1
|
Zhang S, Hu X, Sun M, Chen X, Le S, Wang X, Wang J, Hu Z. Potential role of hypobaric hypoxia environment in treating pan-cancer. Sci Rep 2025; 15:12942. [PMID: 40234469 PMCID: PMC12000279 DOI: 10.1038/s41598-024-84561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/24/2024] [Indexed: 04/17/2025] Open
Abstract
Cancer incidence and mortality are lower among high-altitude residents, suggesting that hypobaric hypoxia (HH) might protect against cancer. Our study aimed to develop a pan-cancer prognosis risk model using ADME genes, which are influenced by low oxygen, to explore HH's impact on overall survival (OS) across various cancers. We constructed and validated the model with gene expression and survival data from 8628 samples, using three gene expression databases. AltitudeOmics confirmed HH's significant effects. We employed single-gene prognostic analysis, weighted gene co-expression network analysis, and stepwise Cox regression to identify biomarkers and refine the model. Drugs interacting with the model were explored using LINCS L1000, AutoDockTools, and STITCH. Eight ADME genes significantly altered by HH were identified, revealing their prognostic value across cancers. The model showed lower risk scores linked to better prognosis in 25 cancers, with reduced overall gene expression and decreased tumor mortality risk. Higher T cell infiltration was observed in the low-risk group. Additionally, three potential drugs to modulate our model were identified. This study presents a novel pan-cancer survival prognosis model based on ADME genes influenced by HH, offering new insights into cancer prevention and treatment.
Collapse
Affiliation(s)
- Shixuan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xiaoxi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Mengzhen Sun
- Zhangjiang Fudan International Innovation Centre, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinrui Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Shiguan Le
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xilu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| | - Zixin Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Wei M, Wang Y, Zhang Y, Qiao Y. Plin5: A potential therapeutic target for type 2 diabetes mellitus. Diabetol Metab Syndr 2025; 17:114. [PMID: 40176076 PMCID: PMC11963521 DOI: 10.1186/s13098-025-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a kind of metabolic disease characterized by aberrant insulin secretion as a result of -cell loss or injury, or by impaired insulin sensitivity of peripheral tissues, which finally results in insulin resistance and a disturbance of glucose and lipid metabolism. Among them, lipid metabolism disorders lead to lipotoxicity through oxidative stress and inflammatory response, destroying the structure and function of tissues and cells. Abnormal lipid metabolism can lead to abnormal insulin signaling and disrupt glucose metabolism through a variety of pathways. Therefore, emphasizing lipid metabolism may be a crucial step in the prevention and treatment of T2DM. Plin5 is a lipid droplet surface protein, which can bi-directionally regulate lipid metabolism and plays an important role in lipolysis and fat synthesis. Plin5 can simultaneously decrease the buildup of free fatty acids in the cytoplasm, improve mitochondrial uptake of free fatty acids, speed up fatty acid oxidation through lipid drops-mitochondria interaction, and lessen lipotoxicity. In oxidative tissues like the heart, liver, and skeletal muscle, Plin5 is extensively expressed. And Plin5 is widely involved in β-cell apoptosis, insulin resistance, oxidative stress, inflammatory response and other pathological processes, which has important implications for exploring the pathogenesis of T2DM. In addition, recent studies have found that Plin5 is also closely related to T2DM and cancer, which provides a new perspective for exploring the relationship between T2DM and cancer.
Collapse
Affiliation(s)
- Mengjuan Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Hindes MT, McElligott AM, Best OG, Ward MP, Selemidis S, Miles MA, Nturubika BD, Gregory PA, Anderson PH, Logan JM, Butler LM, Waugh DJ, O'Leary JJ, Hickey SM, Thurgood LA, Brooks DA. Metabolic reprogramming, malignant transformation and metastasis: Lessons from chronic lymphocytic leukaemia and prostate cancer. Cancer Lett 2025; 611:217441. [PMID: 39755364 DOI: 10.1016/j.canlet.2025.217441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis. This review considers glucose and lipid metabolism in CLL and prostate cancer, exploring their roles in healthy and malignant states and during disease progression. In CLL, lipid metabolism supports cell survival and migration, with aggressive disease characterised by increased fatty acid oxidation and altered sphingolipids. Richter's transformation and aggressive lymphoma, however, exhibit a metabolic shift towards increased glycolysis. Similarly, prostate cell metabolism is unique, relying on citrate production in the healthy state and undergoing metabolic reprogramming during malignant transformation. Early-stage prostate cancer cells increase lipid synthesis and uptake, and decrease glycolysis, whereas metastatic cells re-adopt glucose metabolism, likely driven by interactions with the tumour microenvironment. Genetic drivers including TP53 and ATM mutations connect metabolic alterations to disease severity in these two malignancies. The bone microenvironment supports the metabolic demands of these malignancies, serving as an initiation niche for CLL and a homing site for prostate cancer metastases. By comparing these malignancies, this review underscores the importance of metabolic plasticity in cancer progression and highlights how CLL and prostate cancer may be models of circulating and solid tumours more broadly. The metabolic phenotypes throughout cancer cell transformation and metastasis, and the microenvironment in which these processes occur, present opportunities for interventions that could disrupt metastatic processes and improve patient outcomes.
Collapse
Affiliation(s)
- Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Anthony M McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Bukuru D Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David J Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
4
|
Shen XH, Xiong SP, Wang SP, Lu S, Wan YY, Zhang HQ. Mutation on JmjC domain of UTX impaired its antitumor effects in pancreatic cancer via inhibiting G0S2 expression and activating the Toll-like signaling pathway. Mol Med 2024; 30:258. [PMID: 39707168 DOI: 10.1186/s10020-024-01023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recently, the incidence of pancreatic cancer (PC) has gradually increased. Research has shown that UTX mutants are critical in tumors. However, the underlying mechanisms remain incompletely understood. This study aimed to explore how UTX mutation would affect its related function in PC. METHOD Exome sequencing was used to analyze PC samples. MTT, transwell, and colony formation assays were performed to determine the cellular functions of PC cells. qRT-PCR, Western Blot, TUNEL, immunohistochemistry, CHIP, bioinformatics, and xenograft experiments were used to investigate the mechanism of UTX mutants in PC in vitro and in vivo. RESULTS We compared exome sequencing data from 12 PC samples and found a UTX missense mutation on the JmjC structure. Through cellular functions and xenograft experiments, wild-type UTX was found to significantly inhibit PC malignant progression in vitro and in vivo, while UTX mutation notably impaired this effect. Furthermore, G0S2 was identified as the key target gene for UTX, and wild-type UTX significantly increased its expression, while mutant one lost this function to a certain extent both in vitro and in vivo. More importantly, G0S2 overexpression not only inhibited tumor malignant phenotype and drug resistance for Gemcitabine in PC but also effectively reversed the roles of UTX mutant with Toll-like signaling pathway involved. In terms of mechanism, UTX mutation elevated the H3K27me3 modification level of the G0S2 promoter, which decreased its expression in PC cells. CONCLUSION In conclusion, UTX mutant weakened the antitumor effect of wild-type UTX in PC by inhibiting G0S2 expression and activating the Toll-like signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hua Shen
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Shu-Ping Xiong
- The Second Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Sheng-Peng Wang
- The Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shan Lu
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Yi-Ye Wan
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Hui-Qing Zhang
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China.
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, 330029, People's Republic of China.
