1
|
Akbari Oryani M, Tarin M, Rahnama Araghi L, Rastin F, Javid H, Hashemzadeh A, Karimi-Shahri M. Synergistic cancer treatment using porphyrin-based metal-organic Frameworks for photodynamic and photothermal therapy. J Drug Target 2025; 33:473-491. [PMID: 39618308 DOI: 10.1080/1061186x.2024.2433551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
Recent advancements in multifunctional nanomaterials for cancer therapy have highlighted porphyrin-based metal-organic frameworks (MOFs) as promising candidates due to their unique properties and versatile applications. This overview focuses on the use of porphyrin-based MOFs for combined photodynamic therapy (PDT) and photothermal therapy (PTT) in cancer treatment. Porphyrin-based MOFs offer high porosity, tuneable structures, and excellent stability, making them ideal for drug delivery and therapeutic applications. The incorporation of porphyrin molecules into the MOF framework enhances light absorption and energy transfer, leading to improved photodynamic and photothermal effects. Additionally, the porosity of MOFs allows for the encapsulation of therapeutic agents, further enhancing efficacy. In PDT, porphyrin-based MOFs generate reactive oxygen species (ROS) upon light activation, destroying cancer cells. The photothermal properties enable the conversion of light energy into heat, resulting in localised hyperthermia and tumour ablation. The combination of PDT and PTT in a single platform offers synergistic effects, leading to better therapeutic outcomes, reduced side effects, and improved selectivity. This dual-modal treatment strategy provides precise spatiotemporal control over the treatment process, paving the way for next-generation therapeutics with enhanced efficacy and reduced side effects. Further research and optimisation are needed for clinical applications.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Rahnama Araghi
- Department of Biotechnology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Wang S, Li J, Zhang Z, Cao S, Zhang Z, Bian Y, Xu Y, Ma C. Advances in nanomedicine and delivery systems for gastric cancer research. Front Bioeng Biotechnol 2025; 13:1565999. [PMID: 40190709 PMCID: PMC11968739 DOI: 10.3389/fbioe.2025.1565999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The early diagnosis rate of gastric cancer is low, and most patients are already at an advanced stage by the time they are diagnosed, posing significant challenges for treatment and exhibiting high recurrence rates, which notably diminish patients' survival time and quality of life. Therefore, there is an urgent need to identify methods that can enhance treatment efficacy. Nanomedicine, distinguished by its small size, high targeting specificity, and strong biological compatibility, is particularly well-suited to address the toxic side effects associated with current diagnostic and therapeutic approaches for gastric cancer. Consequently, the application of nanomedicine and delivery systems in the diagnosis and treatment of gastric cancer has garnered increasing interest from researchers. This review provides an overview of recent advancements in the use of nanomaterials as drugs or drug delivery systems in gastric cancer research, encompassing their applications in diagnosis, chemotherapy, radiotherapy, surgery, and phototherapy, and explores the promising prospects of nanomedicine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sizhe Wang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Jilei Li
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Shasha Cao
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zihan Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yifan Bian
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yanchao Xu
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhang L, Fan Y, Yang Z, Wong CY, Yang M. A novel reactive oxygen species nano-amplifier for tumor-targeted photoacoustic imaging and synergistic therapy. J Colloid Interface Sci 2025; 681:331-343. [PMID: 39612665 DOI: 10.1016/j.jcis.2024.11.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Intracellular redox homeostasis and the type of exogenous Fenton reagent play crucial roles in determining the efficacy of chemodynamic therapy (CDT). Herein, we succeeded for the first time in preparing ultrasmall copper sulfide (CuS) nanodots (1-2 nm)-embedded hollow mesoporous organosilica nanoparticle (HMON), which served as an ideal nanocarrier to load both 3-amino-1,2,4-triazole (3-AT) and disulfiram (DSF) after folate-polyethylene glycol-silane (FA-PEG-Silane) modification. The as-prepared nanoplatform (3-AT/DSF@CuS/HMON-FA, denoted as ADCuSi-FA) was found to regulate intracellular redox homeostasis once internalized by 4T1 cells, showing rapid glutathione (GSH)-responsive 3-AT, DSF and Cu+ ions release. Specifically, 3-AT restrained the endogenous hydrogen peroxide (H2O2) consumption by suppressing catalase (CAT) activity, thereby augmenting hydroxyl radical (OH) generation via Cu+-based Fenton-like reaction. DSF, upon complexation with Cu2+, exhibited enhanced chemotherapeutic efficacy, while the by-product Cu+ ions further boosted the efficacy of CDT. Additionally, CuS nanodots enabled near-infrared-II (NIR-II) photothermal therapy (PTT) and facilitated photoacoustic (PA) imaging, with the ensuing hyperthermia expediting the CDT process. As expected, the tumor growth was dramatically inhibited with PTT/chemotherapy co-synergized CDT. This work offers an innovative paradigm for cooperative cancer treatment as well as new insights into the fabrication of biodegradable inorganic/organic hybrid materials.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
4
|
Zhang S, Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater 2025; 193:107-127. [PMID: 39800096 DOI: 10.1016/j.actbio.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy. STATEMENT OF SIGNIFICANCE: This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.
