1
|
Naidoo K, Khathi A. Investigating the Effects of Gossypetin on Liver Health in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats. Molecules 2025; 30:1834. [PMID: 40333901 PMCID: PMC12029341 DOI: 10.3390/molecules30081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
The rising prevalence of non-alcoholic fatty liver disease among patients with type 2 diabetes mellitus has emerged as a global health challenge. Gossypetin (GTIN) is a natural flavonoid which has recently demonstrated antihyperglycaemic, antioxidant, and anti-inflammatory effects. Despite these findings, no studies have investigated its effects on liver health in the pre-diabetic state. Hence, this study aimed to investigate the effects of GTIN on liver health in diet-induced pre-diabetic male rats in the presence and absence of dietary intervention and to compare these effects with those of metformin (MET). Following 20 weeks of pre-diabetes induction, the animals were divided into six groups (n = 6) as follows: non-pre-diabetic (NPD) control, pre-diabetic (PD) control, and PD groups treated with GTIN (15 mg/kg body weight (bw)) or metformin (500 mg/kg bw) on either a normal diet or a high-fat, high-carbohydrate diet for 12 weeks. The results showed that the PD group had significantly higher liver triglycerides (TAG), liver weights, sterol regulatory binding element regulatory protein-1c (SREBP-1c), malondialdehyde (MDA) levels, and liver injury enzyme levels, along with decreased liver superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, and plasma bilirubin levels in comparison to NPD. Histologically, there was an increased lipid droplet accumulation and structural disarray in the PD group. GTIN treatment significantly reduced liver TAGs, liver weights, and plasma SREBP-1c levels, as well as improved liver SOD and GPx activity while decreasing liver MDA levels and liver injury enzymes in comparison to the PD control. Notably, GTIN treatment increased plasma bilirubin levels. Liver histology in the GTIN-treated groups revealed decreased lipid droplet accumulation and improved tissue integrity. Similar results were observed for the liver parameters in the MET-treated groups. The findings of this study may suggest that GTIN and MET exhibit therapeutic effects on liver health in diet-induced pre-diabetes in both the presence and absence of diet intervention. Dietary intervention may confer beneficial effects on liver health, with the most favorable therapeutic outcomes observed through a combination of treatment with dietary intervention. Additionally, GTIN may exhibit greater hepatoprotective effects than MET in rats without dietary intervention.
Collapse
Affiliation(s)
- Karishma Naidoo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | | |
Collapse
|
2
|
Yang W, Wei Z, Wang T. Unraveling the Role of LRP1 in Alzheimer's Disease: A Focus on Aβ Clearance and the Liver-Brain Axis. J Mol Neurosci 2025; 75:43. [PMID: 40167883 DOI: 10.1007/s12031-025-02339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, significantly contributing to the global health burden. The progressive accumulation of amyloid-beta (Aβ) plaques and tau tangles triggers neuroinflammation, oxidative stress, and neuronal damage, highlighting the critical need for effective clearance mechanisms. Recent research has identified low-density lipoprotein receptor-related protein 1 (LRP1) as a key factor in the regulation of Aβ clearance, neuroinflammation, and blood-brain barrier integrity, particularly in relation to the liver-brain axis. This review provides a comprehensive examination of the role of LRP1 in AD, focusing on its expression in the brain and liver, its contribution to Aβ metabolism, and its potential as a therapeutic target. Using a systematic literature review, LRP1's multifaceted roles across various biological processes were explored, including its involvement in Aβ transport, clearance via the liver, and modulation of neuroinflammation. Additionally, the impact of physical exercise, pharmacological interventions, and dietary factors on LRP1 expression levels was investigated, elucidating how these approaches may enhance Aβ clearance. The findings demonstrate that LRP1 expression decreases progressively as AD advances, and that augmenting LRP1 activity-particularly through exercise and drug therapies-can improve Aβ clearance and reduce neuroinflammatory responses. Furthermore, LRP1's involvement in the liver-brain axis reveals its broader systemic role in AD pathology. In conclusion, targeting LRP1 offers a promising avenue for AD prevention and treatment, providing new insights into the therapeutic potential of enhancing Aβ clearance pathways through the liver-brain axis.