| |
Collapse
|
5
|
Zhao J, Guo C, Cheng M, Li J, Liu Y, Wang H, Shen J. Identification of transcription factor-lipid droplet-related gene biomarkers for the prognosis of post-acute myocardial infarction-induced heart failure. Front Cardiovasc Med 2024; 11:1429387. [PMID: 39726946 PMCID: PMC11669577 DOI: 10.3389/fcvm.2024.1429387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Patients with acute myocardial infarction (AMI) are at high risk of progressing to heart failure (HF). Recent research has shown that lipid droplet-related genes (LDRGs) play a crucial role in myocardial metabolism following MI, thereby influencing the progression to HF. Methods Weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were used to screen a transcriptome dataset of whole blood cells from AMI patients with (AMI HF, n = 16) and without progression (AMI no-HF, n = 16). Functional enrichment analysis were performed to observe the involved function. Machine learning methods were used to screen the genes related to prognosis. Transcriptional factors (TF) were predicted by using relevant databases. ROC curves were drawn to evaluate the TF-LDRG pair in predicting HF in the validation dataset (n = 16) and the clinical trial (n = 13). Results The 235 identified genes were primarily involved in pathways related to fatty acid and energy metabolism. 22 genes were screened out that they were strongly associated with prognosis. 35 corresponding transcription factors were predicted. The TF-LDRG pair, ABHD5-ARID3a, was demonstrated good predictive accuracy. Discussion Our findings suggest that ABHD5-ARID3a have significant potential as predictive biomarkers for heart failure post-AMI which also provides a foundation for further exploration into the molecular mechanisms underlying the progression from AMI to HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianping Shen
- Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Suresh A, Ramasamy R, Kallumpurath D, Solomon RV. Optimizing 2-furylated imidazole π-bridges for NIR lipid droplet imaging. Phys Chem Chem Phys 2024; 26:23032-23052. [PMID: 39172096 DOI: 10.1039/d4cp02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Lipid droplets (LDs) are globular biological organelles found in the human body, essential for lipid storage, homeostasis, energy reserve, cellular stress response, membrane biogenesis, and cellular signaling. Dysregulated accumulation of LDs leads to various diseases, including breast and liver cancers. Therefore, the development of diagnostic tools for monitoring LDs using suitable probes for bio-imaging applications is imperative. However, identifying promising probes with near-infrared emission characteristics is still a challenging and intriguing task, requiring extensive exploration of the structure-emission property relationship to design efficient probes for LDs. In this context, we envision the impact of 2-furylated imidazole as a π-bridge and have designed nine LD probes by substituting it with electron-releasing groups like CH3, NH2, NH(CH3), and N(CH3)2 at the 3rd and 4th positions via DFT, TD-DFT, FMO, ESP, NCI, and QTAIM analyses. Our results demonstrate that LDP7 with NH(CH3) at the 3rd position is the most promising molecule, exhibiting the highest emission maxima (772.02 nm) with a lower HOMO-LUMO gap, suggesting its suitability for a range of biomedical applications. An enhancement of ∼200 nm is achieved through tailoring the molecular structure using the designed 2-furylated imidazole-derived π-bridge. ADMET and molecular docking analysis followed by molecular dynamics simulations with the human pyruvate kinase protein reveal these LDPs' bioavailability, binding ability and their stability towards their bio-imaging applications. In summary, our study offers valuable insights to aid researchers in developing and refining various π-linkers for lipid droplet bio-imaging applications.
Collapse
Affiliation(s)
- Anamika Suresh
- Department of Chemistry, R.S.M. SNDP Yogam College, [Affiliated to the University of Calicut], Kozhikode - 673 305, Kerala, India
| | - Rohith Ramasamy
- Department of Chemistry, Madras Christian College (Autonomous), [Affiliated to the University of Madras], Chennai - 600 059, Tamil Nadu, India.
| | - Deepa Kallumpurath
- Department of Chemistry, R.S.M. SNDP Yogam College, [Affiliated to the University of Calicut], Kozhikode - 673 305, Kerala, India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), [Affiliated to the University of Madras], Chennai - 600 059, Tamil Nadu, India.
| |
Collapse
|
7
|
Brugiapaglia S, Bulfamante S, Curcio C, Arigoni M, Calogero R, Bonello L, Genuardi E, Spadi R, Satolli MA, Campra D, Giordano D, Cappello P, Cordero F, Novelli F. In pancreatic cancer patients, chemotherapy reshapes the gene expression profile and antigen receptor repertoire of T lymphocytes and enhances their effector response to tumor-associated antigens. Front Immunol 2024; 15:1427424. [PMID: 39176093 PMCID: PMC11339620 DOI: 10.3389/fimmu.2024.1427424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Pancreatic Ductal Adenocarcinoma (PDA) is one of the most aggressive malignancies with a 5-year survival rate of 13%. Less than 20% of patients have a resectable tumor at diagnosis due to the lack of distinctive symptoms and reliable biomarkers. PDA is resistant to chemotherapy (CT) and understanding how to gain an anti-tumor effector response following stimulation is, therefore, critical for setting up an effective immunotherapy. Methods Proliferation, and cytokine release and TCRB repertoire of from PDA patient peripheral T lymphocytes, before and after CT, were analyzed in vitro in response to four tumor-associated antigens (TAA), namely ENO1, FUBP1, GAPDH and K2C8. Transcriptional state of PDA patient PBMC was investigated using RNA-Seq before and after CT. Results CT increased the number of TAA recognized by T lymphocytes, which positively correlated with patient survival, and high IFN-γ production TAA-induced responses were significantly increased after CT. We found that some ENO1-stimulated T cell clonotypes from CT-treated patients were expanded or de-novo induced, and that some clonotypes were reduced or even disappeared after CT. Patients that showed a higher number of effector responses to TAA (high IFN-γ/IL-10 ratio) after CT expressed increased fatty acid-related transcriptional signature. Conversely, patients that showed a higher number of regulatory responses to TAA (low IFN-γ/IL-10 ratio) after CT significantly expressed an increased IRAK1/IL1R axis-related transcriptional signature. Conclusion These data suggest that the expression of fatty acid or IRAK1/IL1Rrelated genes predicts T lymphocyte effector or regulatory responses to TAA in patients that undergo CT. These findings are a springboard to set up precision immunotherapies in PDA based on the TAA vaccination in combination with CT.
Collapse
MESH Headings
- Humans
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Male
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Carcinoma, Pancreatic Ductal/therapy
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Female
- Transcriptome
- Aged
- Middle Aged
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Expression Profiling
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lisa Bonello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisa Genuardi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Rosella Spadi
- Centro Oncologico Ematologico Subalpino, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Turin, Italy
| | - Donata Campra
- Struttura Complessa (SC) Chirurgia generale d’urgenza e pronto soccorso, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Turin, Italy
| | - Daniele Giordano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | | | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| |
Collapse
|
8
|
García-Montero C, Fraile-Martinez O, Cobo-Prieto D, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Pekarek L, Gragera R, Hernández-Fernández M, Guijarro LG, Toledo-Lobo MDV, López-González L, Díaz-Pedrero R, Monserrat J, Álvarez-Mon M, Saez MA, Ortega MA. Abnormal Histopathological Expression of Klotho, Ferroptosis, and Circadian Clock Regulators in Pancreatic Ductal Adenocarcinoma: Prognostic Implications and Correlation Analyses. Biomolecules 2024; 14:947. [PMID: 39199335 PMCID: PMC11353028 DOI: 10.3390/biom14080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal tumor with increasing incidence, presenting numerous clinical challenges. The histopathological examination of novel, unexplored biomarkers offers a promising avenue for research, with significant translational potential for improving patient outcomes. In this study, we evaluated the prognostic significance of ferroptosis markers (TFRC, ALOX-5, ACSL-4, and GPX-4), circadian clock regulators (CLOCK, BMAL1, PER1, PER2), and KLOTHO in a retrospective cohort of 41 patients deceased by PDAC. Immunohistochemical techniques (IHC) and multiple statistical analyses (Kaplan-Meier curves, correlograms, and multinomial linear regression models) were performed. Our findings reveal that ferroptosis markers are directly associated with PDAC mortality, while circadian regulators and KLOTHO are inversely associated. Notably, TFRC emerged as the strongest risk marker associated with mortality (HR = 35.905), whereas CLOCK was identified as the most significant protective marker (HR = 0.01832). Correlation analyses indicate that ferroptosis markers are positively correlated with each other, as are circadian regulators, which also positively correlate with KLOTHO expression. In contrast, KLOTHO and circadian regulators exhibit inverse correlations with ferroptosis markers. Among the clinical variables examined, only the presence of chronic pathologies showed an association with the expression patterns of several proteins studied. These findings underscore the complexity of PDAC pathogenesis and highlight the need for further research into the specific molecular mechanisms driving disease progression.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Raquel Gragera
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
| | - Mauricio Hernández-Fernández
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - María Del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| |
Collapse
|
9
|
