in acral melanoma. NPJ Precis Oncol 2025; 9:103. [PMID: 40200106 PMCID: PMC11978811 DOI: 10.1038/s41698-025-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Understanding the impact of tertiary lymphoid structures (TLSs) on acral melanoma (AM) and the tumor microenvironment (TME) is critical. We analyzed TLS features in primary AM lesions from 46 patients and identified intratumoral TLSs (intra-TLSs) in 25 patients. Intra-TLS presence was significantly associated with improved overall survival. Hematoxylin and eosin staining and multiplex immunofluorescence revealed increased T-cell and CD8+ T-cell infiltration and fewer tumor-associated macrophages in the TME of intra-TLS patients. Transcriptomic analysis identified a TLS-associated Th1/B-cell gene set as a predictor of survival and immunotherapy response. These findings highlight the prognostic value of intra-TLSs in AMs and suggest that targeting TLS formation could enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Xinyu Su
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Donglin Kang
- Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiayu Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rong Huang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyun Zou
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Liang KL, Azad NS. Immune-Based Strategies for Pancreatic Cancer in the Adjuvant Setting. Cancers (Basel) 2025; 17:1246. [PMID: 40227779 PMCID: PMC11988091 DOI: 10.3390/cancers17071246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality in the United States, with poor overall survival across all stages. Less than 20% of patients are eligible for curative surgical resection at diagnosis, and despite adjuvant chemotherapy, most will experience disease recurrence within two years. The incorporation of immune-based strategies in the adjuvant setting remains an area of intense investigation with unrealized promise. It offers the potential of providing durable disease control for micro-metastatic disease following curative intent surgery and enabling personalized treatments based on mutational neoantigen profiles derived from resected specimens. However, most of these attempts have failed to demonstrate significant clinical success, likely due to the immunosuppressive tumor microenvironment (TME) and individual genetic heterogeneity. Despite these challenges, immune-based strategies, such as therapeutic vaccines targeted towards neoantigens, have demonstrated promise via immune activation and induction of T-cell tumor infiltration. In this review, we will highlight the foundational lessons learned from previous clinical trials of adjuvant immunotherapy, discussing the knowledge gained from analyses of trials with disappointing results. In addition, we will discuss how these data have been incorporated to design new agents and study concepts that are proving to be exciting in more recent trials, such as shared antigen vaccines and combination therapy with immune-checkpoint inhibitors and chemotherapy. This review will evaluate novel approaches in ongoing and future clinical studies and provide insight into how these immune-based strategies might evolve to address the unique challenges for treatment of PDAC in the adjuvant setting.
Collapse
Affiliation(s)
| | - Nilofer S. Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
3
|
Sapudom J, Alatoom A, Tipay PS, Teo JC. Matrix stiffening from collagen fibril density and alignment modulates YAP-mediated T-cell immune suppression. Biomaterials 2025; 315:122900. [PMID: 39461060 DOI: 10.1016/j.biomaterials.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
T-cells are essential components of the immune system, adapting their behavior in response to the mechanical environments they encounter within the body. In pathological conditions like cancer, the extracellular matrix (ECM) often becomes stiffer due to increased density and alignment of collagen fibrils, which can have a significant impact on T-cell function. In this study, we explored how these ECM properties-density and fibrillar alignment-affect T-cell behavior using three-dimensional (3D) collagen matrices that mimic these conditions. Our results show that increased matrix stiffness, whether due to higher density or alignment, significantly suppresses T-cell activation, reduces cytokine production, and limits proliferation, largely through enhanced YAP signaling. Individually, matrix alignment appears to lower actin levels in activated T-cells and changes migration behavior in both resting and activated T-cells, an effect not observed in matrices with randomly oriented fibrils. Notably, inhibiting YAP signaling was able to restore T-cell activation and improve immune responses, suggesting a potential strategy to boost the effectiveness of immunotherapy in stiff ECM environments. Overall, this study provides new insights into how ECM characteristics influence T-cell function, offering potential avenues for overcoming ECM-induced immunosuppression in diseases such as cancer.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| | | | - Jeremy Cm Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA.
