1
|
Mir MM, Alghamdi M, BinAfif WF, Alharthi MH, Alshahrani AM, Alamri MMS, Alfaifi J, Ameer AYA, Mir R. Emerging biomarkers in type 2 diabetes mellitus. Adv Clin Chem 2025; 126:155-198. [PMID: 40185534 DOI: 10.1016/bs.acc.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Diabetes mellitus is a chronic condition caused by high blood glucose resulting from insufficient insulin production or cellular resistance to insulin action or both. It is one of the fastest-growing public health concerns worldwide. Development of long-term nephropathy, retinopathy, neuropathy, and cardiovascular disease are some of the complications commonly associated with poor blood glycemic control. Type 2 diabetes mellitus (T2DM), the most prevalent type of diabetes, accounts for around 95 % of all cases globally. Although middle-aged or older adults are more likely to develop T2DM, its prevalence has grown in children and young people due to increased obesity, sedentary lifestyle and poor nutrition. Furthermore, it is believed that more than 50 % of cases go undiagnosed annually. Routine screening is essential to ensure early detection and reduce risk of life-threatening complications. Herein, we review traditional biomarkers and highlight the ongoing pursuit of novel and efficacious biomarkers driven by the objective of achieving early, precise and prompt diagnoses. It is widely acknowledged that individual biomarkers will inevitably have certain limitations necessitating the need for integrating multiple markers in screening.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Departments of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia.
| | - Mushabab Alghamdi
- Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Waad Fuad BinAfif
- Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Abdullah M Alshahrani
- Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Jaber Alfaifi
- Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Pazgan-Simon M, Szymanek-Pasternal A, Górka-Dynysiewicz J, Nowicka A, Simon K, Grzebyk E, Kukla M. Serum chemerin level in patients with liver cirrhosis and primary and multifocal hepatocellular carcinoma with consideration of insulin level. Arch Med Sci 2024; 20:1504-1510. [PMID: 39649267 PMCID: PMC11623147 DOI: 10.5114/aoms/176674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 12/10/2024] Open
Abstract
Introduction The aim of the study was to evaluate chemerin levels as a potentially useful marker in diagnosing early-stage hepatocellular carcinoma (HCC) as well as in HCC staging. Material and methods The cohort comprised 76 patients: 45 people with cirrhosis and HCC (including 13 with a single HCC lesion in the liver and 32 with metastatic lesions/spread of HCC in the liver) and 21 people with isolated cirrhosis. The control group included 10 clinically healthy people. Results The degree of liver failure in the whole cohort was assessed using the Child-Turcotte-Pugh (CTP) score (class A - 34, class B - 28, class C - 4) and using the MELD score (≤ 12 points - 45 and > 12 points - 21 people). Serum chemerin level in patients with liver cirrhosis only was 53.30 ng/ml, in patients with a single HCC lesion 77.01 ng/ml, and in patients with disseminated HCC 83.58 ng/ml. In the control group, the chemerin level was 82.20 μg/ml. When patients with cirrhosis and with/without HCC were divided according to their CTP scores, the level of chemerin was as follows: class A - 83.90 μg/ml, class B - 61 μg/ml, class C - 30.10 μg/ml. For MELD scores ≤ and > 12 it was 75 μg/ml and 58 μg/ml, respectively. For BCLC staging the results were as follows: A - 20.10 μg/ml, B - 20.20 μg/ml, C -19.44 μg/ml. Conclusions Chemerin increases with the number of neoplastic lesions and decreases with the progression of liver failure as assessed using the CTP score.
Collapse
Affiliation(s)
- Monika Pazgan-Simon
- Department of Infectious Disease and Hepatology, Regional Specialistic Hospital, Wrocław, Poland
| | - Anna Szymanek-Pasternal
- Department of Infectious Disease and Hepatology, Regional Specialistic Hospital, Wrocław, Poland
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, Poland
| | | | - Anna Nowicka
- Department of Infectious Disease and Hepatology, Regional Specialistic Hospital, Wrocław, Poland
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, Poland
| | - Krzysztof Simon
- Department of Infectious Disease and Hepatology, Regional Specialistic Hospital, Wrocław, Poland
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, Poland
| | - Ewa Grzebyk
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Poland
| | - Michał Kukla
- Endoscopy Unit, Department of Internal Medicine and Geriatrics, Medical College Jagiellonian University, University Hospital, Krakow, Poland
| |
Collapse
|
3
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Ashtary-Larky D, Kashkooli S, Bagheri R, Lamuchi-Deli N, Alipour M, Mombaini D, Baker JS, Ramezani Ahmadi A, Wong A. The effect of exercise training on serum concentrations of chemerin in patients with metabolic diseases: a systematic review and meta-analysis. Arch Physiol Biochem 2023; 129:1028-1037. [PMID: 33651961 DOI: 10.1080/13813455.2021.1892149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
CONTEXT Elevated serum concentrations of chemerin is a significant factor in the development of metabolic disorders. OBJECTIVE This systematic review and meta-analysis evaluated the influence of exercise training on serum concentrations of chemerin in patients with metabolic diseases. METHODS Thirteen studies including 463 participants were included and analysed using a random-effects model to calculate weighted mean differences with 95% confidence intervals. RESULTS Results indicated that exercise training significantly decreased serum concentrations of chemerin in patients with metabolic diseases when compared with controls. Subgroup analysis showed that exercise training resulted in decreases in serum concentrations of chemerin in men, however, this was not significant in women. Moreover, subgroup analyses based on the type of exercise did not reveal differential effects on serum concentrations of chemerin. CONCLUSION Exercise training may produce improvements in serum concentrations of chemerin in patients with metabolic diseases. Further longer-term studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Kashkooli
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Iran Isfahan
| | - Nasrin Lamuchi-Deli
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Disease Research center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Delsa Mombaini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Amirhossein Ramezani Ahmadi
- Department of Nutrition, School of Applied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, TX, USA
| |
Collapse
|
5
|
Valencia-Ortega J, Solis-Paredes JM, Saucedo R, Estrada-Gutierrez G, Camacho-Arroyo I. Excessive Pregestational Weight and Maternal Obstetric Complications: The Role of Adipokines. Int J Mol Sci 2023; 24:14678. [PMID: 37834125 PMCID: PMC10572963 DOI: 10.3390/ijms241914678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
There is a high frequency of overweight and obesity in women of reproductive age. Women who start pregnancy with overweight or obesity have an increased risk of developing maternal obstetric complications such as gestational hypertension, pre-eclampsia, gestational diabetes mellitus, postpartum hemorrhage, and requiring C-section to resolve the pregnancy with a higher risk of C-section surgical site infection. Excessive weight in pregnancy is characterized by dysregulation of adipokines, the functions of which partly explain the predisposition of pregnant women with overweight or obesity to these maternal obstetric complications. This review compiles, organizes, and analyzes the most recent studies on adipokines in pregnant women with excess weight and the potential pathophysiological mechanisms favoring the development of maternal pregnancy complications.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
6
|
Ma Z, Chu L, Zhang Y, Lu F, Zhu Y, Wu F, Zhang Z. Is Chemerin Associated with Gestational Diabetes Mellitus? A Case-Control Study. Diabetes Metab Syndr Obes 2023; 16:2271-2281. [PMID: 37551337 PMCID: PMC10404406 DOI: 10.2147/dmso.s417632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