Tong J, Wang Q, Gao Z, Liu Y, Lu C. VMP1: a multifaceted regulator of cellular homeostasis with implications in disease pathology. Front Cell Dev Biol 2024; 12:1436420. [PMID: 39100095 PMCID: PMC11294092 DOI: 10.3389/fcell.2024.1436420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Vacuole membrane protein 1 (VMP1) is an integral membrane protein that plays a pivotal role in cellular processes, particularly in the regulation of autophagy. Autophagy, a self-degradative mechanism, is essential for maintaining cellular homeostasis by degradation and recycling damaged organelles and proteins. VMP1 involved in the autophagic processes include the formation of autophagosomes and the subsequent fusion with lysosomes. Moreover, VMP1 modulates endoplasmic reticulum (ER) calcium levels, which is significant for various cellular functions, including protein folding and cellular signaling. Recent studies have also linked VMP1 to the cellular response against viral infections and lipid droplet (LD). Dysregulation of VMP1 has been observed in several pathological conditions, including neurodegenerative diseases such as Parkinson's disease (PD), pancreatitis, hepatitis, and tumorogenesis, underscoring its potential as a therapeutic target. This review aims to provide an overview of VMP1's multifaceted roles and its implications in disease pathology.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry (Xinxiang Medical University), The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
10
|
Li F, Han M, Gao X, Du X, Jiang C. APOA1 mRNA and serum APOA1 protein as diagnostic and prognostic biomarkers in gastric cancer. Transl Cancer Res 2024; 13:2141-2154. [PMID: 38881912 PMCID: PMC11170536 DOI: 10.21037/tcr-23-1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024]
Abstract
Background Gastric cancer (GC) remains a formidable challenge in oncology, ranking as a leading cause of cancer mortality globally. This underscores an urgent need for innovative prognostic markers that can revolutionize patient management and outcomes. Recent insights into cancer biology have spotlighted the profound influence of lipid metabolism alterations on tumorigenesis, tumor progression, and the tumor microenvironment. These alterations not only fuel cancer cell growth and proliferation but also play a strategic role in evading immune surveillance and promoting metastasis. The intricate web of lipid metabolism in cancer cells, characterized by deregulated uptake, synthesis, and oxidation of fatty acids (FAs), opens new avenues for targeted therapeutic interventions and prognostic evaluations. Specifically, this study zeroes in on apolipoprotein A-I (APOA1), a key player in lipid metabolism, to unearth its prognostic value in GC. By delving into the role of lipid metabolism-related genes, particularly APOA1, we aim to unveil their potential as groundbreaking biomarkers for GC prognosis. This endeavor not only aims to enhance our understanding of the molecular underpinnings of GC but also to spearhead the development of lipid metabolism-based strategies for improved diagnostic, prognostic, and therapeutic outcomes. Methods Transcriptomic and clinical data from GC patients and healthy individuals were sourced from The Cancer Genome Atlas (TCGA) database, a comprehensive project that molecularly characterizes over 20,000 primary cancer and matched normal samples across 33 cancer types. Significantly differentially expressed lipid metabolism-related genes were identified using the "limma" package in R. Prognostic genes were selected via univariate Cox regression analysis. Differential gene enrichment analysis was performed using Metascape (http://www.metascape.org). The Human Protein Atlas (HPA, https://www.proteinatlas.org) provided information on APOA1 protein expression in GC and healthy tissues. Immune cell infiltration was analyzed using the CIBERSORT algorithm (http://cibersort.stanford.edu). Results Significant differences in lipid metabolism-related gene expression were observed between GC and normal tissues, closely linked to FA metabolism, oxidoreductase activity, and sphingolipid metabolism. APOA1 emerged as a potential prognostic biomarker by intersecting prognostic and differentially expressed lipid metabolism genes. Immunohistochemical analysis confirmed APOA1 downregulation in GC. The receiver operating characteristic (ROC) analysis demonstrated its predictive value, with the area under the curve (AUC) being 0.64 [95% confidence interval (CI): 0.52-0.76]. APOA1 expression correlated with immune cell infiltrations. Clinical serum APOA1 results revealed lower levels in GC patients (1.38 vs. 1.26; P<0.05), associated with poor prognosis (hazard ratio =1.50; P<0.001) and clinical characteristics. ROC analysis of serum APOA1 demonstrated good diagnostic ability (AUC: 0.63, 95% CI: 0.61-0.65). Serum APOA1 levels significantly increased after treatment. Conclusions This study highlights lipid metabolism reprogramming in GC and identifies APOA1 as a potential diagnostic and prognostic biomarker, suggesting its clinical utility in managing GC.
Collapse
Affiliation(s)
- Fangfei Li
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mei Han
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyun Gao
- Department of Geriatric, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xuan Du
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chunmeng Jiang
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
12
|
Liang W, Zhou Z, Gao Q, Zhu Z, Zhu J, Lin J, Wen Y, Qian F, Wang L, Zhai Y, Lv J, Zhang H, Zhong F, Du H. Tumor-derived Prevotella intermedia aggravates gastric cancer by enhancing Perilipin 3 expression. Cancer Sci 2024; 115:1141-1153. [PMID: 38287724 PMCID: PMC11007001 DOI: 10.1111/cas.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
The indigenous microbial milieu within tumorous tissues exerts a pivotal influence on the genesis and advancement of gastric cancer (GC). This investigation scrutinizes the functions and molecular mechanisms attributed to Prevotella intermedia in the malignant evolution of GC. Isolation of P. intermedia from paired GC tissues was undertaken. Quantification of P. intermedia abundance in 102 tissues was accomplished using quantitative real-time PCR (qRT-PCR). Assessment of the biological effects of P. intermedia on GC cells was observed using culture medium supernatant. Furthermore, the protein profile of GC cells treated with tumor-derived P. intermedia was examined through label-free protein analysis. The functionality of perilipin 3 (PLIN3) was subsequently confirmed using shRNA. Our investigation revealed that the relative abundance of P. intermedia in tumor tissues significantly surpassed that of corresponding healthy tissues. The abundance of P. intermedia exhibited correlations with tumor differentiation (p = 0.006), perineural invasion (p = 0.004), omentum majus invasion (p = 0.040), and the survival duration of GC patients (p = 0.042). The supernatant derived from tumor-associated P. intermedia bolstered the proliferation, clone formation, migration, and invasion of GC cells. After indirect co-cultivation with tumor-derived P. intermedia, dysregulation of 34 proteins, including PLIN3, was discerned in GC cells. Knockdown of PLIN3 mitigated the malignancy instigated by P. intermedia in GC cells. Our findings posit that P. intermedia from the tumor microenvironment plays a substantial role in the malignant progression of GC via the modulation of PLIN3 expression. Moreover, the relative abundance of P. intermedia might serve as a potential biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Wei Liang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Zhengyang Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Qizhao Gao
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhichen Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jie Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jiayao Lin
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yicheng Wen
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Feinan Qian
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Liang Wang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yaxuan Zhai
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jingnan Lv
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haifang Zhang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Fengyun Zhong
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hong Du
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
13
|
Hong SJ, Hou JU, Chung MJ, Kang SH, Shim BS, Lee SL, Park DH, Choi A, Oh JY, Lee KJ, Shin E, Cho E, Park SW. Convolutional neural network model for automatic recognition and classification of pancreatic cancer cell based on analysis of lipid droplet on unlabeled sample by 3D optical diffraction tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 246:108041. [PMID: 38325025 DOI: 10.1016/j.cmpb.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Pancreatic cancer cells generally accumulate large numbers of lipid droplets (LDs), which regulate lipid storage. To promote rapid diagnosis, an automatic pancreatic cancer cell recognition system based on a deep convolutional neural network was proposed in this study using quantitative images of LDs from stain-free cytologic samples by optical diffraction tomography. METHODS We retrieved 3D refractive index tomograms and reconstructed 37 optical images of one cell. From the four cell lines, the obtained fields were separated into training and test datasets with 10,397 and 3,478 images, respectively. Furthermore, we adopted several machine learning techniques based on a single image-based prediction model to improve the performance of the computer-aided diagnostic system. RESULTS Pancreatic cancer cells had a significantly lower total cell volume and dry mass than did normal pancreatic cells and were accompanied by greater numbers of lipid droplets (LDs). When evaluating multitask learning techniques utilizing the EfficientNet-b3 model through confusion matrices, the overall 2-category accuracy for cancer classification reached 96.7 %. Simultaneously, the overall 4-category accuracy for individual cell line classification achieved a high accuracy of 96.2 %. Furthermore, when we added the core techniques one by one, the overall performance of the proposed technique significantly improved, reaching an area under the curve (AUC) of 0.997 and an accuracy of 97.06 %. Finally, the AUC reached 0.998 through the ablation study with the score fusion technique. DISCUSSION Our novel training strategy has significant potential for automating and promoting rapid recognition of pancreatic cancer cells. In the near future, deep learning-embedded medical devices will substitute laborious manual cytopathologic examinations for sustainable economic potential.
