1
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2025; 14:e202400232. [PMID: 39434498 PMCID: PMC11726697 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| | - Natarajan Chandrasekaran
- Senior Professor & Former DirectorCentre for NanobiotechnologyVellore Institute of Technology (VIT)Vellore Campus, Tiruvalam roadTamil NaduKatpadiVellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| |
Collapse
|
2
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
3
|
Shao X, Dong Z, Zhang S, Qiao Y, Zhang H, Guo H. Quantum dots-based multiplexed immunosensors for accurate diagnosis of attention deficit hyperactivity disorder in childhood. J Pharm Biomed Anal 2024; 243:116096. [PMID: 38484638 DOI: 10.1016/j.jpba.2024.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) lacks objective diagnostic markers. In clinical settings, reliance on subjective judgments can often lead to missed or misdiagnoses. Some biomarkers have been reported to be associated with ADHD, but using one biomarker alone is not enough. To address this, we developed a fluorescent immunoassay platform based on quantum dots (QDs) to detect assay capable of detecting and quantifying multiple biomarkers simultaneously. Specifically, we were able to the simultaneously detect brain-derived neurotrophic factor, tumor necrosis factor-alpha, interleukin-6 and ferritin using different emission spectra QDs. The QD-based multiplexed immunoassay displayed a low detection of limit in the range of 0.021-0.068 pg/mL, and the assay showed satisfactory reproducibility and precision. We then quantified all four targets from ADHD patient's plasma samples, where it showed remarkable consistency with clinical test for ADHD diagnosis. This methodological comparison supports the diagnosis of ADHD using our assay.
Collapse
Affiliation(s)
- Xinyue Shao
- Zhumadian Second People's Hospital, Zhumadian, Henan 463000, China.
| | - Zhao Dong
- Zhumadian Second People's Hospital, Zhumadian, Henan 463000, China
| | - Shuai Zhang
- Zhumadian Second People's Hospital, Zhumadian, Henan 463000, China
| | - Yunyun Qiao
- Zhumadian Second People's Hospital, Zhumadian, Henan 463000, China
| | - Hongwei Zhang
- Zhumadian Second People's Hospital, Zhumadian, Henan 463000, China
| | - Hua Guo
- Zhumadian Second People's Hospital, Zhumadian, Henan 463000, China
| |
Collapse
|
4
|
Merteroglu M, Santoro MM. Exploiting the metabolic vulnerability of circulating tumour cells. Trends Cancer 2024; 10:541-556. [PMID: 38580535 DOI: 10.1016/j.trecan.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Metastasis has a major part in the severity of disease and lethality of cancer. Circulating tumour cells (CTCs) represent a reservoir of metastatic precursors in circulation, most of which cannot survive due to hostile conditions in the bloodstream. Surviving cells colonise a secondary site based on a combination of physical, metabolic, and oxidative stress protection states required for that environment. Recent advances in CTC isolation methods and high-resolution 'omics technologies are revealing specific metabolic pathways that support this selection of CTCs. In this review, we discuss recent advances in our understanding of CTC biology and discoveries of adaptations in metabolic pathways during their selection. Understanding these traits and delineating mechanisms by which they confer acquired resistance or vulnerability in CTCs is crucial for developing successful prognostic and therapeutic strategies in cancer.
Collapse
|
5
|
Mali SB. Role of in vivo imaging in Head and Neck cancer management. Oral Oncol 2023; 146:106575. [PMID: 37741020 DOI: 10.1016/j.oraloncology.2023.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.
Collapse
Affiliation(s)
- Shrikant B Mali
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India.