Collapse
Affiliation(s)
- Wanyue Yang
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
- Military Medical Sciences Academy, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China
| | - Zilin Wei
- Military Medical Sciences Academy, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China.
| | - Tianhui Wang
- Military Medical Sciences Academy, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China.
| |
Collapse
|
3
|
Funes AK, Avena V, Boarelli PV, Monclus MA, Zoppino DF, Saez-Lancellotti TE, Fornes MW. Cholesterol dynamics in rabbit liver: High-fat diet, olive oil, and synergistic dietary effects. Biochem Biophys Res Commun 2024; 733:150675. [PMID: 39284268 DOI: 10.1016/j.bbrc.2024.150675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND & AIMS Lipid metabolism disorders contribute to a range of human diseases, including liver-related pathologies. Rabbits, highly sensitive to dietary cholesterol, provide a model for understanding the development of liver disorders. Sterol regulatory element-binding protein isoform 2 (SREBP2) crucially regulates intracellular cholesterol pathways. Extra-virgin olive oil (EVOO) has shown reducing cholesterol levels and restoring liver parameters affected by HFD. The aim was to investigate the molecular impact of an HFD and supplemented with EVOO on rabbit liver cholesterol metabolism. APPROACH & RESULTS Male rabbits were assigned to dietary cohorts, including control, acute/chronic HFD, sequential HFD with EVOO, and EVOO. Parameters such as serum lipid profiles, hepatic enzymes, body weight, and molecular analyses. After 6 months of HFD, plasma and hepatic cholesterol increased with decreased SREBP2 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) expression. Prolonged HFD increased cholesterol levels, upregulating SREBP2 mRNA and HMGCR protein. Combining this with EVOO lowered cholesterol, increased SREBP2 mRNA, and upregulated low-density lipoprotein receptor (LDLR) expression. HFD-induced metabolic dysfunction-associated fatty liver disease was mitigated by EVOO. In conclusion, the SREBP2 system responds to dietary changes. CONCLUSIONS In rabbits, the SREBP2 system responds to dietary changes. Acute HFD hinders cholesterol synthesis, while prolonged HFD disrupts regulation, causing SREBP2 upregulation. EVOO intake prompts LDLR upregulation, potentially enhancing cholesterol clearance and restoring hepatic alterations.
Collapse
Affiliation(s)
- Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Virginia Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Paola V Boarelli
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - María A Monclus
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Dario Fernández Zoppino
- Laboratorio de Fisiología Celular y Molecular. Facultad de Ciencias de la Salud. Universidad de Burgos, Burgos, Spain
| | - Tania E Saez-Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina; Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA). Universidad de Málaga, Málaga, Spain.
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| |
Collapse
|
4
|
Kestecher BM, Németh K, Ghosal S, Sayour NV, Gergely TG, Bodnár BR, Försönits AI, Sódar BW, Oesterreicher J, Holnthoner W, Varga ZV, Giricz Z, Ferdinandy P, Buzás EI, Osteikoetxea X. Reduced circulating CD63 + extracellular vesicle levels associate with atherosclerosis in hypercholesterolaemic mice and humans. Cardiovasc Diabetol 2024; 23:368. [PMID: 39420340 PMCID: PMC11487797 DOI: 10.1186/s12933-024-02459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS The association and co-isolation of low-density lipoproteins (LDL) and extracellular vesicles (EVs) have been shown in blood plasma. Here we explore this relationship to better understand the role of EVs in atherogenesis. METHODS AND RESULTS Wild type (WT), PCSK9-/-, and LDLR-/- C57BL/6 mice were used in this study. Eleven week-old male mice were fed high-fat diet (HFD) for 12 weeks or kept on normal diet until old age (22-months). Cardiac function was assessed by ultrasound, cholesterol was quantified with a colorimetric kit and circulating EVs were measured using flow cytometry. Plaques were analysed post-mortem using Oil-Red-O staining of the aortic arch. EVs were measured from platelet free blood plasma samples of normal and hypercholesterolaemic clinical patients. Based on annexin V and CD63 staining, we found a significant increase in EV levels in LDLR-/- and PCSK9-/- mice after HFD, but CD81 showed no significant change in either group. There was no significant change in plaque formation after HFD. PCSK9-/- mice show a favourable cardiac function after HFD. Blood cholesterol levels progressively increased during HFD, with LDLR-/- mice showing high levels while PCSK9-/- were significantly lowered compared to WT animals. In mice at old age, similar cholesterol levels were observed as in young mice. In old age, LDLR-/- mice showed significantly increased plaques. At old age, ejection fraction was decreased in all groups of mice, as were CD63+ EVs. Similarly to mice, in patients with hypercholesterolaemia, CD63+ EVs were significantly depleted. CONCLUSIONS This research demonstrates an inverse relationship between circulating EVs and cholesterol, making EVs a potential marker for cardiovascular disease (CVD). HFD causes reduced cardiac function, but atherosclerotic development is slowly progressing in hypercholesterolaemic models and only observed with old animals. These results also bring further evidence for the benefit of using of PCSK9 inhibitors as therapeutic agents in CVD.