Collapse
Affiliation(s)
- Shufang Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
5
|
Wu X, Wu Q, Hou M, Jiang Y, Li M, Jia G, Yang H, Zhang C. Regenerating Chemotherapeutics through Copper-Based Nanomedicine: Disrupting Protein Homeostasis for Enhanced Tumor Therapy. Adv Healthc Mater 2024; 13:e2401954. [PMID: 39039985 DOI: 10.1002/adhm.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Indexed: 07/24/2024]
Abstract
The bis-(diethyldithiocarbamate)-copper (CuET), the disulfiram (DSF)-Cu complex, has exhibited noteworthy anti-tumor property. However, its efficacy is compromised due to the inadequate oxidative conditions and the limitation of bioavailable copper. Because CuET can inactivate valosin-containing protein (VCP), a bioinformatic pan-cancer analysis of VCP is first conducted in this study to identify CuET as a promising anticancer drug for diverse cancer types. Then, based on the drug action mechanism, a nanocomposite of CuET and copper oxide (CuO) is designed and fabricated utilizing bovine serum albumin (BSA) as the template (denoted as CuET-CuO@BSA, CCB). CCB manifests peroxidase (POD)-mimicking activity to oxidize the tumor endogenous H2O2 to generate reactive oxygen species (ROS), enhancing the chemotherapy effect of CuET. Furthermore, the cupric ions released after enzymatic reaction can regenerate CuET, which markedly perturbs intracellular protein homeostasis and induces apoptosis of tumor cells. Meanwhile, CCB triggers cuproptosis by inducing the aggregation of lipoylated proteins. The multifaceted action of CCB effectively inhibits tumor progression. Therefore, this study presents an innovative CuET therapeutic strategy that creates an oxidative microenvironment in situ and simultaneously self-supply copper source for CuET regeneration through the combination of CuO nanozyme with CuET, which holds promise for application of CuET for effective tumor therapy.
Collapse
Affiliation(s)
- Xubo Wu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinghe Wu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mengfei Hou
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yifei Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meng Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guoping Jia
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huizhen Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunfu Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
6
|
Liang S, Wang J, Zhu W, Zhang L. Glutathione-responsive biodegradable nanohybrid for cancer photoacoustic imaging and gas-assisted photothermal therapy. Colloids Surf B Biointerfaces 2024; 245:114205. [PMID: 39241634 DOI: 10.1016/j.colsurfb.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Photothermal therapy (PTT), particularly in the near-infrared-II (NIR-II) range, has attracted widespread attention over the past years. However, the accompanied inflammatory responses can result in undesirable side effects and contribute to treatment ineffectiveness. Herein, we introduced a novel biodegradable nanoplatform (CuS/HMON-PEG) capable of PTT and hydrogen sulfide (H2S) generation, aimed at modulating inflammation for improved cancer treatment outcomes. The embedded ultrasmall copper sulphide (CuS) nanodots (1-2 nm) possessed favorable photoacoustic imaging (PAI) and NIR-II photothermal capabilities, rendering CuS/HMON-PEG an ideal phototheranostic agent. Upon internalization by 4T1 cancer cells, the hollow mesoporous organosilica nanoparticle (HMON) component could react with the overproduced glutathione (GSH) to produce H2S. In addition to the anticipated photothermal tumor ablation and H2S-induced mitochondrial dysfunction, the anti-inflammatory regulation was also been demonstrated by the downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β). More importantly, the modulation of inflammation also promoted wound healing mediated by PTT. This work not only presents a H2S-based nanomodulator to boost NIR-II PTT but also provides insights into the construction of novel organic/inorganic hybrid nanosystems.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingjing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
7
|