| |
Collapse
|
6
|
Chen Y, Xue Q, Luo W, Sun Y, Li M, Hang T. ZnO/ZnS core-shell quantum dots with enhanced ultraviolet fluorescence and low cytotoxicity for cell imaging. NANOTECHNOLOGY 2023; 34:505704. [PMID: 37714140 DOI: 10.1088/1361-6528/acfa06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Zinc oxide quantum dots (ZnO QDs) have gained wide attention due to their wide excitation spectrum, large Stokes shift, adjustable photoluminescence (PL) spectrum, and excellent biocompatibility. However, low fluorescence intensity and poor stability restrict their further applications. In this work, zinc sulfide (ZnS) as a surface modifier, ZnO/ZnS core-shell QDs with type-I core-shell structure and particle size of 5 nm were prepared via sol-gel method. Transmission electron microscope characterization demonstrates the core-shell structure and spherical morphology of the as-synthesized ZnO/ZnS QDs. The PL spectra show that ultraviolet fluorescence has been greatly enhanced. The maximum fluorescence intensity of ZnO/ZnS core-shell QDs increases by 5288.6% compared with that of bare ZnO QDs. The PL quantum yield increases from 9.53% to 30.95%. After being stored for three weeks, the fluorescence performance can be well retained. Furthermore, the cytotoxicity tests confirm the excellent biocompatibility of ZnO/ZnS core-shell QDs, demonstrating they are good candidates for cell imaging.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qi Xue
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weiguo Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tao Hang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
7
|
Evstigneeva SS, Chumakov DS, Tumskiy RS, Khlebtsov BN, Khlebtsov NG. Detection and imaging of bacterial biofilms with glutathione-stabilized gold nanoclusters. Talanta 2023; 264:124773. [PMID: 37320983 DOI: 10.1016/j.talanta.2023.124773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Bacterial biofilms colonize chronic wounds and surfaces of medical devices, thus making the development of reliable methods for imaging and detection of biofilms crucial. Although fluorescent identification of bacteria is sensitive and non-destructive, the lack of biofilm-specific fluorescent dyes limits the application of this technique to biofilm detection. Here, we demonstrate, for the first time, that fluorescent glutathione-stabilized gold nanoclusters (GSH-AuNCs) without targeting ligands can specifically interact with extracellular matrix components of Gram-negative and Gram-positive bacterial biofilms resulting in fluorescent staining of bacterial biofilms. By contrast, fluorescent bovine serum albumin-stabilized gold nanoclusters and 11-mercaptoundecanoic acid - stabilized gold nanoclusters do not stain the extracellular matrix of biofilms. According to molecular docking studies, GSH-AuNCs show affinity to several targets in extracellular matrix, including amyloid-anchoring proteins, matrix proteins and polysaccharides. Some experimental evidence was obtained for the interaction of GSH-AuNCs with the lipopolysaccharide (LPS) that was isolated from the matrix of Azospirillum baldaniorum biofilms. Based on GSH-AuNCs properties, we propose a new fluorescent method for the measurement of biofilm biomass with a limit of detection 1.7 × 105 CFU/mL. The sensitivity of the method is 10-fold higher than the standard biofilm quantification with the crystal violet assay. There is a good linear relationship between the fluorescence intensity from the biofilms and the number of CFU from the biofilms in the range from 2.6 × 105 to 6.7 × 107 CFU/mL. The developed nanocluster-mediated method of biofilm staining was successfully applied for quantitative detection of biofilm formation on urinary catheter surface. The presented data suggest that fluorescent GSH-AuNCs can be used to diagnose medical device-associated infections.
Collapse
Affiliation(s)
- S S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - D S Chumakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - R S Tumskiy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| |
Collapse
|
8
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
9
|
Das U, Banik S, Nadumane SS, Chakrabarti S, Gopal D, Kabekkodu SP, Srisungsitthisunti P, Mazumder N, Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
Affiliation(s)
- Upama Das
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pornsak Srisungsitthisunti
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
10
|