Purpose The aim of this study was to investigate the relationship between gestational diabetes mellitus (GDM) and Chemerin by analyzing chemerin levels in peripheral blood and cord blood, and chemerin mRNA and its protein expression in placenta and adipose tissue. Methods A case-control study was conducted in 110 women with GDM and 110 controls without GDM who received regular prenatal services and delivered at Shanghai Pudong New Area Healthcare Hospital for Women and Children from June 2019 to December 2020. Results The age, pre-pregnancy weight, pre-pregnancy BMI, antepartum BMI, TG/HDL ratio and TG levels in pregnant women with GDM were significantly higher than those in women without GDM, and HDL levels were significantly lower than those in the normal group. Chemerin in the umbilical cord blood of the GDM group was significantly higher than in that of the normal group, but there was no difference in chemerin levels in peripheral blood. In the two groups, the chemerin concentration in peripheral blood was significantly higher than that in umbilical cord blood (P<0.001). The Chemerin mRNA and protein expression levels in the placenta and adipose tissue of pregnant women in the GDM group were significantly higher than those in the normal group (P <0.001). In the GDM group, the expression of chemerin protein in adipose tissue was significantly higher than that in placental tissue. Regression analysis showed that the expression level of chemerin protein in placental tissue and adipose tissue was positively correlated with the risk of GDM. Conclusion Elevated chemerin is closely related to the risk of GDM, and the placenta may be an important secretion of chemotactic factor sources in addition to adipose tissue and participate in the development of GDM.
Collapse
Affiliation(s)
- Ziwen Ma
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Healthcare Hospital for Women and Children, Shanghai, People’s Republic of China
| | - Liming Chu
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Healthcare Hospital for Women and Children, Shanghai, People’s Republic of China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Healthcare Hospital for Women and Children, Shanghai, People’s Republic of China
| | - Fang Lu
- Department of Obstetrics and Gynecology, Shanghai Forth People’s Hospital, Shanghai, People’s Republic of China
| | - Yun Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Healthcare Hospital for Women and Children, Shanghai, People’s Republic of China
| | - Fei Wu
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Healthcare Hospital for Women and Children, Shanghai, People’s Republic of China
| | - Zhiping Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Healthcare Hospital for Women and Children, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Kabbani N, Blüher M, Stepan H, Stumvoll M, Ebert T, Tönjes A, Schrey-Petersen S. Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines 2023; 11:biomedicines11051419. [PMID: 37239090 DOI: 10.3390/biomedicines11051419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are signaling proteins involved in metabolic, endocrinological, vascular and immunogenic processes. Associations of various adipokines with not only insulin resistance but also with increased insulin sensitivity, increased systolic blood pressure, and atherosclerosis highlight the significance of adipokines in several components of metabolic syndrome and metabolic diseases in general. As pregnancy presents a unique metabolic state, the role of adipokines in pregnancy, and even in various pregnancy complications, appears to be key to elucidating these metabolic processes. Many studies in recent years have attempted to clarify the role of adipokines in pregnancy and gestational pathologies. In this review, we aim to investigate the changes in maternal adipokine levels in physiological gestation, as well as the association of adipokines with pregnancy pathologies, such as gestational diabetes mellitus (GDM) and preeclampsia (PE). Furthermore, we will analyze the association of adipokines in both maternal serum and cord blood with parameters of intrauterine growth and various pregnancy outcomes.
Collapse
Affiliation(s)
- Noura Kabbani
- Department of Obstetrics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, The University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Holger Stepan
- Department of Obstetrics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Thomas Ebert
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | |
Collapse
|
8
|
Zhang L, Wu Q, Zhu S, Tang Y, Chen Y, Chen D, Liang Z. Chemerin-Induced Down-Regulation of Placenta-Derived Exosomal miR-140-3p and miR-574-3p Promotes Umbilical Vein Endothelial Cells Proliferation, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cells 2022; 11:3457. [PMID: 36359855 PMCID: PMC9655594 DOI: 10.3390/cells11213457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes and fetoplacental endothelial dysfunction; however, the underlying mechanisms remain unknown. This study aimed to investigate the effect of placenta-derived exosomal miRNAs on fetoplacental endothelial dysfunction in GDM, as well as to further explore the role of chemerin to this end. Placenta-derived exosomal miR-140-3p and miR-574-3p expression (next-generation sequencing, quantitative real-time PCR), its interactions with cell function (Cell Counting Kit-8, Transwell, tube formation assay), chemerin interactions (Western blotting), and placental inflammation (immunofluorescence staining, enzyme-linked immunosorbent assay) were investigated. Placenta-derived exosomal miR-140-3p and miR-574-3p were downregulated in GDM. Additionally, miR-140-3p and miR-574-3p inhibited the proliferation, migration, and tube formation ability of umbilical vein endothelial cells by targeting vascular endothelial growth factor. Interestingly, miR-140-3p and miR-574-3p expression levels were negatively correlated with chemerin, which induced placental inflammation through the recruitment of macrophage cells and release of IL-18 and IL-1β. These findings indicate that chemerin reduces placenta-derived exosomal miR-140-3p and miR-574-3p levels by inducing placental inflammation, thereby promoting the proliferation, migration, and tube formation of umbilical vein endothelial cells in GDM, providing a novel perspective on the underlying pathogenesis and therapeutic targets for GDM and its offspring complications.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi Wu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shuqi Zhu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yibo Tang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yanmin Chen
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Danqing Chen
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Zhaoxia Liang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Chemerin Forms: Their Generation and Activity. Biomedicines 2022; 10:biomedicines10082018. [PMID: 36009565 PMCID: PMC9405667 DOI: 10.3390/biomedicines10082018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chemerin is the product of the RARRES2 gene which is secreted as a precursor of 143 amino acids. That precursor is inactive, but proteases from the coagulation and fibrinolytic cascades, as well as from inflammatory reactions, process the C-terminus of chemerin to first activate it and then subsequently inactivate it. Chemerin can signal via two G protein-coupled receptors, chem1 and chem2, as well as be bound to a third non-signaling receptor, CCRL2. Chemerin is produced by the liver and secreted into the circulation as a precursor, but it is also expressed in some tissues where it can be activated locally. This review discusses the specific tissue expression of the components of the chemerin system, and the role of different proteases in regulating the activation and inactivation of chemerin. Methods of identifying and determining the levels of different chemerin forms in both mass and activity assays are reviewed. The levels of chemerin in circulation are correlated with certain disease conditions, such as patients with obesity or diabetes, leading to the possibility of using chemerin as a biomarker.