| |
Collapse
|
4
|
Tsakiraki Z, Spathis A, Bouchla A, Pouliakis A, Vryttia P, Panayiotides IG, Pappa V, Papageorgiou SG, Foukas PG. Prognostic Role of Adaptive Immune Microenvironment in Patients with High-Risk Myelodysplastic Syndromes Treated with 5-Azacytidine. Cancers (Basel) 2025; 17:1104. [PMID: 40227622 PMCID: PMC11988087 DOI: 10.3390/cancers17071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES There are limited data regarding immunohistochemical profiling of immune cells in bone marrow trephine biopsies of patients with high-risk myelodysplastic syndromes (HR-MDS). METHODS We sought to objectively quantify, with the use of digital pathology, the density (cells/mm2) of the prominent adaptive immunity cell populations in sixty-four (64) bone marrow trephine biopsies of HR-MDS patients receiving 5-Azacytidine. We focused on CD3(+) T cells, CD8(+) cytotoxic T cells (Tc), helper T cells (Th), Foxp3(+) regulatory T cells (Tregs), CD20(+) B-cells and CD138(+) plasma cells and evaluated the presence and the number of lymphoid aggregates. A control group of twenty "non-MDS" patients was included in the study. RESULTS We identified a significant decrease in adaptive immune cell densities in the HR-MDS patients compared to the non-MDS controls. Increased T and Th cell densities correlated with the response to 5-Azacytidine (5-AZA) treatment. Higher T, Tc, Th and plasma cells densities and low B, Tregs and Tregs/T cells ratios correlated with increased overall survival. Reduced Tregs, Tregs/T cells, Tregs/Tc and plasma cells showed improved leukemia-free survival. A modified IPSS-R (IPSS-R-I), combining the initial IPSS-R with the immune populations' parameters, improved overall survival and showed a double-fold increase in Cox calculated hazard ratios. CONCLUSIONS Immunohistochemical bone marrow immune profiling represents a powerful and easily useable tool for investigating the possible role of bone marrow immune microenvironment in the pathogenesis and progression of MDS, but also its association with the response to 5-AZA treatment and clinical outcomes.
Collapse
Affiliation(s)
- Zoi Tsakiraki
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (Z.T.); (A.S.); (A.P.); (I.G.P.)
| | - Aris Spathis
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (Z.T.); (A.S.); (A.P.); (I.G.P.)
| | - Anthi Bouchla
- Hematology Unit, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.B.); (P.V.); (V.P.); (S.G.P.)
| | - Abraham Pouliakis
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (Z.T.); (A.S.); (A.P.); (I.G.P.)
| | - Pinelopi Vryttia
- Hematology Unit, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.B.); (P.V.); (V.P.); (S.G.P.)
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (Z.T.); (A.S.); (A.P.); (I.G.P.)
| | - Vasiliki Pappa
- Hematology Unit, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.B.); (P.V.); (V.P.); (S.G.P.)
| | - Sotiris G. Papageorgiou
- Hematology Unit, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.B.); (P.V.); (V.P.); (S.G.P.)
| | - Periklis G. Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (Z.T.); (A.S.); (A.P.); (I.G.P.)
| |
Collapse
|
5
|
Bindu S, Bibi R, Pradeep R, Sarkar K. The evolving role of B cells in malignancies. Hum Immunol 2025; 86:111301. [PMID: 40132250 DOI: 10.1016/j.humimm.2025.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
B cells play diverse roles in different pathological circumstances, such as neoplastic diseases, autoimmune disorders, and neurological maladies. B cells, which are essential elements of the adaptive immune system, demonstrate exceptional functional variety, including the generation of antibodies, the presentation of antigens, and the secretion of cytokines. Within the field of oncology, B cells display a multifaceted nature in the tumor microenvironment, simultaneously manifesting both tumor-promoting and tumor-suppressing characteristics. Studies have found that the existence of tertiary lymphoid structures, which consist of B cells, is linked to better survival rates in different types of cancers. This article examines the involvement of B cells in different types of malignancies, emphasizing their importance in the development of the diseases and their potential as biomarkers. Additionally, the review also examines the crucial role of B cells in autoimmune illnesses and their potential as targets for therapy. The article also analyses the role of B cells in immunization and exploring their potential uses in cancer immunotherapy. This analysis highlights the intricate and occasionally contradictory roles of B cells, underlining the necessity for additional research to clarify their varied actions in various illness scenarios.