Dzhumashev D, Timpanaro A, Ali S, De Micheli AJ, Mamchaoui K, Cascone I, Rössler J, Bernasconi M. Quantum Dot-Based Screening Identifies F3 Peptide and Reveals Cell Surface Nucleolin as a Therapeutic Target for Rhabdomyosarcoma. Cancers (Basel) 2022; 14:5048. [PMID: 36291832 PMCID: PMC9600270 DOI: 10.3390/cancers14205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to bind to two RMS cell lines, Rh30 and RD, using quantum dots Streptavidin and biotin-peptides conjugates as a model for nanoparticles. Four peptides revealed a very strong binding to RMS cells: NCAM-1-targeting NTP peptide, nucleolin-targeting F3 peptide, and two Furin-targeting peptides, TmR and shTmR. F3 peptide showed the strongest binding to all RMS cell lines tested, low binding to normal control myoblasts and fibroblasts, and efficient internalization into RMS cells demonstrated by the cytoplasmic delivery of the Saporin toxin. The expression of the nucleophosphoprotein nucleolin, the target of F3, on the surface of RMS cell lines was validated by competition with the natural ligand lactoferrin, by colocalization with the nucleolin-binding aptamer AS1411, and by the marked sensitivity of RMS cell lines to the growth inhibitory nucleolin-binding N6L pseudopeptide. Taken together, our results indicate that nucleolin-targeting by F3 peptide represents a potential therapeutic approach for RMS.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Safa Ali
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, F-75013 Paris, France
| | - Ilaria Cascone
- IMRB, INSERM, University Paris Est Creteil, 94010 Creteil, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biothérapie, 94010 Créteil, France
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
11
|
Kuo CW, Pratiwi FW, Liu YT, Chueh DY, Chen P. Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging. Front Bioeng Biotechnol 2022; 10:935415. [PMID: 36051583 PMCID: PMC9424828 DOI: 10.3389/fbioe.2022.935415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of bioinspired nanomaterials for therapeutic applications, it is very important to validate the design of nanomaterials in the disease models. Therefore, it is desirable to visualize the change of the cells in the diseased site at the nanoscale. Heart diseases often start with structural, morphological, and functional alterations of cardiomyocyte components at the subcellular level. Here, we developed straightforward technique for long-term real-time intravital imaging of contracting hearts without the need of cardiac pacing and complex post processing images to understand the subcellular structural and dynamic changes in the myocardial infarction model. A two-photon microscope synchronized with electrocardiogram signals was used for long-term in vivo imaging of a contracting heart with subcellular resolution. We found that the structural and dynamic behaviors of organelles in cardiomyocytes closely correlated with heart function. In the myocardial infarction model, sarcomere shortening decreased from ∼15% (healthy) to ∼8% (diseased) as a result of impaired cardiac function, whereas the distances between sarcomeres increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition, T-tubule system regularity analysis revealed that T-tubule structures that were initially highly organized underwent significant remodeling. Morphological remodeling and changes in dynamic activity at the subcellular level are essential to maintain heart function after infarction in a heart disease model.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | | | - Yen-Ting Liu
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- *Correspondence: Peilin Chen,
| |
Collapse
|
12
|
Wu X, Zou Y, Du K, Du Y, Firempong CK, Yu Y, He H, Liu H, Sun C. Construction and Evaluation of Traceable rhES-QDs-M-MS Protein Delivery System: Sustained-Release Properties, Targeted Effect, and Antitumor Activity. AAPS PharmSciTech 2022; 23:207. [PMID: 35896916 DOI: 10.1208/s12249-022-02326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Recombinant human endostatin (rhES) is a protein drug with poor stability and short in vivo circulation time. The present study was therefore aimed at developing sustained-release lung targeted microspheres drug delivery system and evaluating its targeting efficiency using in vivo imaging techniques with quantum dots (QDs) as the imaging material. The oil-soluble QDs were coated with amphiphilic polymers to obtain a polymer-quantum dots micelle (QDs-M) with the potential to stably disperse in water. The rhES and QDs-M were combined using covalent bonds. The rhES-QDs-M microspheres (rhES-QDs-M-MS) were prepared using electrostatic spray technology and also evaluated via in vivo imaging techniques. The pharmacodynamics was further studied in mice. The rhES-QDs-M-MS (4-8 μm) were stable in an aqueous medium with good optical properties. The in vitro studies showed that the rhES-QDs-M-MS had sustained release which was maintained for at least 15 days (cumulative release >80%) without any burst release. The rhES-QDs-M-MS had a very high safety profile and also effectively inhibited the in vitro proliferation of human umbilical vein endothelial cells by about 70%. The pharmacokinetic results showed that the rhES could still be detected at 72 h in the experimental group which meant that the rhES-QDs-M-MS had a significant sustained-release effect. The rhES-QDs-M-MS had a better lung targeting effect and higher antitumor activity compared with the rhES. The traceable rhES-QDs-M-MS served as a promising drug delivery system for the poorly stable rhES proteins and significantly increased its lung-targeted effect, sustained-release properties, and antitumor activities.