Collapse
|
10
|
Vorontsov O, Levitt L, Lilleri D, Vainer GW, Kaplan O, Schreiber L, Arossa A, Spinillo A, Furione M, Alfi O, Oiknine-Djian E, Kupervaser M, Nevo Y, Elgavish S, Yassour M, Zavattoni M, Bdolah-Abram T, Baldanti F, Geal-Dor M, Zakay-Rones Z, Yanay N, Yagel S, Panet A, Wolf DG. Amniotic fluid biomarkers predict the severity of congenital cytomegalovirus infection. J Clin Invest 2022; 132:157415. [PMID: 35439172 PMCID: PMC9151692 DOI: 10.1172/jci157415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/08/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUNDCytomegalovirus (CMV) is the most common intrauterine infection, leading to infant brain damage. Prognostic assessment of CMV-infected fetuses has remained an ongoing challenge in prenatal care, in the absence of established prenatal biomarkers of congenital CMV (cCMV) infection severity. We aimed to identify prognostic biomarkers of cCMV-related fetal brain injury.METHODSWe performed global proteome analysis of mid-gestation amniotic fluid samples, comparing amniotic fluid of fetuses with severe cCMV with that of asymptomatic CMV-infected fetuses. The levels of selected differentially excreted proteins were further determined by specific immunoassays.RESULTSUsing unbiased proteome analysis in a discovery cohort, we identified amniotic fluid proteins related to inflammation and neurological disease pathways, which demonstrated distinct abundance in fetuses with severe cCMV. Amniotic fluid levels of 2 of these proteins - the immunomodulatory proteins retinoic acid receptor responder 2 (chemerin) and galectin-3-binding protein (Gal-3BP) - were highly predictive of the severity of cCMV in an independent validation cohort, differentiating between fetuses with severe (n = 17) and asymptomatic (n = 26) cCMV, with 100%-93.8% positive predictive value, and 92.9%-92.6% negative predictive value (for chemerin and Gal-3BP, respectively). CONCLUSIONAnalysis of chemerin and Gal-3BP levels in mid-gestation amniotic fluids could be used in the clinical setting to profoundly improve the prognostic assessment of CMV-infected fetuses.FUNDINGIsrael Science Foundation (530/18 and IPMP 3432/19); Research Fund - Hadassah Medical Organization.
Collapse
Affiliation(s)
- Olesya Vorontsov
- Clinical Virology Unit, Hadassah-Hebrew University Medical Center and Faculty of Medicine.,Department of Biochemistry, Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine.,Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, and
| | - Lorinne Levitt
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniele Lilleri
- Department of Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Gilad W Vainer
- Department of Pathology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Kaplan
- Clinical Virology Unit, Hadassah-Hebrew University Medical Center and Faculty of Medicine
| | - Licita Schreiber
- Maccabi Healthcare Services, Central Laboratory, Rehovot, Israel
| | - Alessia Arossa
- Department of Obstetrics and Gynecology, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Arseno Spinillo
- Department of Obstetrics and Gynecology, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Milena Furione
- Department of Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Or Alfi
- Clinical Virology Unit, Hadassah-Hebrew University Medical Center and Faculty of Medicine.,Department of Biochemistry, Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine.,Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, and
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah-Hebrew University Medical Center and Faculty of Medicine.,Department of Biochemistry, Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine.,Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, and
| | - Meital Kupervaser
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE
| | | | - Moran Yassour
- School of Computer Science and Engineering.,Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, and
| | - Maurizio Zavattoni
- Department of Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Tali Bdolah-Abram
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fausto Baldanti
- Department of Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Miriam Geal-Dor
- Department of Speech and Hearing, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry, Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine
| | - Nili Yanay
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry, Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah-Hebrew University Medical Center and Faculty of Medicine.,Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, and
| |
Collapse
|
11
|
Yan S, Liu H, Nie H, Bu G, Yuan W, Wang S. Common variants of RARRES2 and RETN contribute to susceptibility to hand osteoarthritis and related pain. Biomark Med 2022; 16:731-738. [PMID: 35531645 DOI: 10.2217/bmm-2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To examine the relationship of the RETN and RARRES2 genes with hand osteoarthritis (HOA) susceptibility risk, clinical severity and pain. Methods: A total of 3740 subjects comprising 1180 participants with HOA and 2560 controls were enrolled. Genetic association was evaluated at both single marker and haplotype levels using PLINK. Results: Two significant hits, single-nucleotide polymorphism (SNP) rs4721 from RARRES2 and SNP rs3745368 from RETN, were identified as being related to an increased risk of HOA. Significant associations were obtained for SNP rs3745368 with Kellgren-Lawrence grade in HOA patients and SNP rs4721 with pain analog scales of HOA patients. Conclusion: The authors' results indicate that RARRES2 and RETN affect HOA risk and are associated with clinical features and severity in patients with HOA.