Collapse
Affiliation(s)
- Seok Jin Hong
- Department of Otolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Uk Hou
- School of Software, Hallym University, Chuncheon, Republic of Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hun Kang
- Department of Otolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo-Seok Shim
- School of Software, Hallym University, Chuncheon, Republic of Korea
| | - Seung-Lee Lee
- School of Software, Hallym University, Chuncheon, Republic of Korea
| | - Da Hae Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do 18450, Republic of Korea
| | - Anna Choi
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do 18450, Republic of Korea
| | - Jae Yeon Oh
- Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Kyong Joo Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do 18450, Republic of Korea
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Eunae Cho
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do 18450, Republic of Korea.
| |
Collapse
|
14
|
Renna FJ, Gonzalez CD, Vaccaro MI. Decoding the Versatile Landscape of Autophagic Protein VMP1 in Cancer: A Comprehensive Review across Tissue Types and Regulatory Mechanisms. Int J Mol Sci 2024; 25:3758. [PMID: 38612567 PMCID: PMC11011780 DOI: 10.3390/ijms25073758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
| | - Claudio D. Gonzalez
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| |
Collapse
|
15
|
Deng B, Kong W, Shen X, Han C, Zhao Z, Chen S, Zhou C, Bae-Jump V. The role of DGAT1 and DGAT2 in regulating tumor cell growth and their potential clinical implications. J Transl Med 2024; 22:290. [PMID: 38500157 PMCID: PMC10946154 DOI: 10.1186/s12967-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid metabolism is widely reprogrammed in tumor cells. Lipid droplet is a common organelle existing in most mammal cells, and its complex and dynamic functions in maintaining redox and metabolic balance, regulating endoplasmic reticulum stress, modulating chemoresistance, and providing essential biomolecules and ATP have been well established in tumor cells. The balance between lipid droplet formation and catabolism is critical to maintaining energy metabolism in tumor cells, while the process of energy metabolism affects various functions essential for tumor growth. The imbalance of synthesis and catabolism of fatty acids in tumor cells leads to the alteration of lipid droplet content in tumor cells. Diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2, the enzymes that catalyze the final step of triglyceride synthesis, participate in the formation of lipid droplets in tumor cells and in the regulation of cell proliferation, migration and invasion, chemoresistance, and prognosis in tumor. Several diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 inhibitors have been developed over the past decade and have shown anti-tumor effects in preclinical tumor models and improvement of metabolism in clinical trials. In this review, we highlight key features of fatty acid metabolism and different paradigms of diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 activities on cell proliferation, migration, chemoresistance, and prognosis in tumor, with the hope that these scientific findings will have potential clinical implications.
Collapse
Affiliation(s)
- Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chao Han
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Salgado I, Prado Montes de Oca E, Chairez I, Figueroa-Yáñez L, Pereira-Santana A, Rivera Chávez A, Velázquez-Fernandez JB, Alvarado Parra T, Vallejo A. Deep Learning Techniques to Characterize the RPS28P7 Pseudogene and the Metazoa- SRP Gene as Drug Potential Targets in Pancreatic Cancer Patients. Biomedicines 2024; 12:395. [PMID: 38397997 PMCID: PMC11154313 DOI: 10.3390/biomedicines12020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 02/25/2024] Open
Abstract
The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death patients. We deployed a deep learning algorithm and analyzed the gene copy number, gene expression, and protein expression data of death versus alive PaCa patients from the GDC cohort. The genes with higher relative amplification (copy number >4 times in the dead compared with the alive group) were EWSR1, FLT3, GPC3, HIF1A, HLF, and MEN1. The most highly up-regulated genes (>8.5-fold change) in the death group were RPL30, RPL37, RPS28P7, RPS11, Metazoa_SRP, CAPNS1, FN1, H3-3B, LCN2, and OAZ1. None of their corresponding proteins were up or down-regulated in the death group. The mRNA of the RPS28P7 pseudogene could act as ceRNA sponging the miRNA that was originally directed to the parental gene RPS28. We propose RPS28P7 mRNA as the most druggable target that can be modulated with small molecules or the RNA technology approach. These markers could be added as criteria to patient stratification in future PaCa drug trials, but further validation in the target populations is encouraged.
Collapse
Affiliation(s)
- Iván Salgado
- Medical Robotics and Biosignals Laboratory, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional (IPN), Mexico City 07700, Mexico;
| | - Ernesto Prado Montes de Oca
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico; (A.R.C.); (T.A.P.)
| | - Isaac Chairez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Jalisco, Mexico;
| | - Luis Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (L.F.-Y.); (A.P.-S.)
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (L.F.-Y.); (A.P.-S.)
| | - Andrés Rivera Chávez
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico; (A.R.C.); (T.A.P.)
| | | | - Teresa Alvarado Parra
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico; (A.R.C.); (T.A.P.)
| | - Adriana Vallejo
- Unidad de Biotecnología Médica y Farmacéutica, CONACYT-Centro de Investigación y Asistencia en Tecnologia y Diseño del Estado de Jalisco AC, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
17
|
Salgado I, Prado Montes de Oca E, Chairez I, Figueroa-Yáñez L, Pereira-Santana A, Rivera Chávez A, Velázquez-Fernandez JB, Alvarado Parra T, Vallejo A. Deep Learning Techniques to Characterize the RPS28P7 Pseudogene and the Metazoa-SRP Gene as Drug Potential Targets in Pancreatic Cancer Patients. Biomedicines 2024; 12:395. [DOI: https:/doi.org/10.3390/biomedicines12020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death patients. We deployed a deep learning algorithm and analyzed the gene copy number, gene expression, and protein expression data of death versus alive PaCa patients from the GDC cohort. The genes with higher relative amplification (copy number >4 times in the dead compared with the alive group) were EWSR1, FLT3, GPC3, HIF1A, HLF, and MEN1. The most highly up-regulated genes (>8.5-fold change) in the death group were RPL30, RPL37, RPS28P7, RPS11, Metazoa_SRP, CAPNS1, FN1, H3−3B, LCN2, and OAZ1. None of their corresponding proteins were up or down-regulated in the death group. The mRNA of the RPS28P7 pseudogene could act as ceRNA sponging the miRNA that was originally directed to the parental gene RPS28. We propose RPS28P7 mRNA as the most druggable target that can be modulated with small molecules or the RNA technology approach. These markers could be added as criteria to patient stratification in future PaCa drug trials, but further validation in the target populations is encouraged.
Collapse
Affiliation(s)
- Iván Salgado
- Medical Robotics and Biosignals Laboratory, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional (IPN), Mexico City 07700, Mexico
| | - Ernesto Prado Montes de Oca
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico
| | - Isaac Chairez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Jalisco, Mexico
| | - Luis Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Andrés Rivera Chávez
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico
| | | | - Teresa Alvarado Parra
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico
| | - Adriana Vallejo
- Unidad de Biotecnología Médica y Farmacéutica, CONACYT-Centro de Investigación y Asistencia en Tecnologia y Diseño del Estado de Jalisco AC, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
18
|
Zhang Z, Zhao C, Yang S, Lu W, Shi J. A novel lipid metabolism-based risk model associated with immunosuppressive mechanisms in diffuse large B-cell lymphoma. Lipids Health Dis 2024; 23:20. [PMID: 38254162 PMCID: PMC10801940 DOI: 10.1186/s12944-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The molecular diversity exhibited by diffuse large B-cell lymphoma (DLBCL) is a significant obstacle facing current precision therapies. However, scoring using the International Prognostic Index (IPI) is inadequate when fully predicting the development of DLBCL. Reprogramming lipid metabolism is crucial for DLBCL carcinogenesis and expansion, while a predictive approach derived from lipid metabolism-associated genes (LMAGs) has not yet been recognized for DLBCL. METHODS Gene expression profiles of DLBCL were generated using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The LASSO Cox regression was used to construct an effective predictive risk-scoring model for DLBCL patients. The Kaplan-Meier survival assessment was employed to compare a given risk score with the IPI score and its impact on the survival of DLBCL patients. Functional enrichment examination was performed utilizing the KEGG pathway. After identifying hub genes via single-sample GSEA (ssGSEA), immunohistochemical staining and immunofluorescence were performed on lymph node samples from control and DLBCL patients to confirm these identified genes. RESULTS Sixteen lipid metabolism- and survival-associated genes were identified to construct a prognostic risk-scoring approach. This model demonstrated robust performance over various datasets and emerged as an autonomous risk factor for predicting the development of DLBCL patients. The risk score could significantly distinguish the development of DLBCL patients from the low-risk and elevated-risk IPI classes. Results from the inhibitory immune-related pathways and lower immune scores suggested an immunosuppressive phenotype within the elevated-risk group. Three hub genes, MECR, ARSK, and RAN, were identified to be negatively correlated with activated CD8 T cells and natural killer T cells in the elevated-risk score class. Ultimately, it was determined that these three genes were expressed by lymphoma cells but not by T cells in clinical samples from DLBCL patients. CONCLUSION The risk level model derived from 16 lipid metabolism-associated genes represents a prognostic biomarker for DLBCL that is novel, robust, and may have an immunosuppressive role. It can compensate for the limitations of the IPI score in predicting overall survival and has potential clinical application value.