Collapse
Affiliation(s)
- Soham Bindu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Roshni Bibi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - R Pradeep
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India.
| |
Collapse
|
6
|
Ding Y, Yu M, Xue M, Zong W, Huang Y, Ren J, Guo T, Sun D, Pan X. The correlation of tertiary lymphoid structures with tumor spread through air spaces and prognosis in lung adenocarcinoma: focusing on pathological spatial features. World J Surg Oncol 2025; 23:94. [PMID: 40108601 PMCID: PMC11921520 DOI: 10.1186/s12957-025-03751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Lung adenocarcinoma (LADC) exhibits high spatial heterogeneity, with distinct spatial variations in pathological features. The distribution of tertiary lymphoid structures (TLS) in LADC is uneven, and different TLS characteristics play unique roles. To investigate the correlation between TLS features and other pathological characteristics, particularly tumor spread through air spaces (STAS), we analyzed TLS and other pathological features on whole-slide images stained with HE and CD20/CD23. Additionally, the 14-Gene assay was used to assess prognostic risk. Among 388 enrolled LADC patients, 226 (58.2%) were TLS-positive. TLS showed a negative correlation with various adverse pathological features, with boundary-area TLS demonstrating the strongest correlation with STAS quantity (r= -0.324, P < 0.001). Multivariate Cox analysis identified boundary-area TLS as an independent prognostic factor for recurrence-free survival (HR = 0.856, 95% CI = 0.759-0.966, P = 0.026), while mature TLS was an independent factor for overall survival (HR = 0.841, 95% CI = 0.717-0.988, P = 0.035). High-density TLS at the tumor boundary was associated with low-risk stratification by the 14-Gene assay (P = 0.013). This study highlights the negative correlation between TLS and STAS, especially in boundary areas, and emphasizes the impact of tumor microenvironment spatial characteristics on clinical outcomes. Assessment of spatial heterogeneity in LADC facilitates precise risk stratification for patients.
Collapse
Affiliation(s)
- Yun Ding
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, East Street, Fuzhou, 350001, China
- Shengli Clinical Medical College of Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mengting Yu
- Shengli Clinical Medical College of Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mengli Xue
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Wenkang Zong
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, East Street, Fuzhou, 350001, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Jie Ren
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Thoracic Surgery, Tianjin Jinnan Hospital, Tianjin, China
| | - Tianxing Guo
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, East Street, Fuzhou, 350001, China
- Shengli Clinical Medical College of Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Daqiang Sun
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China.
- Department of Thoracic Surgery, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Tianjin, 300222, China.
| | - Xiaojie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134, East Street, Fuzhou, 350001, China.
- Shengli Clinical Medical College of Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
7
|
Marwedel B, De May H, Anderson L, Medina LY, Kennedy E, Flores E, O'Rourke J, Olewine M, Lagutina I, Fitzpatrick L, Shultz F, Kusewitt DF, Bartee E, Adams S, Noureddine A, Serda RE. TLR Agonist Nano Immune Therapy Clears Peritoneal and Systemic Ovarian Cancer. Adv Healthc Mater 2025; 14:e2402966. [PMID: 39478634 PMCID: PMC11912102 DOI: 10.1002/adhm.202402966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Indexed: 03/18/2025]
Abstract
Intraperitoneal (IP) administration of immunogenic mesoporous silica nanoparticles (iMSN) in a mouse model of metastatic ovarian cancer promotes the development of tumor-specific CD8+ T cells and protective immunity. IP delivery of iMSN functionalized with the Toll-like receptor (TLR) agonists polyethyleneimine (PEI), CpG oligonucleotide, and monophosphoryl lipid A (MPLA) stimulated rapid uptake by all peritoneal myeloid subsets. Myeloid cells quickly transported iMSN to milky spots and fat-associated lymphoid clusters (FALCs) present in tumor-burdened adipose tissues, leading to a reduction in suppressive T cells and an increase in activated memory T cells. Two doses of iMSN cleared or reduced ovarian and colorectal cancer and protected against future tumor engraftment. In contrast, subcutaneous (SC) and intravenous (IV) delivery of iMSN were without therapeutic effect in mice with peritoneal metastases, supporting the need for activation of regional immune cells. Remarkably, intraperitoneal delivery of iMSN cleared subcutaneously implanted ovarian cancer, supporting homing of antigen specific T cells to extraperitoneal tumor sites.