Collapse
Affiliation(s)
- Shaoyao Yan
- Department of Pain, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hongliang Liu
- Department of Trauma Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Huiyong Nie
- Department of Pain, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Gang Bu
- Department of Pain, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Weili Yuan
- Department of Pain, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Suoliang Wang
- Department of Pain, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
12
|
Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J Pers Med 2022; 12:jpm12050735. [PMID: 35629157 PMCID: PMC9143828 DOI: 10.3390/jpm12050735] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Sedentary lifestyles, urbanization and improvements in socio-economic status have had serious effects on the burden of diabetes across the world. Diabetes is one of the 10 leading causes of death globally, and individuals with diabetes have a 2–3-fold increased risk of all-cause mortality. Adipose tissue is increasingly understood as a highly active endocrine gland that secretes many biologically active substances, including adipocytokines. However, the exact and discrete pathophysiological links between obesity and T2DM are not yet fully elucidated. Methods: In the current study, we present the association of five diverse adipocytokines, adiponectin, leptin, resistin, visfatin and chemerin, with T2DM in 87 patients (46 males and 41 females) with type 2 diabetes mellitus and 85 healthy controls (44 males and 41 females) from the Asir region of Saudi Arabia. The patients were divided into four groups: normal BMI, overweight, obese and severely obese. The baseline biochemical characteristics, including HbA1c and anthropometric lipid indices, such as BMI and waist–hip ratio, were determined by standard procedures, whereas the selected adipokine levels were assayed by ELISA. Results: The results showed significantly decreased levels of adiponectin in the T2DM patients compared to the control group, and the decrease was more pronounced in obese and severely obese T2DM patients. Serum leptin levels were significantly higher in the females compared to the males in the controls as well as all the four groups of T2DM patients. In the male T2DM patients, a progressive increase was observed in the leptin levels as the BMI increased, although these only reached significantly altered levels in the obese and severely obese patients. The serum leptin levels were significantly higher in the severely obese female patients compared to the controls, patients with normal BMI, and overweight patients. The leptin/adiponectin ratio was significantly higher in the obese and severely obese patients compared to the controls, patients with normal BMI, and overweight patients in both genders. The serum resistin levels did not show any significant differences between the males and females in thr controls or in the T2DM groups, irrespective of the BMI status of the T2DM patients. The visfatin levels did not reveal any significant gender-based differences, but significantly higher levels of visfatin were observed in the T2DM patients, irrespective of their level of obesity, although the higher values were observed in the obese and highly obese patients. Similarly, the serum chemerin levels in the controls, as well as in T2DM patients, did not show any significant gender-based differences. However, in the T2DM patients, the chemerin levels showed a progressive increase, with the increase in BMI reaching highly significant levels in the obese and severely obese patients, respectively. Conclusion: In summary, it is concluded that significantly altered concentrations of four adipokines, adiponectin, leptin, visfatin and chemerin, were found in the T2DM patient group compared to the controls, with more pronounced alterations observed in the obese and highly obese patients. Thus, it can be surmised that these four adipokines play a profound role in the onset, progression and associated complications of T2DM. In view of the relatively small sample size in our study, future prospective studies are needed on a large sample size to explore the in-depth relationship between adipokines and T2DM.
Collapse
|
13
|
Léniz A, González M, Besné I, Carr-Ugarte H, Gómez-García I, Portillo MP. Role of chemerin in the control of glucose homeostasis. Mol Cell Endocrinol 2022; 541:111504. [PMID: 34763009 DOI: 10.1016/j.mce.2021.111504] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Chemerin is an adipokine produced by the white adipose tissue and other tissues, which plays various roles in the pathogenesis of inflammatory and metabolic diseases in multiple organs. The present review aims at gathering scientific evidence reported in the last ten years, concerning the relationship of chemerin with alterations of glycaemic control, such as insulin resistance, type 2 diabetes and gestational diabetes in humans. Although the vast majority of the studies have shown a positive correlation between the chemerin level and a bad glycaemic control, a general consensus has not been reached. The reported results come from case-control and observational longitudinal studies, thereby limiting their interpretation. In fact, it cannot be stated whether insulin resistance and diabetes lead to an increase in chemerin levels or, on the contrary, if high levels of chemerin contribute to an impaired glycaemic control. Elevated levels of circulating chemerin are also associated with gestational diabetes mellitus. Chemerin gene polymorphisms could be proposed as mediators of glucose-related diseases. Nevertheless, to date very little is known about their implication in glucose metabolism. With regard to the mechanisms of action, chemerin impairs insulin cascade signaling by acting on several proteins of this cascade and by inducing inflammation.
Collapse
Affiliation(s)
- A Léniz
- Vitoria-Gasteiz Nursing School, Osakidetza-Basque Health Service, Vitoria-Gasteiz, Spain; Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain; BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - M González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), 3000 Santa Fe, Argentina
| | - I Besné
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - H Carr-Ugarte
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - I Gómez-García
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - M P Portillo
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain; BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain.
| |
Collapse
|
14
|
Zerón H, Sosa García B, Hinojosa Juárez A, García García MC, Pérez-Amado C, Jiménez-Morales S. Retinoic acid receptor responder protein 2 and intelectin-1 in visceral adipose tissue from pregnant women with gestational diabetes mellitus. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_869_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Wang X, Zhang Q, Zhang L, Wei W, Liu L, Li B, Zhang L, Zhang Y, Hui Y, Lei Y. Circulating chemerin levels in women with polycystic ovary syndrome: a meta-analysis. Gynecol Endocrinol 2022; 38:22-27. [PMID: 34402730 DOI: 10.1080/09513590.2021.1963431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE The present meta-analysis was conducted to investigate the association between circulating chemerin levels and polycystic ovary syndrome (PCOS) in women. METHODS Relevant studies published up to May 2020 were searched from PubMed, Ovid, the Cochrane Library, and Clinical Trial Database. A random effects model was used to measure the strength of association between PCOS and chemerin by using the standardized mean difference (SMD) and 95% confidence interval (CI). All data were analyzed using Stata 12.0 (version 12; Stata-Corp, College Station, TX). RESULTS The final meta-analysis included eight studies with 15 results including a total of 897 participants (524 patients with PCOS and 373 controls). The circulating chemerin levels were higher in patients with PCOS (random effects SMD = 1.07; 95% CI: 0.55-1.59; p < .001) than in controls. However, considerable heterogeneity across studies was not eliminated in subgroup analyses. The meta-regression analysis further suggested that region is the main source of heterogeneity (p = .001). CONCLUSIONS Our meta-analysis indicated that women with PCOS have significantly higher circulating chemerin levels than in healthy women, indicating that chemerin may be involved in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Xin Wang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Medical School of the Air Force Medical University, Xi'an, China
| | - Lin Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Wenjing Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Leliang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Beibei Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Liao Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Yuyu Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ye Lei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Medical School of Shanxi University of Traditional Chinese Medicine, Xianyang, China
| |
Collapse
|
16
|
Dawid M, Mlyczyńska E, Jurek M, Respekta N, Pich K, Kurowska P, Gieras W, Milewicz T, Kotula-Balak M, Rak A. Apelin, APJ, and ELABELA: Role in Placental Function, Pregnancy, and Foetal Development-An Overview. Cells 2021; 11:cells11010099. [PMID: 35011661 PMCID: PMC8750556 DOI: 10.3390/cells11010099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The apelinergic system, which includes the apelin receptor (APJ) as well as its two specific ligands, namely apelin and ELABELA (ELA/APELA/Toddler), have been the subject of many recent studies due to their pleiotropic effects in humans and other animals. Expression of these factors has been investigated in numerous tissues and organs—for example, the lungs, heart, uterus, and ovary. Moreover, a number of studies have been devoted to understanding the role of apelin and the entire apelinergic system in the most important processes in the body, starting from early stages of human life with regulation of placental function and the proper course of pregnancy. Disturbances in the balance of placental processes such as proliferation, apoptosis, angiogenesis, or hormone secretion may lead to specific pregnancy pathologies; therefore, there is a great need to search for substances that would help in their early diagnosis or treatment. A number of studies have indicated that compounds of the apelinergic system could serve this purpose. Hence, in this review, we summarized the most important reports about the role of apelin and the entire apelinergic system in the regulation of placental physiology and pregnancy.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Małgorzata Jurek
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Wiktoria Gieras
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Tomasz Milewicz
- Department of Gynecological Endocrinology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Małgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
- Correspondence: ; Tel.: +48-1-2664-5003
| |
Collapse
|
17
|
Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms222111578. [PMID: 34769010 PMCID: PMC8584125 DOI: 10.3390/ijms222111578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic diseases in pregnant women. Its early diagnosis seems to have a significant impact on the developing fetus, the course of delivery, and the neonatal period. It may also affect the later stages of child development and subsequent complications in the mother. Therefore, the crux of the matter is to find a biopredictor capable of singling out women at risk of developing GDM as early as the very start of pregnancy. Apart from the well-known molecules with a proven and clear-cut role in the pathogenesis of GDM, e.g., adiponectin and leptin, a potential role of newer biomolecules is also emphasized. Less popular and less known factors with different mechanisms of action include: galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, fatty acid-binding protein 4 (FABP4), fibroblast growth factor 21, and lipocalin-2. The aim of this review is to present the potential and significance of these 13 less known biomolecules in the pathogenesis of GDM. It seems that high levels of FABP4, low levels of irisin, and high levels of under-carboxylated osteocalcin in the serum of pregnant women can be used as predictive markers in the diagnosis of GDM. Hopefully, future clinical trials will be able to determine which biomolecules have the most potential to predict GDM.