Collapse
Affiliation(s)
- Brachyahu M Kestecher
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Krisztina Németh
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Sayam Ghosal
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bernadett R Bodnár
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - András I Försönits
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Johannes Oesterreicher
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Edit I Buzás
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Xabier Osteikoetxea
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
5
|
Kim J, Lee JY, Kim CY. Allium macrostemon whole extract ameliorates obesity-induced inflammation and endoplasmic reticulum stress in adipose tissue of high-fat diet-fed C57BL/6N mice. Food Nutr Res 2023; 67:9256. [PMID: 37223261 PMCID: PMC10202093 DOI: 10.29219/fnr.v67.9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Background Obesity is a major risk factor for metabolic syndrome and a serious health concern worldwide. Various strategies exist to treat and prevent obesity, including dietary approaches using bioactive ingredients from natural sources. Objective This study aimed to investigate the anti-obesity effect of whole-plant Allium macrostemon (also called as long-stamen chive) extract (AME) as a potential new functional food. Design C57BL/6N mice were divided into three groups and fed either a control diet (CD), high-fat diet (HFD), or HFD with AME treatment (200 mg/kg BW daily) for 9 weeks. The mice in the CD and HFD groups were treated with vehicle control. Results AME supplementation reduced HFD-induced body weight gain, fat mass, and adipocyte size. AME suppressed peroxisome proliferator-activated receptor γ and fatty acid synthase mRNA expression, indicating reduced adipogenesis and lipogenesis in adipose tissue. In addition, AME lowered inflammation in adipose tissue, as demonstrated by the lower number of crown-like structures, mRNA, and/or protein expression of macrophage filtration markers, as well as pro-inflammatory cytokines, including F4/80 and IL-6. Endoplasmic reticulum stress was also alleviated by AME administration in adipose tissue. Several phenolic acids known to have anti-obesity effects, including ellagic acid, protocatechuic acid, and catechin, have been identified in AME. Conclusion By suppressing adipose tissue expansion and inflammation, AME is a potential functional food for the prevention and/or treatment of obesity and its complications.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| |
Collapse
|
6
|
Wang M, Han H, Wan F, Zhong R, Do YJ, Oh SI, Lu X, Liu L, Yi B, Zhang H. Dihydroquercetin Supplementation Improved Hepatic Lipid Dysmetabolism Mediated by Gut Microbiota in High-Fat Diet (HFD)-Fed Mice. Nutrients 2022; 14:nu14245214. [PMID: 36558373 PMCID: PMC9788101 DOI: 10.3390/nu14245214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Dihydroquercetin (DHQ) is a natural flavonoid with multiple bioactivities, including hepatoprotective effects. This study aimed to investigate whether DHQ improved lipid dysmetabolism in the body, especially in the liver, and whether there is a relationship between hepatic metabolism and altered gut flora in high-fat diet (HFD)-induced mice. HFD-induced mice were given 50 mg/kg body weight DHQ intragastrically for 10 weeks. The data showed that DHQ reduced body weight, the weight of the liver and white adipose tissue as well as serum leptin, LPS, triglyceride and cholesterol levels. RNA-seq results indicated that DHQ down-regulated lipogenesis-related genes and up-regulated fatty acid oxidation-related genes, including MOGAT1 and CPT1A. Furthermore, DHQ had a tendency to decrease hepatic cholesterol contents by reducing the mRNA levels of cholesterol synthesis genes such as FDPS and HMGCS1. 16S rRNA sequencing analysis indicated that DHQ significantly decreased the richness of Lactococcus, Lachnoclostridium, and Eubacterium_xylanophilum_group. Correlation analysis further demonstrated that these bacteria, Lactococcus and Eubacterium_xylanophilum_group in particular, had significantly positive correlation with lipid and cholesterol synthesis genes, and negative correlation with fatty acid oxidation genes. In conclusion, DHQ could improve hepatic lipid dysmetabolism potentially by improved gut microbial community, which may be used as an intervention strategy in hepatic metabolism diseases.