Collapse
Affiliation(s)
- Ben Marwedel
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Henning De May
- Department of Obstetrics & GynecologyUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Lauren Anderson
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Lorél Y. Medina
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Ellie Kennedy
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Erica Flores
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | | | - Marian Olewine
- Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNM87131USA
| | - Irina Lagutina
- Animal Models Shared ResourceUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Lillian Fitzpatrick
- Animal Models Shared ResourceUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Fred Shultz
- Human Tissue Repository & Tissue AnalysisUniversity of New Mexico Comprehensive Cancer CenterUniversity of New MexicoAlbuquerqueNM87131USA
- Department of PathologyUniversity of New Mexico Health Science CenterAlbuquerqueNMUSA
| | - Donna F. Kusewitt
- Human Tissue Repository & Tissue AnalysisUniversity of New Mexico Comprehensive Cancer CenterUniversity of New MexicoAlbuquerqueNM87131USA
- Department of PathologyUniversity of New Mexico Health Science CenterAlbuquerqueNMUSA
| | - Eric Bartee
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Sarah Adams
- Department of Obstetrics & GynecologyUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Achraf Noureddine
- Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNM87131USA
| | - Rita E. Serda
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| |
Collapse
|
8
|
Cheng R, Li S, Ma X, Zhuang W, Lei Y, He J, Liang C, Nie W, Xie HY. Intratumoral antigen-presenting cell activation by a nanovesicle for the concurrent tertiary lymphoid structure de novo neogenesis. SCIENCE ADVANCES 2025; 11:eadr1299. [PMID: 39970209 PMCID: PMC11837995 DOI: 10.1126/sciadv.adr1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Tertiary lymphoid structures (TLSs) usually lead to significantly improved clinical benefits in immunotherapy but are rarely observed within native tumors. The current approaches are difficult in effectively inducing TLS formation, let alone fully exploiting its anticancer efficacy. Here, a biomimetic nanovesicle (ADU-S@M1) is constructed to target tumors and then to produce abundant activated antigen-presenting cells (APCs) in situ by polarizing the tumor-associated macrophages toward M1 phenotype and promoting dendritic cell maturation. These activated APCs effectively initiate the TLS de novo neogenesis by acting as lymphoid tissue inducer cells that secrete lymphotoxin α and tumor necrosis factor α while normalizing the intratumoral vasculatures. In addition, they induce robust in situ adaptive immune responses by presenting the antigens released from the M1 cell-destroyed tumors and transporting them to the nearby TLS. Therefore, the development of tumors in mice, especially immune-cold tumors, was efficiently prevented, providing a promising strategy for promoting cancer immunotherapy.
Collapse
Affiliation(s)
- Ran Cheng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Sucheng Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Wanru Zhuang
- Chemical Biology Center, Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing 100191, P.R. China
| | - Yao Lei
- Chemical Biology Center, Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing 100191, P.R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing 100191, P.R. China
| |
Collapse
|
9
|
[Chinese Expert Consensus on Assessment and Clinical Application of
Tertiary Lymphoid Structure for Non-small Cell Lung Cancer (2025 Version)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:95-104. [PMID: 40114486 PMCID: PMC11931240 DOI: 10.3779/j.issn.1009-3419.2025.102.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 03/22/2025]
Abstract
The tertiary lymphoid structure (TLS) plays a crucial role in the tumor microenvironment, influencing tumor development and progression. As an emerging biomarker for predicting the prognosis and treatment response in cancer patients, TLS has received increasing attention. However, there is currently a lack of standardized evaluation criteria for TLS, and significant differences exist in TLS across different tumor tissues. This poses challenges for the clinical application of this biomarker in translation. To meet the clinical diagnosis and treatment needs of non-small cell lung cancer (NSCLC), this consensus focuses on the definition, clinical significance, testing components, and assessment methods of TLS in NSCLC. Combining relevant research and Chinese clinical practice, it provides standardized and normalized suggestions for the clinical assessment and application of TLS, so as to improve the understanding of TLS among clinicians and pathologists, and provide a reference basis for the clinical application of the detection of TLS in NSCLC.