Collapse
|
18
|
Mehrabani S, Arab A, Karimi E, Nouri M, Mansourian M. Blood Circulating Levels of Adipokines in Polycystic Ovary Syndrome Patients: A Systematic Review and Meta-analysis. Reprod Sci 2021; 28:3032-3050. [PMID: 34472034 DOI: 10.1007/s43032-021-00709-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
A body of studies has examined the circulating concentration of adipokines including apelin, vapin, resistin, and chemerin in polycystic ovary syndrome (PCOS) patients. However, their findings have been inconclusive. Therefore, we systematically reviewed available studies to illuminate the overall circulating concentration of adipokines in PCOS subjects. Cochrane's Library, PubMed, Scopus, and ISI Web of Science databases were searched from the earliest available date up to April 2021 for relevant articles. The quality of each study was assessed by the Newcastle-Ottawa Quality Assessment Scale. The pooled effect size was estimated based on the random effects model, and the standard mean differences (SMD) with a 95% confidence interval (CI) were reported. A total of 88 studies met the inclusion criteria and were included in the current systematic review and meta-analysis. The results of the analysis showed that serum levels of vaspin (SMD 0.69; 95% CI, 0.22 to 1.17; P = 0.004; I2 = 90.6%), chemerin (SMD 1.87; 95% CI, 1.35 to 2.40; P < 0.001; I2 = 94.4%), and resistin (SMD 0.66; 95% CI, 0.41 to 0.91; P < 0.001; I2 = 92.6%) were significantly higher in the PCOS group compared to controls. However, there was no significant difference between the PCOS and control groups in relation to apelin levels (SMD - 0.17; 95% CI, - 1.06 to 0.73; P = 0.714; I2 = 97.8%). We found that serum levels of vaspin, chemerin, and resistin were significantly higher in PCOS subjects compared with controls. It seems that these adipokines can be measured as a useful marker to predict the development of PCOS.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Reaserch Development Center, Arah Woman's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Mansourian
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Bayraktar B, Tekce E, Kaya H, Gürbüz AB, Dirican E, Korkmaz S, Atalay B, Ülker U. Adipokine, gut and thyroid hormone responses to probiotic application in chukar partridges (Alectoris chukar) exposed to heat stress. Acta Vet Hung 2021; 69:282-290. [PMID: 34460430 DOI: 10.1556/004.2021.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effect of Lactobacillus reuteri E81 (LRE) probiotic supplementation on heat stress responses in chukar partridges (Alectoris chukar). The birds were divided into two groups, one of which was exposed to heat stress (HS). Within each group, four subgroups, each including 64 birds, were created for the three treatment doses (200, 400 or 600 mg/kg) of LRE and the control. The experiment was started with day-old birds, kept at a temperature of 25 °C or 37 °C. After a 7-day adjustment period, the LRE supplementation lasted for 35 days. The levels of different adipokines, including visfatin (VF), adiponectin (ADP), chemerin (CHEM), as well as the concentration of plasma citrulline (CIT) and the levels of thyroid hormones (T3 and T4) and thyroid-stimulating hormone (TSH) in the blood were measured at 21 and 42 days of age. A significant correlation (P < 0.01) was found between LRE supplementation and the decrease in serum VF, ADP, CIT, T3 and T4 levels in partridges exposed to HS. On the other hand, no significant relationship was found between LRE supplementation and the serum CHEM and TSH levels (P > 0.05). We concluded that the addition of 600 mg/kg LRE is beneficial in preventing intestinal damage and inflammation provoked by HS.