Zhou L, Wu Y, Bai Z, Bian J, Xie H, Chen C. Effects of 10-MDP calcium salt on osteoblasts and fibroblasts. Dent Mater 2024; 40:1322-1331. [PMID: 38876824 DOI: 10.1016/j.dental.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE 10-methacryloyloxidecyl dihydrogen phosphate monomer (10-MDP) is commonly used as a bonding monomer in universal adhesives. Adhesives that contain this monomer can directly contact the surrounding periodontium due to the chemical binding of 10-MDP with hydroxyapatite in hard tissue to form calcium salts. However, the effect of these calcium salts on the periodontium in the case of subgingival fillings remains poorly understood. The objective of this study was to investigate effects of 10-MDP calcium salts on osteoblasts and fibroblasts in the periodontal tissues. METHODS This study investigated the effects of different concentrations of 10-MDP calcium salts on the migration, proliferation, and differentiation of osteoblasts (MC3T3-E1) and fibroblasts (L929); additionally, the effect on apoptosis and matrix metalloproteinases (MMPs) expression in these cells was evaluated. Cell proliferation assay, alkaline phosphatase (ALP) activity assay, Western blotting, and quantitative real-time polymerase chain reaction were performed to determine the effects. RESULTS The 10-MDP calcium salts (within a concentration of 0.5 mg/mL) showed no cytotoxicity and did not seem to influence the apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) levels in the cells. However, they had an inhibitory effect on the secretion of MMP2 and MMP9 in the osteoblasts and fibroblasts. The ALP activity assay and Alizarin Red staining did not reveal any significant effects of the 10-MDP calcium salts on osteoblast differentiation. SIGNIFICANCE These results suggest that applying 10-MDP-containing adhesives to subgingival fillings may be safe and beneficial for the periodontal tissues.
Collapse
Affiliation(s)
- Lvhui Zhou
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yumin Wu
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zehua Bai
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Bian
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haifeng Xie
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| |
Collapse
|
8
|
Zhang N, Ping W, Suo M, Zhang Z, Zhang W, Zhang T, Ning S, Tang BZ. Biomimetic Nanosystem Loading Aggregation-Induced Emission Luminogens and SO 2 Prodrug for Inhibiting Insufficient Photothermal Therapy-Induced Breast Cancer Recurrence and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405575. [PMID: 39033534 PMCID: PMC11425245 DOI: 10.1002/advs.202405575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Photothermal therapy (PTT) holds considerable clinical promise. However, insufficient PTT-induced tumor recurrence and metastasis is an urgent practical problem that needs to be solved. Herein, a biomimetic mesoporous organosilicon nano-system called PSAB is designed to precisely deplete cancer stem cells (CSCs) and prevent tumor recurrence and metastasis after PTT. The PSAB system is made up of Aggregation-induced emission (AIE)-active photothermal agent, 2TT-oC26B, and SO2 prodrug, benzothiazole sulfinate (BTS), within mesoporous organosilicon nanoparticles (MON) enclosed by an exterior platelet membrane. PSAB effectively targets CSCs both in vitro and in vivo by P-selectin/CD44 interaction. The degradation of MON and subsequent release of BTS and AIE molecules are facilitated by intracellular glutathione (GSH). Subsequently, the acidic tumor environment triggers the SO2 gas therapy from BTS. This process leads to the depletion of GSH and CSCs elimination. After combining PSAB with photothermal therapy, there is no significant tumor recurrence or metastasis. These results indicate that SO2 gas therapy and AIE-mediated PTT act synergistically to offer a unique approach for preventing tumor recurrence and metastasis after PTT, thus holding significant promise for clinical applications in cancer PTT.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Wei Ping
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Meng Suo
- School of Biomedical EngineeringAffiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhou511436China
| | - Zeyuan Zhang
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Wenhai Zhang