.
Collapse
|
10
|
Xu S, Han C, Zhou J, Yang D, Dong H, Zhang Y, Zhao T, Tian Y, Wu Y. Distinct maturity and spatial distribution of tertiary lymphoid structures in head and neck squamous cell carcinoma: implications for tumor immunity and clinical outcomes. Cancer Immunol Immunother 2025; 74:107. [PMID: 39932546 PMCID: PMC11813844 DOI: 10.1007/s00262-025-03952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
The influence of tertiary lymphoid structures (TLSs) on disease progression and the response to immunotherapy in head and neck squamous cell carcinoma (HNSCC) is well established, yet the heterogeneity among these structures remains largely unexplored. We utilized digital spatial profiling technology to perform in situ transcriptomic sequencing of TLSs across varying levels of maturation and distinct tumor regions within HNSCC. We assessed the prognostic significance of TLS maturation and spatial distribution in 260 patients with HNSCC through hematoxylin and eosin staining and multiplex immunohistochemistry. Furthermore, we established a TLS scoring system to predict survival in patients with HNSCC. Our study revealed that mature TLSs in the intratumor region (Intra-TLSs) of HNSCC, enriched with memory B cells, plasma cells, and CD4+ T cells, presented increased B-cell activity gene expression. Conversely, early TLSs (E-TLSs), abundant in endothelial cells, fibroblasts, and regulatory T cells, express epithelial‒mesenchymal transition (EMT)-related genes, potentially fostering tumor growth. Compared with mature TLSs within the peritumoral region (Peri-TLSs), mature Intra-TLSs have greater memory B-cell and macrophage densities and upregulate genes involved in B-cell receptor signaling and immune effector processes. Mature Peri-TLSs, characterized by endothelial cell enrichment and EMT receptor interaction genes, may contribute to tumor progression and immune evasion. Patients with mature Intra-TLSs or invasive margin TLSs (Invas-TLSs) have improved 5-year survival, whereas those with mature Peri-TLSs have poorer prognoses. By integrating TLS maturity and distribution in HNSCC, we developed a TLS scoring system to guide personalized treatments, which is crucial for predicting outcomes.
Collapse
Affiliation(s)
- Shuai Xu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Department of Head and Neck Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, People's Republic of China
| | - Chao Han
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jian Zhou
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Di Yang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Tingting Zhao
- Chongqing International Institute for Immunology, Chongqing, 400030, People's Republic of China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
- Chongqing International Institute for Immunology, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
11
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
12
|
Gupta R, Kumar R, Penn CA, Wajapeyee N. Immune evasion in ovarian cancer: implications for immunotherapy and emerging treatments. Trends Immunol 2025; 46:166-181. [PMID: 39855990 PMCID: PMC11835538 DOI: 10.1016/j.it.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy, characterized by multiple histological subtypes, each with distinct pathological and clinical features. Current treatment approaches include cytotoxic chemotherapies, poly(ADP-ribose) polymerase (PARP) inhibitors, bevacizumab, hormonal therapy, immunotherapy, and antibody-drug conjugates (ADCs). In this review we discuss immune evasion mechanisms in OC and the role of genetics, the tumor microenvironment, and tumor heterogeneity in influencing these processes. We also discuss the use of immunotherapies for OC treatment, either alone or in combination with other anticancer agents, with a focus on their clinical outcomes. Finally, we highlight emerging immunotherapies that have either succeeded or are on the verge of significantly impacting cancer treatment, and we discuss their potential utility in the effective treatment of OC.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| | - Raj Kumar
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Courtney A Penn
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| |
Collapse
|
13
|
Huang K, Han Y, Chen Y, Shen H, Zeng S, Cai C. Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy. Mol Cancer 2025; 24:7. [PMID: 39789606 PMCID: PMC11716519 DOI: 10.1186/s12943-024-02205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) is a hallmark of cancer and a crucial determinant of tumor progression. Research indicates that various metabolic regulators form a metabolic network in the TME and interact with immune cells, coordinating the tumor immune response. Metabolic dysregulation creates an immunosuppressive TME, impairing the antitumor immune response. In this review, we discuss how metabolic regulators affect the tumor cell and the crosstalk of TME. We also summarize recent clinical trials involving metabolic regulators and the challenges of metabolism-based tumor therapies in clinical translation. In a word, our review distills key regulatory factors and their mechanisms of action from the complex reprogramming of tumor metabolism, identified as tumor metabolic regulators. These regulators provide a theoretical basis and research direction for the development of new strategies and targets in cancer therapy based on tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Kun Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