Collapse
Affiliation(s)
- Zhaoli Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Yang F, He Y, Ge N, Guo J, Yang F, Sun S. Exploring KRAS-mutant pancreatic ductal adenocarcinoma: a model validation study. Front Immunol 2024; 14:1203459. [PMID: 38268915 PMCID: PMC10805828 DOI: 10.3389/fimmu.2023.1203459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all solid tumors. Tumorigenesis is promoted by the oncogene KRAS, and KRAS mutations are prevalent in patients with PDAC. Therefore, a comprehensive understanding of the interactions between KRAS mutations and PDAC may expediate the development of therapeutic strategies for reversing the progression of malignant tumors. Our study aims at establishing and validating a prediction model of KRAS mutations in patients with PDAC based on survival analysis and mRNA expression. Methods A total of 184 and 412 patients with PDAC from The Cancer Genome Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC), respectively, were included in the study. Results After tumor mutation profile and copy number variation (CNV) analyses, we established and validated a prediction model of KRAS mutations, based on survival analysis and mRNA expression, that contained seven genes: CSTF2, FAF2, KIF20B, AKR1A1, APOM, KRT6C, and CD70. We confirmed that the model has a good predictive ability for the prognosis of overall survival (OS) in patients with KRAS-mutated PDAC. Then, we analyzed differential biological pathways, especially the ferroptosis pathway, through principal component analysis, pathway enrichment analysis, Gene Ontology (GO) enrichment analysis, and gene set enrichment analysis (GSEA), with which patients were classified into low- or high-risk groups. Pathway enrichment results revealed enrichment in the cytokine-cytokine receptor interaction, metabolism of xenobiotics by cytochrome P450, and viral protein interaction with cytokine and cytokine receptor pathways. Most of the enriched pathways are metabolic pathways predominantly enriched by downregulated genes, suggesting numerous downregulated metabolic pathways in the high-risk group. Subsequent tumor immune infiltration analysis indicated that neutrophil infiltration, resting CD4 memory T cells, and resting natural killer (NK) cells correlated with the risk score. After verifying that the seven gene expression levels in different KRAS-mutated pancreatic cancer cell lines were similar to that in the model, we screened potential drugs related to the risk score. Discussion This study established, analyzed, and validated a model for predicting the prognosis of PDAC based on risk stratification according to KRAS mutations, and identified differential pathways and highly effective drugs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, United States
| | - Nan Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Hussain Z, Bertran T, Finetti P, Lohmann E, Mamessier E, Bidaut G, Bertucci F, Rego M, Tomasini R. Macrophages reprogramming driven by cancer-associated fibroblasts under FOLFIRINOX treatment correlates with shorter survival in pancreatic cancer. Cell Commun Signal 2024; 22:1. [PMID: 38167013 PMCID: PMC10759487 DOI: 10.1186/s12964-023-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a clinically challenging cancer, mainly due to limited therapeutic options and the presence of a highly prominent tumor microenvironment (TME), facilitating tumor progression. The TME is predominated by heterogeneous populations of cancer-associated fibroblasts (CAFs) and tumor associated macrophages (TAMs), in constant communication with each other and with tumor cells, influencing many tumoral abilities such as therapeutic resistance. However how the crosstalk between CAFs and macrophages evolves following chemotherapeutic treatment remains poorly understood, limiting our capacity to halt therapeutic resistance. METHODS We combined biological characterization of macrophages indirectly cocultured with human PDAC CAFs, under FOLFIRINOX treatment, with mRNAseq analyses of such macrophages and evaluated the relevance of the specific gene expression signature in a large series of primary PDAC patients to search for correlation with overall survival (OS) after FOLFIRINOX chemotherapy. RESULTS Firstly, we demonstrated that CAFs polarize naïve and M1 macrophages towards an M2-like phenotype with a specific increase of CD200R and CD209 M2 markers. Then, we demonstrated that CAFs counteract the pro-inflammatory phenotype induced by the FOLFIRINOX on Macrophages. Indeed, we highlighted that, under FOLFIRINOX, CAFs limit the FOLFIRINOX-induced cell death of macrophages and further reinforce their M2 phenotype as well as their immunosuppressive impact through specific chemokines production. Finally, we revealed that under FOLFIRINOX CAFs drive a specific macrophage gene expression signature involving SELENOP and GOS2 that correlates with shortened OS in FOLFIRINOX-treated PDAC patients. CONCLUSION Our study provides insight into the complex interactions between TME cells under FOLFIRINOX treatment. It suggests potential novel candidates that could be used as therapeutic targets in combination with FOLFIRINOX to prevent and alleviate TME influx on therapeutic resistance as well as biomarkers to predict FOLFIRINOX response in PDAC patients. Video Abstract.
Collapse
Affiliation(s)
- Zainab Hussain
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Thomas Bertran
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Eugenie Lohmann
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Emilie Mamessier
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Ghislain Bidaut
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - François Bertucci
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Moacyr Rego
- Therapeutic Innovation Center, Federal University of Pernambuco, Recife, Brazil
| | - Richard Tomasini
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France.
| |
Collapse
|
21
|
Bai YT, Wang X, He MJ, Xie JR, Chen XJ, Zhou G. The Potential of Lipid Droplet-associated Genes as Diagnostic and Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:136-147. [PMID: 36998140 DOI: 10.2174/1386207326666230328123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE The role of lipid droplets (LDs) and lipid droplet-associated genes (LD-AGs) remains unclear in head and neck squamous cell carcinoma (HNSCC). This study aimed to investigate LDs in HNSCC and identify LD-AGs essential for the diagnosis and prognosis of HNSCC patients. METHODS The LDs in the HNSCC and normal cell lines were stained with oil red O. Bioinformatic analysis was used to find LD-AGs in HNSCC that had diagnostic and prognostic significance. RESULTS LDs accumulation was increased in HNSCC cell lines compared with normal cell lines (P<0.05). Fifty-three differentially expressed genes, including 34 upregulated and 19 downregulated, were found in HNSCC based on the TCGA platform (P<0.05). Then, 53 genes were proved to be functionally enriched in lipid metabolism and LDs. Among them, with an AUC value > 0.7, 34 genes demonstrated a high predictive power. Six genes (AUP1, CAV1, CAV2, CAVIN1, HILPDA, and SQLE) out of 34 diagnostic genes were linked to overall survival in patients with HNSCC (P<0.05). The significant prognostic factors AUP1, CAV1, CAV2, and SQLE were further identified using the univariate and multivariate cox proportional hazard models (P<0.05). The protein expression of CAV2 and SQLE was significantly increased in the HNSCC tissue compared to normal tissues (P<0.05). Finally, the knockdown of the four LD-AGs decreased LDs accumulation, respectively. CONCLUSIONS Increased LDs accumulation was a hallmark of HNSCC, and AUP1, CAV1, CAV2, and SQLE were discovered as differentially expressed LD-AGs with diagnostic and prognostic potential in HNSCC.
Collapse
Affiliation(s)
- Yu-Ting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Ming-Jing He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Ji-Rong Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
22
|
Li Y, Amrutkar M, Finstadsveen AV, Dalen KT, Verbeke CS, Gladhaug IP. Fatty acids abrogate the growth-suppressive effects induced by inhibition of cholesterol flux in pancreatic cancer cells. Cancer Cell Int 2023; 23:276. [PMID: 37978383 PMCID: PMC10657020 DOI: 10.1186/s12935-023-03138-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Despite therapeutic advances, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. Metabolic reprogramming is increasingly recognized as a key contributor to tumor progression and therapy resistance in PDAC. One of the main metabolic changes essential for tumor growth is altered cholesterol flux. Targeting cholesterol flux appears an attractive therapeutic approach, however, the complex regulation of cholesterol balance in PDAC cells remains poorly understood. METHODS The lipid content in human pancreatic duct epithelial (HPDE) cells and human PDAC cell lines (BxPC-3, MIA PaCa-2, and PANC-1) was determined. Cells exposed to eight different inhibitors targeting different regulators of lipid flux, in the presence or absence of oleic acid (OA) stimulation were assessed for changes in viability, proliferation, migration, and invasion. Intracellular content and distribution of cholesterol was assessed. Lastly, proteome profiling of PANC-1 exposed to the sterol O-acyltransferase 1 (SOAT1) inhibitor avasimibe, in presence or absence of OA, was performed. RESULTS PDAC cells contain more free cholesterol but less cholesteryl esters and lipid droplets than HPDE cells. Exposure to different lipid flux inhibitors increased cell death and suppressed proliferation, with different efficiency in the tested PDAC cell lines. Avasimibe had the strongest ability to suppress proliferation across the three PDAC cell lines. All inhibitors showing cell suppressive effect disturbed intracellular cholesterol flux and increased cholesterol aggregation. OA improved overall cholesterol balance, reduced free cholesterol aggregation, and reversed cell death induced by the inhibitors. Treatment with avasimibe changed the cellular proteome substantially, mainly for proteins related to biosynthesis and metabolism of lipids and fatty acids, apoptosis, and cell adhesion. Most of these changes were restored by OA. CONCLUSIONS The study reveals that disturbing the cholesterol flux by inhibiting the actions of its key regulators can yield growth suppressive effects on PDAC cells. The presence of fatty acids restores intracellular cholesterol balance and abrogates the alternations induced by cholesterol flux inhibitors. Taken together, targeting cholesterol flux might be an attractive strategy to develop new therapeutics against PDAC. However, the impact of fatty acids in the tumor microenvironment must be taken into consideration.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, The Norwegian Transgenic Center, University of Oslo, Oslo, Norway
| | - Caroline S Verbeke
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
23
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
24
|
Rebelo A, Kleeff J, Sunami Y. Cholesterol Metabolism in Pancreatic Cancer. Cancers (Basel) 2023; 15:5177. [PMID: 37958351 PMCID: PMC10650553 DOI: 10.3390/cancers15215177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic cancer's substantial impact on cancer-related mortality, responsible for 8% of cancer deaths and ranking fourth in the US, persists despite advancements, with a five-year relative survival rate of only 11%. Forecasts predict a 70% surge in new cases and a 72% increase in global pancreatic cancer-related deaths by 2040. This review explores the intrinsic metabolic reprogramming of pancreatic cancer, focusing on the mevalonate pathway, including cholesterol biosynthesis, transportation, targeting strategies, and clinical studies. The mevalonate pathway, central to cellular metabolism, significantly shapes pancreatic cancer progression. Acetyl coenzyme A (Acetyl-CoA) serves a dual role in fatty acid and cholesterol biosynthesis, fueling acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) development. Enzymes, including acetoacetyl-CoA thiolase, 3-hydroxy-3methylglutaryl-CoA (HMG-CoA) synthase, and HMG-CoA reductase, are key enzymes in pancreatic cancer. Inhibiting HMG-CoA reductase, e.g., by using statins, shows promise in delaying PanIN progression and impeding pancreatic cancer. Dysregulation of cholesterol modification, uptake, and transport significantly impacts tumor progression, with Sterol O-acyltransferase 1 (SOAT1) driving cholesterol ester (CE) accumulation and disrupted low-density lipoprotein receptor (LDLR) expression contributing to cancer recurrence. Apolipoprotein E (ApoE) expression in tumor stroma influences immune suppression. Clinical trials targeting cholesterol metabolism, including statins and SOAT1 inhibitors, exhibit potential anti-tumor effects, and combination therapies enhance efficacy. This review provides insights into cholesterol metabolism's convergence with pancreatic cancer, shedding light on therapeutic avenues and ongoing clinical investigations.