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Tianfu Zhang
- School of Biomedical EngineeringAffiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhou511436China
| | - Shipeng Ning
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
9
|
Guo Y, Lv T, Li Z, Wei X, Yang C, Li W, Hou X, Wang Z, Qian R. Acidity-activatable dynamic hybrid nanoplatforms derived from extracellular vesicles of M1 macrophages enhance cancer immunotherapy through synergistic triple immunotherapy. J Nanobiotechnology 2024; 22:430. [PMID: 39033108 PMCID: PMC11264854 DOI: 10.1186/s12951-024-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Immunotherapy exhibits considerable promise for sustained tumor reduction. However, current cancer immunotherapy methods elicit limited responses due to the inadequate immunogenicity exhibited by cancer cells. This obstacle may be addressed using nanoplatforms that can activate synergistic therapies (photodynamic therapy and ferroptosis) in response to the acidic pH of the tumor microenvironment. We previously developed an amphiphilic photosensitizer, SR780, which displays satisfactory photodynamic effects. This photosensitizer is inactivated when bound to Fe3+ (SR780Fe) but is activated upon release in mildly acidic conditions. In this study, M1 macrophage-derived extracellular vesicles (EVs) were fused with REV and SR780Fe-loaded liposomes (REV@SR780Fe@Lip) to form REV@SR780Fe@LEV hybrid nanovesicles. Further modification with the RS17 peptide for tumor targeting enabled a combination of photodynamic therapy, ferroptosis, and cGAS-STING pathway activation, resulting in enhanced antitumor efficacy through a synergistic effect. Upon laser irradiation, REV@SR780Fe@LEV-RS17 demonstrated antitumor effects in 4T1 breast cancer models, including the inhibition of lung and liver metastasis, as well as prevention of tumor recurrence.
Collapse
Affiliation(s)
- Yawen Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Tingting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zijie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xin Wei
- Department of Ultrasound, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chunwang Yang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoming Hou
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|
10
|
Lin X, Chen H, Deng T, Cai B, Xia Y, Xie L, Wang H, Huang C. Improved Immune Response for Colorectal Cancer Therapy Triggered by Multifunctional Nanocomposites with Self-Amplifying Antitumor Ferroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13481-13495. [PMID: 38456402 DOI: 10.1021/acsami.3c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ferroptosis, as a type of regulated cell death, can trigger the release of damage-associated molecular patterns from cancer cells and lead to the enhancement of immune recognition. Fenton reaction-mediated chemodynamic therapy could initiate ferroptosis by generating lipid peroxides, but its efficiency would be greatly restricted by the insufficient H2O2 and antioxidant system within the tumor. Herein, this work reports the successful preparation of H2O2 self-supplied and glutathione (GSH)-depletion therapeutic nanocomposites (Cu2O@Au) through in situ growth of Au nanoparticles on the surface of cuprous oxide (Cu2O) nanospheres. Upon delivery into cancer cells, the released Cu2O could consume endogenous H2S within colorectal cancer cells to form Cu31S16 nanoparticles, while the released Au NPs could catalyze glucose to generate H2O2 and gluconic acid. The self-supplying endogenous H2O2 and lower acidity could amplify the Cu ion-induced Fenton-like reaction. Meanwhile, the consumption of glucose would reduce GSH generation by disrupting the pentose phosphate pathway. Additionally, the Cu2+/Cu+ catalytic cycle promotes the depletion of GSH, leading to lipid peroxide accumulation and ferroptosis. It was found that the onset of ferroptosis triggered by Cu2O@Au could initiate immunologic cell death, promote dendritic cell maturation and T-cell infiltration, and finally enhance the antitumor efficacy of the PD-L1 antibody. In summary, this collaborative action produces a remarkable antitumor effect, which provides a promising treatment strategy for colorectal cancer.