Collapse
Affiliation(s)
- Bülent Bayraktar
- 1 Faculty of Health Sciences, Bayburt University, Bayburt, Turkey
| | - Emre Tekce
- 2 Faculty of Applied Sciences, Bayburt University, Bayburt, Turkey
| | - Hacer Kaya
- 3 Department of Veterinary Medicine, Gumushane University, Kelkit Aydın Doğan Vocational High School, Gumushane, Turkey
| | - Ahmet Burak Gürbüz
- 4 Department of Department of Animal Nutrition and Nutritional Diseases, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ebubekir Dirican
- 5 Vocational School of Health Services, Bayburt University, Bayburt, Turkey
| | - Serol Korkmaz
- 6 Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Banu Atalay
- 7 Vocational School of Health Services, Batman University, Batman, Turkey
| | - Ufuk Ülker
- 8 Veterinary Control Centre Research Institute Directorate, Ankara, Turkey
| |
Collapse
|
20
|
Bogdanet D, Reddin C, Murphy D, Doheny HC, Halperin JA, Dunne F, O’Shea PM. Emerging Protein Biomarkers for the Diagnosis or Prediction of Gestational Diabetes-A Scoping Review. J Clin Med 2021; 10:1533. [PMID: 33917484 PMCID: PMC8038821 DOI: 10.3390/jcm10071533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Gestational diabetes (GDM), defined as hyperglycemia with onset or initial recognition during pregnancy, has a rising prevalence paralleling the rise in type 2 diabetes (T2DM) and obesity. GDM is associated with short-term and long-term consequences for both mother and child. Therefore, it is crucial we efficiently identify all cases and initiate early treatment, reducing fetal exposure to hyperglycemia and reducing GDM-related adverse pregnancy outcomes. For this reason, GDM screening is recommended as part of routine pregnancy care. The current screening method, the oral glucose tolerance test (OGTT), is a lengthy, cumbersome and inconvenient test with poor reproducibility. Newer biomarkers that do not necessitate a fasting sample are needed for the prompt diagnosis of GDM. The aim of this scoping review is to highlight and describe emerging protein biomarkers that fulfill these requirements for the diagnosis of GDM. Materials and Methods: This scoping review was conducted according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for scoping reviews using Cochrane Central Register of Controlled Trials (CENTRAL), the Cumulative Index to Nursing & Allied Health Literature (CINAHL), PubMed, Embase and Web of Science with a double screening and extraction process. The search included all articles published in the literature to July 2020. Results: Of the 3519 original database citations identified, 385 were eligible for full-text review. Of these, 332 (86.2%) were included in the scoping review providing a total of 589 biomarkers studied in relation to GDM diagnosis. Given the high number of biomarkers identified, three post hoc criteria were introduced to reduce the items set for discussion: we chose only protein biomarkers with at least five citations in the articles identified by our search and published in the years 2017-2020. When applied, these criteria identified a total of 15 biomarkers, which went forward for review and discussion. Conclusions: This review details protein biomarkers that have been studied to find a suitable test for GDM diagnosis with the potential to replace the OGTT used in current GDM screening protocols. Ongoing research efforts will continue to identify more accurate and practical biomarkers to take GDM screening and diagnosis into the 21st century.
Collapse
Affiliation(s)
- Delia Bogdanet
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Catriona Reddin
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Dearbhla Murphy
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Helen C. Doheny
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Jose A. Halperin
- Divisions of Haematology, Brigham & Women’s Hospital, Boston, MA 02115, USA;
| | - Fidelma Dunne
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Paula M. O’Shea
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| |
Collapse
|
21
|
Su X, Cheng Y, Zhang G, Wang B. Chemerin in inflammatory diseases. Clin Chim Acta 2021; 517:41-47. [PMID: 33631197 DOI: 10.1016/j.cca.2021.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Obesity is associated with a series of health problems. Adipocytes are a huge repository of energy as well as an important source of many adipokines. In obesity, adipocytes are dysfunctional with excessive production and secretion of pro-inflammatory adipokines, such as tumor necrosis factor α (TNF-α), leptin, and chemerin. Recent studies have revealed that chemerin plays an important role in modulating physiologic as well as pathophysiologic processes. For example, chemerin stimulates maturation and differentiation of pre-adipocytes, acts as a chemoattractant and facilitates innate and acquired immunity. Furthermore, chemerin participates in the early stage of acute inflammation by reacting with the ChemR23 receptor. In various inflammatory diseases, the serum chemerin is significantly increased. Additionally, chemerin is also considered as an important biomarker for benign and malignant tumors. Thus, elucidating the pathologic mechanisms of chemerin action may facilitate the development of new therapeutic modalities to treat diverse inflammatory diseases. In this review, we summarize current knowledge of chemerin and its role as an important regulator in modulating various inflammatory diseases. Mechanisms underlying chemerin function in diverse diseases are explored to better understand its biochemistry and mechanisms of action.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
22
|
Mierzyński R, Poniedziałek-Czajkowska E, Dłuski D, Kamiński M, Mierzyńska A, Leszczyńska-Gorzelak B. The Potential Role of Chemerin, Lipocalin 2, and Apelin in the Diagnosis and Pathophysiology of Gestational Diabetes Mellitus. J Diabetes Res 2021; 2021:5547228. [PMID: 34212049 PMCID: PMC8211493 DOI: 10.1155/2021/5547228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
The exact role of adipokines in the pathogenesis of gestational diabetes mellitus (GDM) still remains not fully clear, and multiple studies have analyzed their potential contribution to the pathophysiology of this pregnancy complication. This study is aimed at evaluating serum chemerin, lipocalin 2, and apelin concentrations in GDM and healthy pregnant patients, assessing the correlation between these adipokines, and suggesting the potential role of these cytokines in the diagnosis and pathophysiology of GDM. The study comprised 237 pregnant women: 153 with GDM and 84 with physiological pregnancy. Serum concentrations of chemerin, lipocalin 2, and apelin were obtained at 24-29 weeks of gestation. The mean concentrations of chemerin and lipocalin 2 were significantly higher in the GDM group. The concentration of apelin was slightly higher in the GDM group, but not statistically significant. The strong positive correlation between chemerin and lipocalin 2 concentrations was noticed in both groups. Our data suggest that maternal chemerin and lipocalin 2 may play a significant role in the pathophysiology of GDM. We imply that these adipokines could potentially be established as novel biomarkers for the early identification of GDM. However, more studies are needed to analyze the effect of these adipokines on glucose metabolism during early pregnancy.
Collapse
Affiliation(s)
- Radzisław Mierzyński
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-954 Lublin, Poland
| | | | - Dominik Dłuski
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Maciej Kamiński
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Agnieszka Mierzyńska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-954 Lublin, Poland
| | | |
Collapse
|
23
|
Wang L, Zhang Y, Guo Y, Ding W, Chang A, Wei J, Li X, Qian H, Zhu C. Chemerin/CMKLR1 Axis Promotes the Progression of Proliferative Diabetic Retinopathy. Int J Endocrinol 2021; 2021:4468625. [PMID: 34868308 PMCID: PMC8635949 DOI: 10.1155/2021/4468625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes, and the levels of chemerin were associated with the severity of DR. However, there is no research on chemerin in the development of proliferative diabetic retinopathy (PDR). Therefore, our study aimed to explore the relationship between chemerin and PDR. METHODS The levels of chemerin/chemokine-like receptor (CMKLR1), proinflammatory cytokines, and vascular endothelial growth factor (VEGF) in 90 cases of PDR and nonproliferative diabetic retinopathy (NPDR) patients and in high glucose (HG) stimulated human retinal pigment epithelium cells (ARPE-19) were evaluated by ELISA. Moreover, chemerin was added into HG-induced ARPE-19 cells to assess its effect on proinflammatory cytokines and VEGF. RESULTS The levels of chemerin/CMKLR1 were higher in PDR patients than NPDR ones, and chemerin was positively correlated with CMKLR1 in PDR patients. Compared to NPDR, the secretions of proinflammatory cytokines and VEGF were increased in PDR patients and positively correlated with chemerin/CMKLR1. Additionally, chemerin activated CMKLR1 and aggravated HG-induced cell injury, inflammatory responses, and VEGF expressions in ARPE-19 cells. CONCLUSION Our study demonstrated that chemerin/CMKLR1 axis aggravated the progression of PDR, which suggested that inhibition of chemerin might serve as a new therapeutic approach to treat PDR.