Collapse
Affiliation(s)
- Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yoon Jung Do
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Xuemeng Lu
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62816013
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
The effects of olive oil consumption on blood lipids: a systematic review and dose-response meta-analysis of randomised controlled trials. Br J Nutr 2022:1-9. [PMID: 36408701 DOI: 10.1017/s0007114522003683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We performed a systematic review and dose-response meta-analysis of randomised trials on the effects of olive oil consumption on blood lipids in adults. A systematic search was performed in PubMed, Scopus and Web of Science databases until May 2021. Randomised controlled trials (RCT) evaluating the effect of olive oil intake on serum total cholesterol (TC), TAG, LDL-cholesterol and HDL-cholesterol in adults were included. The mean difference (MD) and 95 % CI were calculated for each 10 g/d increment in olive oil intake using a random-effects model. A total of thirty-four RCT with 1730 participants were included. Each 10 g/d increase in olive oil consumption had minimal effects on blood lipids including TC (MD: 0·79 mg/dl; 95 % CI (-0·08, 1·66); I2 = 57 %; n 31, GRADE = low certainty), LDL-cholesterol (MD: 0·04 mg/dl, 95 % CI (-1·01, 0·94); I2 = 80 %; n 31, GRADE = very low certainty), HDL-cholesterol (MD: 0·22 mg/dl; 95 % CI (-0·01, 0·45); I2 = 38 %; n 33, GRADE = low certainty) and TAG (MD: 0·39 mg/dl; 95 % CI (-0·33, 1·11); I2 = 7 %; n 32, GRADE = low certainty). Levels of TC increased slightly with the increase in olive oil consumption up to 30 g/d (MD30 g/d: 2·76 mg/dl, 95 % CI (0·01, 5·51)) and then appeared to plateau with a slight downward curve. A trivial non-linear dose-dependent increment was seen for HDL-cholesterol, with the greatest increment at 20 g/d (MD20 g/d: 1·03 mg/dl, 95 % CI (-1·23, 3·29)). Based on existing evidence, olive oil consumption had trivial effects on levels of serum lipids in adults. More large-scale randomized trials are needed to present more reliable results.
Collapse
|
8
|
Kendig MD, Leigh SJ, Morris MJ. Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neurosci Biobehav Rev 2021; 128:233-243. [PMID: 34153343 DOI: 10.1016/j.neubiorev.2021.05.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
The steady rise in the prevalence of obesity has been fostered by modern environments that reduce energy expenditure and encourage consumption of 'western'-style diets high in fat and sugar. Obesity has been consistently associated with impairments in executive function and episodic memory, while emerging evidence indicates that high-fat, high-sugar diets can impair aspects of cognition within days, even when provided intermittently. Here we review the detrimental effects of diet and obesity on cognition and the role of inflammatory and circulating factors, compromised blood-brain barrier integrity and gut microbiome changes. We next evaluate evidence for changing risk profiles across life stages (adolescence and ageing) and other populations at risk (e.g. through maternal obesity). Finally, interventions to ameliorate diet-induced cognitive deficits are discussed, including dietary shifts, exercise, and the emerging field of microbiome-targeted therapies. With evidence that poor diet and obesity impair cognition via multiple mechanisms across the human lifespan, the challenge for future research is to identify effective interventions, in addition to diet and exercise, to prevent and ameliorate adverse effects.
Collapse
|