Collapse
Affiliation(s)
- Xiaosheng Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hongwu Chen
- Shantou University Medical College, Shantou 515041, China
| | - Tingting Deng
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Binghui Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yubin Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lei Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Huaiming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Cong Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
11
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Zhang J, Tang K, Liu Z, Zhang Z, Duan S, Wang H, Yang H, Yang D, Fan W. Tumor microenvironment-responsive degradable silica nanoparticles: design principles and precision theranostic applications. NANOSCALE HORIZONS 2024; 9:186-214. [PMID: 38164973 DOI: 10.1039/d3nh00388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability. In this review, we provide a comprehensive understanding of degradable silica nanoparticles, categorizing them into two distinct groups: inorganic species-doped and organic moiety-doped silica nanoparticles based on their framework components. Next, the recent progress of tumor microenvironment (TME)-responsive degradable silica nanoparticles for precision theranostic applications is summarized in detail. Finally, current bottlenecks and future opportunities of theranostic nanomedicines based on degradable silica nanoparticles in clinical applications are also outlined and discussed. The aim of this comprehensive review is to shed light on the potential of degradable silica nanoparticles in addressing current challenges in nanomedicine, offering insights into their design, applications in tumor diagnosis and treatment, and paving the way for future advancements in clinical theranostic nanomedicines.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Shufan Duan
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Dongliang Yang
- Nanjing Polytechnic Institute, Nanjing 210048, P. R. China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
13
|
Xie X, Wang K, Zeng J, Xu MY, Qu XH, Xiang ZB, Tou FF, Huang S, Han XJ. A novel polymer enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy. J Nanobiotechnology 2023; 21:497. [PMID: 38124097 PMCID: PMC10734082 DOI: 10.1186/s12951-023-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor-donor acceptor' donor-acceptor (A-DA'D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment. Scheme 1 PYT enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Xin Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ke Wang
- Department of Clinical Laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jie Zeng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Miao-Yan Xu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zheng-Bin Xiang
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fang-Fang Tou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaorong Huang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
14
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
15
|
Song M, Li L, Liu J, Gao Y, Li M, Zhou L, Qin B, Xiang A, Sun X, Fan W, Lei Y, Chen X. Peroxynitrite-Scavenging Organosilica Nanomedicines for Light-Controllable NO Release and Precision On-Demand Glaucoma Therapy. ACS NANO 2023; 17:20979-20990. [PMID: 37906948 DOI: 10.1021/acsnano.3c02685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Nitric oxide (NO) is a promising approach for treating ocular hypertension and glaucoma. However, its clinical application is limited by its uncontrollable release and the unwanted overproduction of peroxynitrite. Herein, a denitrifying hollow mesoporous organosilica nanoparticle (HMMN) with framework cohybridization is first constructed to encapsulate S-nitroso-N-acetyl-d,l-penicillamine (SNAP) to produce SNAP@HMMN with dual capacities of selective peroxynitrite removal and controllable NO release. Featuring a large corneal permeability, the well-designed SNAP@HMMN can achieve trans-corneal delivery to reach the target trabecular meshwork (TM)/Schlemm's canal (SC) site. Upon light irradiation, the intraocular pressure (IOP) is appropriately lowered in an adjustable and long-lasting manner while the outflow tissues are protected from nitrative damage, which is expected to realize precision on-demand glaucoma therapy with little biosafety concern, promising significant clinical translational potential.
Collapse
Affiliation(s)
- Maomao Song
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Jiamin Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Yanting Gao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, People's Republic of China
| | - Mengwei Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Liming Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Bo Qin
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Ajun Xiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, People's Republic of China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, People's Republic of China
- NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical, and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
16
|
Ma J, Li N, Wang J, Liu Z, Han Y, Zeng Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. EXPLORATION (BEIJING, CHINA) 2023; 3:20220161. [PMID: 37933283 PMCID: PMC10582616 DOI: 10.1002/exp.20220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near-infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in PTT. In this review, we aimed to discuss the synergism between tumor PTT with CuS NPs and other therapies such as chemotherapy, radiotherapy, dynamic therapies (photodynamic, chemodynamic, and sonodynamic therapy), immunotherapy, gene therapy, gas therapy, and magnetic hyperthermia. Furthermore, we summarized the results obtained with a combination of two treatments and at least two therapies, with PTT as one of the included therapies. Finally, we summarized the benefits and drawbacks of various therapeutic options and state of the art CuS-based PTT and provided future directions for such therapies.