Collapse
Affiliation(s)
- Lihui Wang
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ying Zhang
- Department IV of Medicine, Tangshan Likang Hospital, Xinglong Street, Han Town, Lubei District, Tangshan 063000, Hebei, China
| | - Yanan Guo
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Wencui Ding
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Ailing Chang
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Jing Wei
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Xinsheng Li
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Hongxia Qian
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Chonggui Zhu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
24
|
Jehan F, Sazawal S, Baqui AH, Nisar MI, Dhingra U, Khanam R, Ilyas M, Dutta A, Mitra DK, Mehmood U, Deb S, Mahmud A, Hotwani A, Ali SM, Rahman S, Nizar A, Ame SM, Moin MI, Muhammad S, Chauhan A, Begum N, Khan W, Das S, Ahmed S, Hasan T, Khalid J, Rizvi SJR, Juma MH, Chowdhury NH, Kabir F, Aftab F, Quaiyum A, Manu A, Yoshida S, Bahl R, Rahman A, Pervin J, Winston J, Musonda P, Stringer JSA, Litch JA, Ghaemi MS, Moufarrej MN, Contrepois K, Chen S, Stelzer IA, Stanley N, Chang AL, Hammad GB, Wong RJ, Liu C, Quaintance CC, Culos A, Espinosa C, Xenochristou M, Becker M, Fallahzadeh R, Ganio E, Tsai AS, Gaudilliere D, Tsai ES, Han X, Ando K, Tingle M, Marić I, Wise PH, Winn VD, Druzin ML, Gibbs RS, Darmstadt GL, Murray JC, Shaw GM, Stevenson DK, Snyder MP, Quake SR, Angst MS, Gaudilliere B, Aghaeepour N. Multiomics Characterization of Preterm Birth in Low- and Middle-Income Countries. JAMA Netw Open 2020; 3:e2029655. [PMID: 33337494 PMCID: PMC7749442 DOI: 10.1001/jamanetworkopen.2020.29655] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Worldwide, preterm birth (PTB) is the single largest cause of deaths in the perinatal and neonatal period and is associated with increased morbidity in young children. The cause of PTB is multifactorial, and the development of generalizable biological models may enable early detection and guide therapeutic studies. OBJECTIVE To investigate the ability of transcriptomics and proteomics profiling of plasma and metabolomics analysis of urine to identify early biological measurements associated with PTB. DESIGN, SETTING, AND PARTICIPANTS This diagnostic/prognostic study analyzed plasma and urine samples collected from May 2014 to June 2017 from pregnant women in 5 biorepository cohorts in low- and middle-income countries (LMICs; ie, Matlab, Bangladesh; Lusaka, Zambia; Sylhet, Bangladesh; Karachi, Pakistan; and Pemba, Tanzania). These cohorts were established to study maternal and fetal outcomes and were supported by the Alliance for Maternal and Newborn Health Improvement and the Global Alliance to Prevent Prematurity and Stillbirth biorepositories. Data were analyzed from December 2018 to July 2019. EXPOSURES Blood and urine specimens that were collected early during pregnancy (median sampling time of 13.6 weeks of gestation, according to ultrasonography) were processed, stored, and shipped to the laboratories under uniform protocols. Plasma samples were assayed for targeted measurement of proteins and untargeted cell-free ribonucleic acid profiling; urine samples were assayed for metabolites. MAIN OUTCOMES AND MEASURES The PTB phenotype was defined as the delivery of a live infant before completing 37 weeks of gestation. RESULTS Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). Univariate analysis demonstrated functional biological differences across the 5 cohorts. A cohort-adjusted machine learning algorithm was applied to each biological data set, and then a higher-level machine learning modeling combined the results into a final integrative model. The integrated model was more accurate, with an area under the receiver operating characteristic curve (AUROC) of 0.83 (95% CI, 0.72-0.91) compared with the models derived for each independent biological modality (transcriptomics AUROC, 0.73 [95% CI, 0.61-0.83]; metabolomics AUROC, 0.59 [95% CI, 0.47-0.72]; and proteomics AUROC, 0.75 [95% CI, 0.64-0.85]). Primary features associated with PTB included an inflammatory module as well as a metabolomic module measured in urine associated with the glutamine and glutamate metabolism and valine, leucine, and isoleucine biosynthesis pathways. CONCLUSIONS AND RELEVANCE This study found that, in LMICs and high PTB settings, major biological adaptations during term pregnancy follow a generalizable model and the predictive accuracy for PTB was augmented by combining various omics data sets, suggesting that PTB is a condition that manifests within multiple biological systems. These data sets, with machine learning partnerships, may be a key step in developing valuable predictive tests and intervention candidates for preventing PTB.