Collapse
Affiliation(s)
| | | | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany; (A.R.); (J.K.)
| |
Collapse
|
25
|
张 敏, 刘 生, 张 诺, 张 文, 夏 勇, 宋 雪, 张 小, 左 芦, 李 静, 胡 建. [High expression of RAB7A is associated with poor prognosis of gastric cancer by promoting tumor invasion]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1734-1743. [PMID: 37933649 PMCID: PMC10630196 DOI: 10.12122/j.issn.1673-4254.2023.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To explore the expression level of Ras-related protein 7A (RAB7A) in gastric cancer and its prognostic implications. METHODS Based on data from public databases and a cohort of 104 patients undergoing radical gastrectomy for gastric cancer in our hospital, we analyzed RAB7A expression level in gastric cancer and adjacent tissues and its association with clinicopathological parameters and prognosis of the patients. Bioinformatic analysis was performed to predict the pathways of RAB7A to affect gastric cancer invasion. In gastric cancer MGC803 cells with lentivirus-mediated interference or overexpression of RAB7A, the changes in extracellular matrix (ECM) degradation and cell migration and invasion were analyzed using immunoblotting, wound healing assay and Transwell experiments. RESULTS The data from public cancer databases and clinical samples showed a significantly higher expression of RAB7A in gastric cancer tissues than in normal or adjacent tissues (P<0.01) with a close correlation with a poorer patient survival (P<0.01) and a positive correlation with serum carcinoembryonic antigen and carbohydrate antigen 19-9 levels (P<0.001). Univariate and multivariate Cox regression analyses suggested that a high RAB7A expression was an independent risk factor affecting the 5-year survival rate of gastric cancer patients (HR: 2.882; 95% CI: 1.459-5.693). ROC curve analysis showed that at the cut-off value of 2.625, RAB7A expression level had a sensitivity of 84.62% and a specificity of 71.15% for predicting postoperative 5-year mortality of the patients. Bioinformatic analysis suggested that RAB7A was involved in ECM degradation and activation of PI3K/AKT signaling in gastric cancer. MGC803 cells with RAB7A overexpression showed activation of the PI3K/AKT signaling pathway (P<0.01) with enhanced expressions of MMP-2 and MMP-9 (P<0.01) and cell migration and invasion capacities (P<0.01). CONCLUSION RAB7A is highly expressed in gastric cancer tissues and affects the patients' prognosis possibly by activating the PI3K/AKT signaling pathway and enhancing ECM degradation to promote tumor invasion.
Collapse
Affiliation(s)
- 敏 张
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院检验医学院,安徽 蚌埠 233000School of Laboratory Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 生宝 刘
- 蚌埠医学院检验医学院,安徽 蚌埠 233000School of Laboratory Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院病理科,安徽 蚌埠 233000Department of Pathology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 诺 张
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院检验医学院,安徽 蚌埠 233000School of Laboratory Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 文静 张
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院检验医学院,安徽 蚌埠 233000School of Laboratory Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 勇生 夏
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 雪 宋
- 蚌埠医学院第一附属医院中心实验室,安徽 蚌埠 233000Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 小凤 张
- 蚌埠医学院第一附属医院中心实验室,安徽 蚌埠 233000Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 芦根 左
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 静 李
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 建国 胡
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
26
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
27
|
Lai X, Liang K, Su Y, Guo K, Wang X, Wan Y, Ye C, Zhou C, Chen R, Gao W, Chen Y, Lin W, Ni W, Lin Y, Ng KM. Serum Lipidomic Fingerprints Encode Early Diagnosis and Staging of Lung Cancer on a Novel PbS/Au-Layered Substrate. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463316 DOI: 10.1021/acsami.3c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lung cancer (LC) is a major cause of mortality among malignant tumors. Early diagnosis through lipidomic profiling can improve prognostic outcomes. In this study, a uniform PbS/Au-layered substrate that enhances the laser desorption/ionization process, an interfacial process triggered on the substrate surface upon laser excitation, was designed to efficiently characterize the lipidomic profiles of LC patient serum. By controlling the stacking arrangement and particle sizes of PbS QDs and AuNPs, the optimized substrate promotes the generation of excited electrons and creates an enhanced electric field that polarizes analyte molecules, facilitating ion adduction formation ([M + Na]+ and [M + K]+) and enhancing detection sensitivity down to the femtomole level. Combining multivariate statistics and machine learning, a distinct lipidomic biomarker panel is successfully identified for the early diagnosis and staging of LC, with an accurate prediction validated by an area under the curve of 0.9479 and 0.9034, respectively. We also found that 18 biomarkers were significantly correlated with six metabolic pathways associated with LC. These results demonstrate the potential of this innovative PbS/Au-layered substrate as a sensitive platform for accurate diagnosis of LC and facilitate the development of lipidomic-based diagnostic tools for other cancers.