14
|
Das S, Parigi SM, Luo X, Fransson J, Kern BC, Okhovat A, Diaz OE, Sorini C, Czarnewski P, Webb AT, Morales RA, Lebon S, Monasterio G, Castillo F, Tripathi KP, He N, Pelczar P, Schaltenberg N, De la Fuente M, López-Köstner F, Nylén S, Larsen HL, Kuiper R, Antonson P, Hermoso MA, Huber S, Biton M, Scharaw S, Gustafsson JÅ, Katajisto P, Villablanca EJ. Liver X receptor unlinks intestinal regeneration and tumorigenesis. Nature 2025; 637:1198-1206. [PMID: 39567700 PMCID: PMC11779645 DOI: 10.1038/s41586-024-08247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Uncontrolled regeneration leads to neoplastic transformation1-3. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models4,5 and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis. Using single-cell RNA sequencing, intestinal organoids, and gain- and loss-of-function experiments, we demonstrate that LXR activation in intestinal epithelial cells induces amphiregulin (Areg), enhancing regenerative responses. This response is coordinated by the LXR-ligand-producing enzyme CYP27A1, which was upregulated in damaged intestinal crypt niches. Deletion of Cyp27a1 impaired intestinal regeneration, which was rescued by exogenous LXR agonists. Notably, in tumour models, Cyp27a1 deficiency led to increased tumour growth, whereas LXR activation elicited anti-tumour responses dependent on adaptive immunity. Consistently, human colorectal cancer specimens exhibited reduced levels of CYP27A1, LXR target genes, and B and CD8 T cell gene signatures. We therefore identify an epithelial adaptation mechanism to damage, whereby LXR functions as a rheostat, promoting tissue repair while limiting tumorigenesis.
Collapse
Affiliation(s)
- Srustidhar Das
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| | - S Martina Parigi
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Xinxin Luo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Jennifer Fransson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Bianca C Kern
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ali Okhovat
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Oscar E Diaz
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Chiara Sorini
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Paulo Czarnewski
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Anna T Webb
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sacha Lebon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gustavo Monasterio
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Francisca Castillo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ning He
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Penelope Pelczar
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Schaltenberg
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marjorie De la Fuente
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clinica Las Condes, Universidad Finis Terrae, Santiago, Chile
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco López-Köstner
- Centro de Enfermedades Digestivas, Programa Enfermedad Inflamatoria Intestinal, Clínica Universidad de Los Andes, Universidad de Los Andes, Santiago, Chile
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hjalte List Larsen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Raoul Kuiper
- Section for Aquatic Biosecurity Research, Norwegian Veterinary Institute, Ås, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Huber
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Scharaw
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Pekka Katajisto
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Yoffe L, Bhinder B, Kang SW, Zhang H, Singh A, Ravichandran H, Markowitz G, Martin M, Kim J, Zhang C, Elemento O, Tansey W, Bates S, McGraw TE, Borczuk A, Lee HS, Altorki NK, Mittal V. Acquisition of discrete immune suppressive barriers contributes to the initiation and progression of preinvasive to invasive human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630523. [PMID: 39803458 PMCID: PMC11722343 DOI: 10.1101/2024.12.31.630523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules. We found that early disease initiation and subsequent progression are associated with the evolution of immune-suppressive cellular phenotypes characterized by decreased cytotoxic CD8 T and NK cells, increased T cell exhaustion and accumulation of immunosuppressive regulatory T cells (Tregs) and M2-like macrophages expressing TREM2. Within Tregs, we identified a unique population of 4-1BB+ Treg subset enriched for the IL2-STAT5 suppressive pathway with transcription profiles supporting discrete metabolic alterations. Spatial analysis showed increased density of suppressive immune cells around tumor cells, increased exhaustion phenotype of both CD4 and CD8 T cells expressing chemokine CXCL13, and spatial microcomplex of endothelial and lymphocyte interactions within tertiary lymphoid structures. The single-cell architecture identifies determinants of early disease emergence and progression, which may be developed not only as diagnostic/prognostic biomarkers but also as targets for disease interception. Additionally, our dataset constitutes a valuable resource for the preinvasive lung cancer research community.