Collapse
Affiliation(s)
- Fyezah Jehan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sunil Sazawal
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Abdullah H. Baqui
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Muhammad Imran Nisar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Usha Dhingra
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Rasheda Khanam
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Muhammad Ilyas
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Arup Dutta
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Dipak K. Mitra
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Usma Mehmood
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Saikat Deb
- Centre for Public Health Kinetics, New Delhi, Delhi, India
- Public Health Laboratory-Ivo de Carneri, Pemba Island, Zanzibar
| | - Arif Mahmud
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Sayedur Rahman
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ambreen Nizar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Mamun Ibne Moin
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sajid Muhammad
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nazma Begum
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Waqasuddin Khan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sayan Das
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Salahuddin Ahmed
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Tarik Hasan
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Javairia Khalid
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Jafar Raza Rizvi
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Nabidul Haque Chowdhury
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Furqan Kabir
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fahad Aftab
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Abdul Quaiyum
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alexander Manu
- Maternal, Newborn, Child and Adolescent Health Research, World Health Organization, Geneva, Switzerland
| | - Sachiyo Yoshida
- Maternal, Newborn, Child and Adolescent Health Research, World Health Organization, Geneva, Switzerland
| | - Rajiv Bahl
- Maternal, Newborn, Child and Adolescent Health Research, World Health Organization, Geneva, Switzerland
| | - Anisur Rahman
- Matlab Health Research Centre, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jennifer Winston
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Patrick Musonda
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Jeffrey S. A. Stringer
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill
| | - James A. Litch
- Global Alliance to Prevent Prematurity and Stillbirth, Seattle, Washington
| | - Mohammad Sajjad Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Ontario, Canada
| | - Mira N. Moufarrej
- Department of Bioengineering, Stanford University, Stanford, California
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Alan L. Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Ghaith Bany Hammad
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Ronald J. Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Candace Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Maria Xenochristou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Edward Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Amy S. Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Dyani Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Eileen S. Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Martha Tingle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Ivana Marić
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Paul H. Wise
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Virginia D. Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Maurice L. Druzin
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Ronald S. Gibbs
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Gary L. Darmstadt
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | | | - Gary M. Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K. Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, California
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
25
|
Sun J, Ren J, Zuo C, Deng D, Pan F, Chen R, Zhu J, Chen C, Ye S. Circulating apelin, chemerin and omentin levels in patients with gestational diabetes mellitus: a systematic review and meta-analysis. Lipids Health Dis 2020; 19:26. [PMID: 32087711 PMCID: PMC7035755 DOI: 10.1186/s12944-020-01209-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The available data on the significance of circulating apelin, chemerin and omentin in women with gestational diabetes mellitus (GDM) are inconsistent. This analysis includes a systematic review of the evidence associating the serum concentrations of these adipokines with GDM. METHODS Publications through December 2019 were retrieved from PubMed, Embase, the Cochrane Library, and Web of Science. Subgroup analysis and meta-regression were conducted to evaluate sources of heterogeneity. RESULTS Analysis of 20 studies, including 1493 GDM patients and 1488 normal pregnant women did not find significant differences in circulating apelin and chemerin levels (apelin standardized mean difference [SMD] = 0.43, 95% confidence interval (CI): - 0.40 to 1.26, P = 0.31; chemerin SMD = 0.77, 95% CI - 0.07 to 1.61, P = 0.07). Circulating omentin was significantly lower in women with GDM than in healthy controls (SMD = - 0.72, 95% CI - 1.26 to - 0.19, P = 0.007). Publication bias was not found; sensitivity analysis confirmed the robustness of the pooled results. CONCLUSIONS Circulating omentin was decreased in GDM patients, but apelin and chemerin levels were not changed. The results suggest that omentin has potential as a novel biomarker for the prediction and early diagnosis of GDM.
Collapse
Affiliation(s)
- Jianran Sun
- Division of Life Science and Medicine, Department of Endocrinology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, China
| | - Jiale Ren
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Chunlin Zuo
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Datong Deng
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, 230032, Anhui, China
| | - Ruoping Chen
- Division of Life Science and Medicine, Department of Endocrinology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, China
| | - Jie Zhu
- Division of Life Science and Medicine, Department of Endocrinology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, China
| | - Chao Chen
- Division of Life Science and Medicine, Department of Endocrinology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, China
| | - Shandong Ye
- Division of Life Science and Medicine, Department of Endocrinology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, China.
| |
Collapse
|
26
|
Jacenik D, Fichna J. Chemerin in immune response and gastrointestinal pathophysiology. Clin Chim Acta 2020; 504:146-153. [PMID: 32070869 DOI: 10.1016/j.cca.2020.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Chemerin is a multifunctional protein involved among others in adipogenesis, angiogenesis and lipid as well as glucose metabolism. Chemerin is an essential factor in promotion of chemotaxis of numerous immune cell types and plays an important role in several pathophysiologic conditions. Chemerin receptors are present on monocytes/macrophages, T cells, natural killer and dendritic cells as well as neutrophils. However, the role of chemerin and chemerin receptors in immune response and gastrointestinal diseases is still poorly understood. Accumulating, clinical and experimental studies observed disturbation of chemerin and chemerin receptors in a number of disorders including Barrett's esophagus, esophageal cancer, gastric cancer, hepatic dysfunction, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Moreover, chemerin and chemerin receptors have been shown to regulate proliferation, migration and invasion of gastrointestinal and immune cells as well as cancer-associated fibroblasts. In this review we present the current state of knowledge about the contribution of chemerin to immune response and gastrointestinal disorders.
Collapse
Affiliation(s)
- Damian Jacenik
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, Pomorska St. 141/143, Lodz 90-236, Poland
| | - Jakub Fichna
- Medical University of Lodz, Faculty of Medicine, Department of Biochemistry, Mazowiecka St. 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
27
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
28
|
Giannakou K, Evangelou E, Yiallouros P, Christophi CA, Middleton N, Papatheodorou E, Papatheodorou SI. Risk factors for gestational diabetes: An umbrella review of meta-analyses of observational studies. PLoS One 2019; 14:e0215372. [PMID: 31002708 PMCID: PMC6474596 DOI: 10.1371/journal.pone.0215372] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/OBJECTIVE Gestational diabetes mellitus (GDM) is a common pregnancy complication, with complex disease mechanisms, and several risk factors may contribute to its onset. We performed an umbrella review to summarize the evidence from meta-analyses of observational studies on risk factors associated with GDM, evaluate whether there are indications of biases in this literature and identify which of the previously reported associations are supported by convincing evidence. METHODS We searched PubMed and ISI Web of Science from inception to December 2018 to identify meta-analyses examining associations between putative risk factors for GDM. For each meta-analysis we estimated the summary effect size, the 95% confidence interval, the 95% prediction interval, the between-study heterogeneity, evidence of small-study effects, and evidence of excess-significance bias. RESULTS Thirty eligible meta-analyses were identified, providing data on 61 associations. Fifty (82%) associations had nominally statistically significant findings (P<0.05), while only 15 (25%) were significant at P<10-6 under the random-effects model. Only four risk factors presented convincing evidence:, low vs. normal BMI (cohort studies), BMI ~30-35 kg/m2 vs. normal BMI, BMI >35 kg/m2 vs. normal BMI, and hypothyroidism. CONCLUSIONS The compilation of results from synthesis of observational studies suggests that increased BMI and hypothyroidism show the strongest consistent evidence for an association with GDM. Diet and lifestyle modifications in pregnancy should be tested in large randomized trials. Our findings suggest that women with known thyroid disease may be offered screening for GDM earlier in pregnancy.
Collapse
Affiliation(s)
- Konstantinos Giannakou
- Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina, School of Medicine, University Campus, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, United Kingdom
| | | | - Costas A. Christophi
- Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Nicos Middleton
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | | | - Stefania I. Papatheodorou
- Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Bovbjerg ML. Current Resources for Evidence-Based Practice, March 2019. J Obstet Gynecol Neonatal Nurs 2019; 48:230-248. [PMID: 30735623 DOI: 10.1016/j.jogn.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A review of new resources to support the provision of evidence-based care for women and infants.
Collapse
|