Collapse
Affiliation(s)
- Xiaopin Lai
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Kaiqing Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Yang Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Kunbin Guo
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xin Wang
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yanpei Wan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Cuiqiong Ye
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Chengke Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Rongjia Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Wenhua Gao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Yuping Chen
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Wen Lin
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yan Lin
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Kwan-Ming Ng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong S.A.R., P. R. China
| |
Collapse
|
28
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
29
|
Li C, Wang F, Cui L, Li S, Zhao J, Liao L. Association between abnormal lipid metabolism and tumor. Front Endocrinol (Lausanne) 2023; 14:1134154. [PMID: 37305043 PMCID: PMC10248433 DOI: 10.3389/fendo.2023.1134154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Metabolic Reprogramming is a sign of tumor, and as one of the three major substances metabolism, lipid has an obvious impact. Abnormal lipid metabolism is related to the occurrence of various diseases, and the proportion of people with abnormal lipid metabolism is increasing year by year. Lipid metabolism is involved in the occurrence, development, invasion, and metastasis of tumors by regulating various oncogenic signal pathways. The differences in lipid metabolism among different tumors are related to various factors such as tumor origin, regulation of lipid metabolism pathways, and diet. This article reviews the synthesis and regulatory pathways of lipids, as well as the research progress on cholesterol, triglycerides, sphingolipids, lipid related lipid rafts, adipocytes, lipid droplets, and lipid-lowering drugs in relation to tumors and their drug resistance. It also points out the limitations of current research and potential tumor treatment targets and drugs in the lipid metabolism pathway. Research and intervention on lipid metabolism abnormalities may provide new ideas for the treatment and survival prognosis of tumors.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Fei Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lili Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Shaoxin Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Coates HW, Capell-Hattam IM, Olzomer EM, Du X, Farrell R, Yang H, Byrne FL, Brown AJ. Hypoxia truncates and constitutively activates the key cholesterol synthesis enzyme squalene monooxygenase. eLife 2023; 12:82843. [PMID: 36655986 PMCID: PMC9851614 DOI: 10.7554/elife.82843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Cholesterol synthesis is both energy- and oxygen-intensive, yet relatively little is known of the regulatory effects of hypoxia on pathway enzymes. We previously showed that the rate-limiting and first oxygen-dependent enzyme of the committed cholesterol synthesis pathway, squalene monooxygenase (SM), can undergo partial proteasomal degradation that renders it constitutively active. Here, we show hypoxia is a physiological trigger for this truncation, which occurs through a two-part mechanism: (1) increased targeting of SM to the proteasome via stabilization of the E3 ubiquitin ligase MARCHF6 and (2) accumulation of the SM substrate, squalene, which impedes the complete degradation of SM and liberates its truncated form. This preserves SM activity and downstream pathway flux during hypoxia. These results uncover a feedforward mechanism that allows SM to accommodate fluctuating substrate levels and may contribute to its widely reported oncogenic properties.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | | | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Rhonda Farrell
- Prince of Wales Private HospitalRandwickAustralia
- Chris O’Brien LifehouseCamperdownAustralia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW SydneySydneyAustralia
| |
Collapse
|
31
|
Guo Z, Liang J. Characterization of a lipid droplet and endoplasmic reticulum stress related gene risk signature to evaluate the clinical and biological value in hepatocellular carcinoma. Lipids Health Dis 2022; 21:146. [PMID: 36581927 PMCID: PMC9798721 DOI: 10.1186/s12944-022-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Lipid metabolism and endoplasmic reticulum (ER) stress play an important role in the progression and metastasis of hepatocellular carcinoma (HCC). We aimed to establish lipid droplet (LD)-associated and ER stress-related gene risk signature as prognostic indicators. MATERIALS AND METHODS Literature searches for LD-associated proteins was screened and validated in The Cancer Genome Atlas (TCGA) and International Cancer Genome Collaboratory (ICGC) databases. A total of 371 samples were enrolled from the TCGA RNA-seq dataset (training cohort) and 240 samples from IGGC RNA-seq dataset (validation cohort). A 10-gene risk signature was established by the last absolute shrinkage and selection operator (LASSO) regression analysis. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan-Meier and ROC Curve analyses. Biological features associated with LD and ER stress-related factors were explored by functional analysis and in vitro experiment. RESULTS Based on the medical literatures, 124 lipid droplet-associated proteins were retrieved, and three genes failed to establish a valid prognostic model. ER stress was considered as an important component by functional analysis. A 10-gene risk signature compared the clinicopathology characteristics, immunosuppressive events and a nomogram in HCC patients. CONCLUSION LD-associated and ER stress-related gene risk signatures highlighted poor prognosis for clinicopathological features, positively correlate with macrophages and T cell immunoglobulin and mucin-3 (TIM-3) expression in the tumor microenvironment, and might act as independent prognostic factors.
Collapse
Affiliation(s)
- Ziwei Guo
- grid.449412.ePeking University International Hospital, Beijing, China ,grid.412474.00000 0001 0027 0586Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Liang
- grid.449412.ePeking University International Hospital, Beijing, China ,grid.412474.00000 0001 0027 0586Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
32
|
Wang G, Chen A, Wu Y, Wang D, Chang C, Yu G. Fat storage-inducing transmembrane proteins: beyond mediating lipid droplet formation. Cell Mol Biol Lett 2022; 27:98. [DOI: 10.1186/s11658-022-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFat storage-inducing transmembrane proteins (FITMs) were initially identified in 2007 as members of a conserved endoplasmic reticulum (ER) resident transmembrane protein gene family, and were found to be involved in lipid droplet (LD) formation. Recently, several studies have further demonstrated that the ability of FITMs to directly bind to triglyceride and diacylglycerol, and the diphosphatase activity of hydrolyzing fatty acyl-CoA, might enable FITMs to maintain the formation of lipid droplets, engage in lipid metabolism, and protect against cellular stress. Based on the distribution of FITMs in tissues and their important roles in lipid droplet biology and lipid metabolism, it was discovered that FITMs were closely related to muscle development, adipocyte differentiation, and energy metabolism. Accordingly, the abnormal expression of FITMs was not only associated with type 2 diabetes and lipodystrophy, but also with cardiac disease and several types of cancer. This study reviews the structure, distribution, expression regulation, and functionality of FITMs and their potential relationships with various metabolic diseases, hoping to provide inspiration for fruitful research directions and applications of FITM proteins. Moreover, this review will provide an important theoretical basis for the application of FITMs in the diagnosis and treatment of related diseases.
Collapse
|
33
|
Zou Y, Zhang H, Bi F, Tang Q, Xu H. Targeting the key cholesterol biosynthesis enzyme squalene monooxygenasefor cancer therapy. Front Oncol 2022; 12:938502. [PMID: 36091156 PMCID: PMC9449579 DOI: 10.3389/fonc.2022.938502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol metabolism is often dysregulated in cancer. Squalene monooxygenase (SQLE) is the second rate-limiting enzyme involved in cholesterol synthesis. Since the discovery of SQLE dysregulation in cancer, compelling evidence has indicated that SQLE plays a vital role in cancer initiation and progression and is a promising therapeutic target for cancer treatment. In this review, we provide an overview of the role and regulation of SQLE in cancer and summarize the updates of antitumor therapy targeting SQLE.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiulin Tang, ; Huanji Xu,
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiulin Tang, ; Huanji Xu,
| |
Collapse
|
34
|
Single Cell Analysis of Cultivated Fibroblasts from Chronic Pancreatitis and Pancreatic Cancer Patients. Cells 2022; 11:cells11162583. [PMID: 36010660 PMCID: PMC9406708 DOI: 10.3390/cells11162583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a major role in the progression and drug resistance of pancreatic cancer. Recent studies suggest that CAFs exhibit functional heterogeneity and distinct transcriptomic signatures in pancreatic cancer. Pancreatic fibroblasts also form an integral component in pancreatic diseases such as chronic pancreatitis named disease-associated fibroblasts (DAFs). However, intra-tumoral heterogeneity of CAFs in pancreatic cancer patients and their pivotal role in cancer-related mechanisms have not been fully elucidated. Further, it has not been elucidated whether CAF subtypes identified in pancreatic cancer also exist in chronic pancreatitis. In this study, we used primary isolated fibroblasts from pancreatic cancer and chronic pancreatitis patients using the outgrowth method. Single-cell RNA sequencing (scRNA-seq) was performed, and bioinformatics analysis identified highly variable genes, including factors associated with overall survival of pancreatic cancer patients. The majority of highly variable genes are involved in the cell cycle. Instead of previously classified myofibroblastic (myCAFs), inflammatory (iCAFs), and antigen-presenting (ap) CAFs, we identified a myCAFs-like subtype in all cases. Most interestingly, after cell cycle regression, we observed 135 highly variable genes commonly identified in chronic pancreatitis and pancreatic cancer patients. This study is the first to conduct scRNAseq and bioinformatics analyses to compare CAFs/DAFs from both chronic pancreatitis and pancreatic cancer patients. Further studies are required to select and identify stromal factors in DAFs from chronic pancreatitis cases, which are commonly expressed also in CAFs potentially contributing to pancreatic cancer development.
Collapse
|
35
|
Lin J, Sun X, Dai X, Zhang S, Zhang X, Wang Q, Zheng Q, Huang M, He Y, Lin R. Integrated Proteomics and Metabolomics Analysis in Pregnant Rat Hippocampus After Circadian Rhythm Inversion. Front Physiol 2022; 13:941585. [PMID: 35936909 PMCID: PMC9355539 DOI: 10.3389/fphys.2022.941585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
To investigate the changes in proteins, metabolites, and related mechanisms in the hypothalamus of pregnant rats after circadian rhythm inversion during the whole pregnancy cycle. A total of 12 Wistar female rats aged 7 weeks were randomly divided into control (six rats) and experimental (six rats) groups at the beginning of pregnancy. The control group followed a 12-h light and dark cycle (6 a.m. to 6 p.m. light, 6 p.m. to 6 a.m. dark the next day), and the experimental group followed a completely inverted circadian rhythm (6 p.m. to 6 a.m. light the next day, 6 a.m. to 6 p.m. dark). Postpartum data were collected until 7–24 h after delivery, and hypothalamus samples were collected in two groups for quantitative proteomic and metabolism analyses. The differential proteins and metabolites of the two groups were screened by univariate combined with multivariate statistical analyses, and the differential proteins and metabolites enriched pathways were annotated with relevant databases to analyze the potential mechanisms after circadian rhythm inversion. A comparison of postpartum data showed that circadian rhythm inversion can affect the number of offspring and the average weight of offspring in pregnant rats. Compared with the control group, the expression of 20 proteins and 37 metabolites was significantly changed in the experimental group. The integrated analysis between proteins and metabolites found that RGD1562758 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) proteins were closely associated with carbon metabolism (choline, NAD+, L-glutamine, theobromine, D-fructose, and pyruvate) and glycerophospholipid metabolism (choline, NAD+, L-glutamine, phosphatidylcholine, theobromine, D-fructose, pyruvate, and arachidonate). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differential metabolites enriched in adenosine triphosphate (ATP)–binding cassette (ABC) transporters. Our study suggested that circadian rhythm inversion in pregnant rats may affect the numbers, the average weight of offspring, and the expressions of proteins and metabolism in the hypothalamus, which may provide a comprehensive overview of the molecular profile of circadian rhythm inversion in pregnant groups.