Collapse
Affiliation(s)
- Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Sung Wook Kang
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoran Zhang
- Department of Computer Science, University of Texas at Austin, TX 78712, USA
| | - Arshdeep Singh
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Geoffrey Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Mitchell Martin
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Chen Zhang
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Wesley Tansey
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stewart Bates
- Interventional Oncology, Johnson and Johnson, 50-100 Holmers Farm Way, High Wycombe, UK, HP12 4DP
| | - Timothy E. McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hyun-Sung Lee
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| |
Collapse
|
16
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
17
|
Fang J, Huang J, Zhang J, Chen L, Deng J. Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications. CURR PROTEOMICS 2024; 21:230-250. [DOI: 10.2174/0115701646317271240821071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 01/07/2025]
Abstract
Purpose:
The molecular properties of TLSs in pancreatic cancer are still not well comprehended.
This research delved into the molecular properties of intratumoral TLSs in pancreatic
cancer through the exploration of multi-omics data.
Methods:
Seven key genes were identified through Cox regression analysis and random survival
forest analysis from a total of 5908 genes related to TLSs. These genes were utilized to construct a
prognosis model, which was subsequently validated in two independent cohorts. Additionally, the
study investigated the molecular features of different populations of TLSs from multiple perspectives.
The model’ s forecasting accuracy was verified by analyzing nomogram and decision curves,
taking into account the patients’ clinical traits.
Results:
The analysis of immune cell infiltration showed a notably greater presence of Macrophage
M0 cells in the group at high risk than in the low-risk group. The pathway enrichment analysis
demonstrated the activation among common cancer-related pathways, including ECM receptor interaction,
pathways in cancer, and focal adhesion, in the high-risk group. Additionally, the methylation
study revealed notable disparities in DNA methylation between two TLS groups across four
regions: TSS200, 5’ UTR, 1stExon, and Body. A variety of notably distinct sites were linked with
PVT1. Furthermore, by constructing a competing endogenous RNA network, several mRNAs and
lncRNAs were identified that compete for the binding of hsa-mir-221.
Conclusion:
Overall, this research sheds light on the molecular properties of TLSs across various
pancreatic cancer stages and suggests possible focal points for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jiana Fang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jingru Huang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhong Zhang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Guangzhou,
510120, China
| | - Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
- Pazhou
Lab, Guangzhou, 510330, China
| |
Collapse
|
18
|
Tang Y, Chen J, Zhang M, Hu X, Guo J, Zhang Y, Chen Y, Liu H, Zhao J, Chen N, Sun G, Zeng H. Tertiary lymphoid structures potentially promote immune checkpoint inhibitor response in SMARCB1-deficient medullary renal cell carcinoma. NPJ Precis Oncol 2024; 8:261. [PMID: 39543276 PMCID: PMC11564649 DOI: 10.1038/s41698-024-00756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
The WHO's classification of renal cell carcinoma (RCC) has identified loss of SMARCB1 as one of the driven mutations. Despite intensive postoperative interventions, the prognosis for SMARCB1-deficient medullary RCC remains poor, indicating insufficiency in current therapy. Herein, we reported the treatment outcomes of five patients with metastatic SMARCB1-deficient medullary RCC and molecular correlates. Four patients were treated with first-line immune checkpoint inhibitors (ICI) plus tyrosine kinase inhibitors (TKI) combination therapy with a median PFS (mPFS) of 12.3 months. Transcriptomic analysis revealed enrichment of immune-related pathways in SMARCB1-deficient medullary RCC compared to clear-cell and papillary RCC. Multiple immunofluorescence (mIF) revealed the association between the formation of mature tertiary lymphoid structures (TLSs) and the favorable response to ICI-based combination therapy. In conclusion, ICI-based combination therapy showed promising anti-tumor activity in SMARCB1-deficient medullary RCC patients. The presence of mature tertiary TLSs may partially elucidate the mechanism underlying treatment response.