Collapse
Affiliation(s)
- Xiaowen Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, People's Republic of China
| | - Yi Zou
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Kunyu Du
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yi Du
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, People's Republic of China
| | - Caleb Kesse Firempong
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yang Yu
- Jiangsu Sunan Pharmaceutical Industrial Co., LTD, Zhenjiang, 212400, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics, College of Pharmacy, Shenyang pharmaceutical university, Shenyang, 110016, People's Republic of China.,Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226001, People's Republic of China
| | - Hongfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, People's Republic of China. .,College of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangsu Sunan Pharmaceutical Industrial Co., LTD, Zhenjiang, 212400, People's Republic of China.
| | - Changshan Sun
- Department of Pharmaceutics, College of Pharmacy, Shenyang pharmaceutical university, Shenyang, 110016, People's Republic of China. .,Shanghai Meiyou Pharmaceutical Co., Ltd, Shanghai, 201400, People's Republic of China.
| |
Collapse
|
13
|
Chernet DY, Klassen L, Goertzen S, Malagon JN. Live imaging and quantification of circulating potentially metastatic tumor cells in early pupal stage of Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000588. [PMID: 35783574 PMCID: PMC9242741 DOI: 10.17912/micropub.biology.000588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
A circulating tumor cell (CTC) is a type of cell that is shed from solid tumors, swept away in the bloodstream or lymphatic system, and has the potential to cause tumorigenesis at a secondary location. Here we describe an early pupal leg system to study CTCs in vivo and to compare the CTCs described in this work to those previously studied in vitro. We quantified cellular parameters such as the number, size, and shape of CTCs, and our findings are consistent with previous in vitro studies. Thus, live imaging of CTCs in model organisms can complement and validate previous work in this field and can be an initial step when deciphering how in vivo CTCs behave in humans during metastasis.
Collapse
Affiliation(s)
- Dagem Yilma Chernet
- Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, MB, Canada R3P 2N2
| | - Levi Klassen
- Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, MB, Canada R3P 2N2
| | - Sonya Goertzen
- Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, MB, Canada R3P 2N2
| | - Juan Nicolas Malagon
- Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, MB, Canada R3P 2N2
,
Correspondence to: Juan Nicolas Malagon (
)
| |
Collapse
|
14
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
15
|
Zhang L, Zhu Y, Wei X, Chen X, Li Y, Zhu Y, Xia J, Huang Y, Huang Y, Wang J, Pang Z. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm Sin B 2022; 12:3427-3447. [PMID: 35967283 PMCID: PMC9366539 DOI: 10.1016/j.apsb.2022.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
Collapse
Affiliation(s)
- Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiheng Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
- Corresponding authors.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
16
|
Liang Z, Khawar MB, Liang J, Sun H. Bio-Conjugated Quantum Dots for Cancer Research: Detection and Imaging. Front Oncol 2021; 11:749970. [PMID: 34745974 PMCID: PMC8569511 DOI: 10.3389/fonc.2021.749970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Ultrasound, computed tomography, magnetic resonance, and gamma scintigraphy-based detection and bio-imaging technologies have achieved outstanding breakthroughs in recent years. However, these technologies still encounter several limitations such as insufficient sensitivity, specificity and security that limit their applications in cancer detection and bio-imaging. The semiconductor quantum dots (QDs) are a kind of newly developed fluorescent nanoparticles that have superior fluorescence intensity, strong resistance to photo-bleaching, size-tunable light emission and could produce multiple fluorescent colors under single-source excitation. Furthermore, QDs have optimal surface to link with multiple targets such as antibodies, peptides, and several other small molecules. Thus, QDs might serve as potential, more sensitive and specific methods of detection than conventional methods applied in cancer molecular targeting and bio-imaging. However, many challenges such as cytotoxicity and nonspecific uptake still exist limiting their wider applications. In the present review, we aim to summarize the current applications and challenges of QDs in cancer research mainly focusing on tumor detection, bio-imaging, and provides opinions on how to address these challenges.
Collapse
Affiliation(s)
- Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
17
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Choo YW, Jeong J, Jung K. Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo. BMB Rep 2021. [PMID: 32475382 PMCID: PMC7396917 DOI: 10.5483/bmbrep.2020.53.7.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the real-time IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.