Collapse
Affiliation(s)
- Jingjing Lin
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Xinyue Sun
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Xiaofeng Dai
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | | | - Xueling Zhang
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Qiaosong Wang
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Qirong Zheng
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Minfang Huang
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Yuanyuan He
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Rongjin Lin
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
- *Correspondence: Rongjin Lin,
| |
Collapse
|
36
|
Zhang R, Meng J, Yang S, Liu W, Shi L, Zeng J, Chang J, Liang B, Liu N, Xing D. Recent Advances on the Role of ATGL in Cancer. Front Oncol 2022; 12:944025. [PMID: 35912266 PMCID: PMC9326118 DOI: 10.3389/fonc.2022.944025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
The hypoxic state of the tumor microenvironment leads to reprogramming lipid metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting and tumor-suppressing effects, which depend on the cancer cell type and the site of tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In prostate cancer, on the other hand, tumor activity tends to be negatively correlated with ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27 (FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent research on different cancer types, the role of ATGL on tumorigenesis, tumor proliferation, and tumor metastasis was systemically reviewed.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
37
|
Wagner C, Hois V, Taschler U, Schupp M, Lass A. KIAA1363-A Multifunctional Enzyme in Xenobiotic Detoxification and Lipid Ester Hydrolysis. Metabolites 2022; 12:516. [PMID: 35736449 PMCID: PMC9229287 DOI: 10.3390/metabo12060516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
KIAA1363, annotated as neutral cholesterol ester hydrolase 1 (NCEH1), is a member of the arylacetamide deacetylase (AADAC) protein family. The name-giving enzyme, AADAC, is known to hydrolyze amide and ester bonds of a number of xenobiotic substances, as well as clinical drugs and of endogenous lipid substrates such as diglycerides, respectively. Similarly, KIAA1363, annotated as the first AADAC-like protein, exhibits enzymatic activities for a diverse substrate range including the xenobiotic insecticide chlorpyrifos oxon and endogenous substrates, acetyl monoalkylglycerol ether, cholesterol ester, and retinyl ester. Two independent knockout mouse models have been generated and characterized. However, apart from reduced acetyl monoalkylglycerol ether and cholesterol ester hydrolase activity in specific tissues and cell types, no gross-phenotype has been reported. This raises the question of its physiological role and whether it functions as drug detoxifying enzyme and/or as hydrolase/lipase of endogenous substrates. This review delineates the current knowledge about the structure, function and of the physiological role of KIAA1363, as evident from the phenotypical changes inflicted by pharmacological inhibition or by silencing as well as knockout of KIAA1363 gene expression in cells, as well as mouse models, respectively.
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
| | - Victoria Hois
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
| | - Michael Schupp
- Cardiovascular Metabolic Renal (CMR)—Research Center, Institute of Pharmacology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| |
Collapse
|
38
|
Di J, Chai Y, Yang X, Dong H, Jiang B, Ji F. ELP6 and PLIN5 Mutations Were Probably Prognostic Biomarkers for Patients With Gastric Cancer. Front Med (Lausanne) 2022; 9:803617. [PMID: 35223903 PMCID: PMC8864479 DOI: 10.3389/fmed.2022.803617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Gastric cancer (GC) is the fifth leading cancer around world. And prognosis of patients with GC is still undesirable. Our study aimed to explore potential prognostic biomarkers for patients with GC. Methods The clinical samples were collected from the Qinghai University Affiliated Hospital, which were subjected to the whole exome sequencing (WES). The other GC-related data were obtained from The Cancer Genome Atlas (TCGA) database. Cross analyses were done to determine the candidate genes. And the final mutated genes were determined by survival analyses, univariate and multivariate Cox regression analyses. CIBERSORT and GSEA were used for immune cell infiltration analysis and functional enrichment, respectively. Results After cross analyses, 160 candidate-mutated genes were identified. And mutated ELP6 and PLIN5 were significantly independently correlated with the overall survival (OS) of patients with GC. Patients with GC with ELP6 and PLIN5 mutations had worse and better prognosis, respectively. Totally 5 types of immune cells were significantly differentially infiltrated in wild-type and mutated ELP6 and PLIN5 GC samples. In mutated ELP6 and PLIN5 GC samples, totally 7 and 11 pathways were significantly enriched, respectively. Conclusions The ELP6 and PLIN5 mutations were probably prognostic biomarkers for patients with GC.
Collapse
Affiliation(s)
- Ji Di
- Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining, China.,School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yan Chai
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xin Yang
- Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining, China
| | - Haibin Dong
- Department of Gastroenterology, Tsinghua Changgeng Hospital, Tsinghua University, Beijing, China
| | - Bo Jiang
- Department of Gastroenterology, Tsinghua Changgeng Hospital, Tsinghua University, Beijing, China
| | - Faxiang Ji
- Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
39
|
Antunes P, Cruz A, Barbosa J, Bonifácio VDB, Pinto SN. Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030991. [PMID: 35164256 PMCID: PMC8840564 DOI: 10.3390/molecules27030991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Cancer is the second most common cause of death worldwide, having its origin in the abnormal growth of cells. Available chemotherapeutics still present major drawbacks, usually associated with high toxicity and poor distribution, with only a small fraction of drugs reaching the tumour sites. Thus, it is urgent to develop novel therapeutic strategies. Cancer cells can reprogram their lipid metabolism to sustain uncontrolled proliferation, and, therefore, accumulate a higher amount of lipid droplets (LDs). LDs are cytoplasmic organelles that store neutral lipids and are hypothesized to sequester anti-cancer drugs, leading to reduced efficacy. Thus, the increased biogenesis of LDs in neoplastic conditions makes them suitable targets for anticancer therapy and for the development of new dyes for cancer cells imaging. In recent years, cancer nanotherapeutics offered some exciting possibilities, including improvement tumour detection and eradication. In this review we summarize LDs biogenesis, structure and composition, and highlight their role in cancer theranostics.
Collapse
Affiliation(s)
- Patrícia Antunes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José Barbosa
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| | - Sandra N. Pinto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| |
Collapse
|
40
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
41
|
Sunami Y, Rebelo A, Kleeff J. Lipid Droplet-Associated Factors, PNPLA3, TM6SF2, and HSD17B Proteins in Hepatopancreatobiliary Cancer. Cancers (Basel) 2021; 13:cancers13174391. [PMID: 34503201 PMCID: PMC8431307 DOI: 10.3390/cancers13174391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Aberrant lipid synthesis and reprogrammed lipid metabolism are both associated with the development and progression of pancreatic and liver cancer. Most cells store fatty acids in the form of triacylglycerols in lipid droplets. Lipid droplets are intracellular organelles that not only store neutral lipids, but also play roles as molecular messengers and signaling factors. Some cancer cells accumulate massive amount of lipid droplets. Lipid droplets and lipid droplet-associated factors are further implicated to mediate proliferation, invasion, metastasis, as well as chemotherapy resistance in several types of cancer. This review dissected recent findings on the role of several lipid droplet-associated factors, patatin-like phospholipase domain-containing 3 (PNPLA3), Transmembrane 6 superfamily member 2 (TM6SF2), and 17β-hydroxysteroid dehydrogenase (HSD17B) 11 and 13 as well as their genetic variations in hepatopancreatobiliary diseases, especially cancer. Abstract Pancreatic and liver cancer are leading causes of cancer deaths, and by 2030, they are projected to become the second and the third deadliest cancer respectively. Cancer metabolism, especially lipid metabolism, plays an important role in progression and metastasis of many types of cancer, including pancreatic and liver cancer. Lipid droplets are intracellular organelles that store neutral lipids, but also act as molecular messengers, and signaling factors. It is becoming increasingly evident that alterations in the regulation of lipid droplets and their associated factors influence the risk of developing not only metabolic disease but also fibrosis and cancer. In the current review article, we summarized recent findings concerning the roles of lipid droplet-associated factors, patatin-like phospholipase domain-containing 3, Transmembrane 6 superfamily member 2, and 17β-hydroxysteroid dehydrogenase 11 and 13 as well as genetic variants in pancreatic and hepatic diseases. A better understanding of cancer type- and cell type-specific roles of lipid droplet-associated factors is important for establishing new therapeutic options in the future.
Collapse
|