Collapse
Affiliation(s)
- Yanfeng Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengxin Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Guo
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Tran K, Kumari AN, Raghu D, Cox DRA, Goh SK, Perini MV, Muralidharan V, Tebbutt NC, Behren A, Mariadason J, Williams DS, Mielke LA. T cell factor 1 (TCF-1) defines T cell differentiation in colorectal cancer. iScience 2024; 27:110754. [PMID: 39280606 PMCID: PMC11401206 DOI: 10.1016/j.isci.2024.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The presence of precursor to exhausted (Tpex) CD8+ T cells is important to maintain robust immunity following treatment with immune checkpoint inhibition (ICI). Impressive responses to ICI are emerging in patients with stage II-III mismatch repair (MMR)-deficient (dMMR) colorectal cancer (CRC). We found 64% of dMMR and 15% of mismatch repair-proficient (pMMR) stage III CRCs had a high frequency of tumor infiltrating lymphocytes (TIL-hi). Furthermore, expression of TCF-1 (Tcf7) by CD8+ T cells predicted improved patient prognosis and Tpex cells (CD3+CD8+TCF-1+PD-1+) were abundant within lymphoid aggregates of stage III CRCs. In contrast, CD3+CD8+TCF-1-PD-1+ cells were more abundant at the invasive front and tumor core, while γδ T cells were equally abundant in all tumor areas. Interestingly, no differences in the frequency of Tpex cells were observed between TIL-hi dMMR and TIL-hi pMMR CRCs. Therefore, Tpex cell function and ICI response rates in TIL-hi CRC warrants further investigation.
Collapse
Affiliation(s)
- Kelly Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Anita N Kumari
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Daniel R A Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Marcos V Perini
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Niall C Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - John Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Niu L, Chen T, Yang A, Yan X, Jin F, Zheng A, Song X. Macrophages and tertiary lymphoid structures as indicators of prognosis and therapeutic response in cancer patients. Biochim Biophys Acta Rev Cancer 2024; 1879:189125. [PMID: 38851437 DOI: 10.1016/j.bbcan.2024.189125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Li Niu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aodan Yang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Xiwen Yan
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Bao X, Lin X, Xie M, Yao J, Song J, Ma X, Zhang X, Zhang Y, Liu Y, Han W, Liang Y, Hu H, Xu L, Xue X. Mature tertiary lymphoid structures: important contributors to anti-tumor immune efficacy. Front Immunol 2024; 15:1413067. [PMID: 39026670 PMCID: PMC11254644 DOI: 10.3389/fimmu.2024.1413067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Tertiary lymphoid structures (TLS) represent the ectopic aggregations of immune cells arising during chronic inflammation or tumor progression. In cancer, TLS are often associated with beneficial clinical outcomes in patients undergoing immunotherapy, underscoring their prognostic and predictive significance. Mature TLS, characterized by germinal centers and areas of T-cell and B-cell aggregation, are considered primary locations for activating and maintaining both humoral and cellular anti-tumor immune effects. Despite their recognized importance, the mechanisms driving the formation of mature TLS in cancer and their influence on the immune response within tumors remain insufficiently understood. Therefore, this review aims to comprehensively explore the structural composition, development mechanisms, maturity impact factors, immunological function, and innovative therapeutic strategies of mature TLS within the tumor microenvironment. The research summarized herein offers novel insights and considerations for therapeutic approaches to promote TLS generation and maturation in patients with cancer, representing a promising avenue for future cancer therapies.
Collapse
Affiliation(s)
- Xinyu Bao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jialin Song
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiming Liu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wenya Han
- Department of Respiratory and Critical Care, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongling Hu
- Department of Respiratory Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Respiratory Endoscopy, The Public Health Clinical Center Affiliated of Shandong University, Jinan, China
| | - Xinying Xue
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|