Collapse
Affiliation(s)
- Yeon Woong Choo
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Juhee Jeong
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
19
|
Efremova MV, Bodea SV, Sigmund F, Semkina A, Westmeyer GG, Abakumov MA. Genetically Encoded Self-Assembling Iron Oxide Nanoparticles as a Possible Platform for Cancer-Cell Tracking. Pharmaceutics 2021; 13:pharmaceutics13030397. [PMID: 33809789 PMCID: PMC8002387 DOI: 10.3390/pharmaceutics13030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
The study of growth and possible metastasis in animal models of tumors would benefit from reliable cell labels for noninvasive whole-organism imaging techniques such as magnetic resonance imaging. Genetically encoded cell-tracking reporters have the advantage that they are contrast-selective for viable cells with intact protein expression machinery. Besides, these reporters do not suffer from dilution during cell division. Encapsulins, which are bacterial protein nanocompartments, can serve as genetically controlled labels for multimodal detection of cells. Such nanocompartments can host various guest molecules inside their lumen. These include, for example, fluorescent proteins or enzymes with ferroxidase activity leading to biomineralization of iron oxide inside the encapsulin nanoshell. The aim of this work was to implement heterologous expression of encapsulin systems from Quasibacillus thermotolerans using the fluorescent reporter protein mScarlet-I and ferroxidase IMEF in the human hepatocellular carcinoma cell line HepG2. The successful expression of self-assembled encapsulin nanocompartments with functional cargo proteins was confirmed by fluorescence microscopy and transmission electron microscopy. Also, coexpression of encapsulin nanoshells, ferroxidase cargo, and iron transporter led to an increase in T2-weighted contrast in magnetic resonance imaging of HepG2 cells. The results demonstrate that the encapsulin cargo system from Q. thermotolerans may be suitable for multimodal imaging of cancer cells and could contribute to further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria V. Efremova
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| | - Silviu-Vasile Bodea
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Felix Sigmund
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Gil G. Westmeyer
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| |
Collapse
|
20
|
Amri C, Shukla AK, Lee JH. Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1339. [PMID: 33802028 PMCID: PMC8001438 DOI: 10.3390/ma14061339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
The effectiveness of cancer treatment strongly depends on the early detection of the disease. Currently, the most common diagnostic method, tissue biopsy, takes time and can be damaging to the patient. Circulating cancer biomarkers such as circulating tumor DNA, micro-RNA (miRNA), tumor proteins, exosomes, and circulating tumor cells have repeatedly demonstrated their viability as targets for minimally invasive cancer detection through liquid biopsies. However, among other things, achieving a great sensitivity of detection is still challenging due to the very low concentration of biomarkers in fluid samples. This review will discuss how the recent advances in nanoparticle-based biosensors are overcoming these practical difficulties. This report will be focusing mainly on optical transduction mechanisms of metal nanoparticles (M-NPs), quantum dots (QDs), and upconversion nanoparticles (UCNPs).
Collapse
Affiliation(s)
- Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Jin-Ho Lee
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
21
|
Marcu LG. Imaging Biomarkers of Tumour Proliferation and Invasion for Personalised Lung Cancer Therapy. J Pers Med 2020; 10:jpm10040222. [PMID: 33198090 PMCID: PMC7711676 DOI: 10.3390/jpm10040222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Personalised treatment in oncology has seen great developments over the last decade, due to both technological advances and more in-depth knowledge of radiobiological processes occurring in tumours. Lung cancer therapy is no exception, as new molecular targets have been identified to further increase treatment specificity and sensitivity. Yet, tumour resistance to treatment is still one of the main reasons for treatment failure. This is due to a number of factors, among which tumour proliferation, the presence of cancer stem cells and the metastatic potential of the primary tumour are key features that require better controlling to further improve cancer management in general, and lung cancer treatment in particular. Imaging biomarkers play a key role in the identification of biological particularities within tumours and therefore are an important component of treatment personalisation in radiotherapy. Imaging techniques such as PET, SPECT, MRI that employ tumour-specific biomarkers already play a critical role in patient stratification towards individualized treatment. The aim of the current paper is to describe the radiobiological challenges of lung cancer treatment in relation to the latest imaging biomarkers that can aid in the identification of hostile cellular features for further treatment adaptation and tailoring to the individual patient’s needs.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 410087 Oradea, Romania;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
22
|
Yu Q, Yao Y, Zhu X, Gao Y, Chen Y, Wang R, Xu P, Wei X, Jiang L. In Vivo Flow Cytometric Evaluation of Circulating Metastatic Pancreatic Tumor Cells after High-Intensity Focused Ultrasound Therapy. Cytometry A 2020; 97:900-908. [PMID: 32307867 PMCID: PMC7540359 DOI: 10.1002/cyto.a.24014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
We examined our hypothesis that high-intensity focused ultrasound (HIFU) treatment of pancreatic ductal adenocarcinoma (PDAC) in nude mice models may lead to an increased occurrence of hematogenous metastasis. The human PDAC cell line BxPC-3 transfected with mCherry was implanted into nude mice to establish orthotopic and subcutaneous xenograft (OX and SX) tumor models. Mice were exposed to HIFU when tumor sizes reached approximately 200-300 mm3 . The OX and SX tumor models were monitored continuously for tumor growth characteristics and hematogenous metastasis using in vivo flow cytometric (IVFC) detection of circulating tumor cells (CTCs) from the pancreas. We chose an appropriate mouse model to further examine whether or not HIFU increases the potential risk of hematogenous metastasis, using IVFC detection. Our results showed that the CTC number was greater in the OX model than in the SX model. The CTC number in the OX model increased gradually over time, whereas the CTC number in the SX model remained low. Therefore, the OX model was better for studying tumor metastasis by IVFC detection. We found significantly decreased CTC numbers and tumor volume after HIFU ablation. Our results showed the applicability of the PDAC OX tumor model for studying the occurrence of tumor metastasis due to the generation of CTCs. HIFU ablation substantially restricted PDAC hematogenous metastasis and provided effective tumor control locally. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals Inc., on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Qian Yu
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Yijing Yao
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yihui Gao
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Yini Chen
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Rui Wang
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Pingping Xu
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Lixin Jiang
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| |
Collapse
|
23
|
Wang J, He ZW, Jiang JX. Nanomaterials: Applications in the diagnosis and treatment of pancreatic cancer. World J Gastrointest Pharmacol Ther 2020; 11:1-7. [PMID: 32405438 PMCID: PMC7205863 DOI: 10.4292/wjgpt.v11.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the leading causes of cancer-related death in human sowing to missed early and effective diagnosis. The inability to translate research into clinical trials and to target chemotherapy drugs to tumors is a major obstacle in PC treatment. Compared with traditional cancer detection methods, the method combining existing clinical diagnosis and detection systems with nanoscale components using novel nanomaterials shows higher sensitivity and specificity. Nanomaterials can interact with biological systems to efficiently and accurately detect and monitor biological events during diagnosis and treatment. With the advance of experimental and engineering technology, more nanomaterials will begin the transition to clinical trials for their validation. This paper describes a number of nanomaterials used in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhi-Wei He
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian-Xin Jiang
- Department of Hepatic-Biliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
24
|
Si P, Honkala A, de la Zerda A, Smith BR. Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends Cancer 2020; 6:205-222. [PMID: 32101724 DOI: 10.1016/j.trecan.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies. We review important progress in the fields of IVM and OCT for cancer imaging in living subjects, highlighting key technological developments and their emerging applications in fundamental cancer biology research and clinical oncology investigation.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; The Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
Steinbichler TB, Savic D, Dudás J, Kvitsaridze I, Skvortsov S, Riechelmann H, Skvortsova II. Cancer stem cells and their unique role in metastatic spread. Semin Cancer Biol 2020; 60:148-156. [PMID: 31521746 DOI: 10.1016/j.semcancer.2019.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation, but also dormancy and cellular plasticity that allow adaption to new environmental circumstances. These abilities are ideal prerequisites for the successful establishment of metastasis. This review highlights the role of CSCs in every step of the metastatic cascade from cancer cell invasion into blood vessels, survival in the blood stream, attachment and extravasation as well as colonization of the host organ and subsequent establishment of distant macrometastasis.
Collapse
Affiliation(s)
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Kvitsaridze
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
26
|
Pratiwi FW, Kuo CW, Chen BC, Chen P. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine (Lond) 2019; 14:1759-1769. [DOI: 10.2217/nnm-2019-0105] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid and recent progress in fluorescence microscopic techniques has allowed for routine discovery and viewing of biological structures and processes in unprecedented spatiotemporal resolution. In these imaging techniques, fluorescent nanoparticles (NPs) play important roles in the improvement of reporting systems. A short overview of recently developed fluorescent NPs used for advanced in vivo imaging will be discussed in this mini-review. The discussion begins with the contribution of fluorescence imaging in exploring the fate of NPs in biological systems. NP applications for in vivo imaging, including cell labeling, multimodal imaging and theranostic agents, are then discussed. Finally, despite all of the advancements in bioimaging, some unsolved challenges will be briefly discussed concerning future research directions.
Collapse
Affiliation(s)
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|