Collapse
Affiliation(s)
- Jingwen Ma
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Na Li
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Jingjian Wang
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Zhe Liu
- Department of PathologyNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Yulong Han
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Yun Zeng
- School of Life Science and TechnologyXidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of EducationXi'anShaanxi ProvinceP. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans‐Scale Life Information, School of Life Science and TechnologyXidian UniversityXi'anShaanxi ProvinceP. R. China
| |
Collapse
|
17
|
Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang L, Li Z, Wang W, Li G, Zhao B, Guo W, Hu Y. Cancer Immunotherapy Based on Cell Membrane-Coated Nanocomposites Augmenting cGAS/STING Activation by Efferocytosis Blockade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302758. [PMID: 37381095 DOI: 10.1002/smll.202302758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Innate immunity triggered by the cGAS/STING pathway has the potential to improve cancer immunotherapy. Previously, the authors reported that double-stranded DNA (dsDNA) released by dying tumor cells can trigger the cGAS/STING pathway. However, owing to efferocytosis, dying tumor cells are engulfed and cleared before the damaged dsDNA is released; hence, immunologic tolerance and immune escape occur. Herein, a cancer-cell-membrane biomimetic nanocomposites that exhibit tumor-immunotherapeutic effects are synthesized by augmenting the cGAS/STING pathway and suppressing efferocytosis. Once internalized by cancer cells, a combined chemo/chemodynamic therapy would be triggered, which damages their nuclear and mitochondrial DNA. Furthermore, the releasing Annexin A5 protein could inhibit efferocytosis effect and promote immunostimulatory secondary necrosis by preventing phosphatidylserine exposure, resulting in the burst release of dsDNA. These dsDNA fragments, as molecular patterns to immunogenic damage, escape from the cancer cells, activate the cGAS/STING pathway, enhance cross-presentation inside dendritic cells, and promote M1-polarization of tumor-associated macrophages. In vivo experiments suggest that the proposed nanocomposite could recruit cytotoxic T-cells and facilitate long-term immunological memory. Moreover, when combined with immune-checkpoint blockades, it could augment the immune response. Therefore, this novel biomimetic nanocomposite is a promising strategy for generating adaptive antitumor immune responses.
Collapse
Affiliation(s)
- Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Experiment Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
18
|
Tang S, Zhang J, Zhang L, Zhao Y, Xiao L, Zhang F, Li Q, Yang Y, Liu Q, Xu J, Li L. Knockdown of CXCL1 improves ACLF by reducing neutrophil recruitment to attenuate ROS production and hepatocyte apoptosis. Hepatol Commun 2023; 7:e0257. [PMID: 37708451 PMCID: PMC10503672 DOI: 10.1097/hc9.0000000000000257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is an acute decompensated syndrome based on chronic liver disease, while neutrophil recruitment is the most critical early step. C-X-C motif chemokine ligand 1 (CXCL1), a cytokine that recruits neutrophils, was significantly upregulated in both ACLF mice and patients with ACLF. This present study aims to explore the role of CXCL1 in the pathogenesis of ACLF. METHODS We established an ACLF mouse model induced by carbon tetrachloride, lipopolysaccharide, and D-galactosamine, and used adeno-associated virus to achieve overexpression and knockdown of Cxcl1. We employed mass cytometry, flow cytometry, multiplex cytokine and chemokine analysis, Western blot, and reactive oxygen species (ROS) detection in mice blood and liver. ACLF patients (n = 10) and healthy controls (n = 5) were included, and their liver samples were stained using multiplex immunohistochemistry techniques. RESULTS CXCL1 was significantly elevated in both ACLF mice and patients. CXCL1 recruits neutrophils by binding to the C-X-C motif chemokine receptor 2 on the surface of neutrophils, affects ACLF prognosis by generating ROS and mitochondrial depolarization and modulating caspase3-related apoptotic pathways. We found that the knockdown of CXCL1 attenuated the infiltration of neutrophils in the mouse liver, reduced the expression of inflammatory cytokines, and also significantly downregulated ROS production and caspase3-related hepatocyte apoptosis, thereby ameliorating the liver injury of ACLF. CONCLUSIONS CXCL1 is a core player in the mobilization of neutrophils in ACLF, and the knockdown of Cxcl1 improves neutrophil infiltration, reduces ROS levels, and reduces hepatocyte apoptosis, thereby attenuating inflammation and liver injury in ACLF. Our results revealed a previously unknown link between CXCL1-induced neutrophil recruitment and ACLF, providing evidencing for potential therapies targeting ACLF.
Collapse
Affiliation(s)
- Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junlei Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjian Zhang
- Department of Infectious Diseases, The Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxian Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana 121002 India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - V. Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302 Taiwan (ROC)
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| |
Collapse
|
20
|
Huang T, Xu X, Cheng C, Wang J, Yang L. Cooperative phototherapy based on bimodal imaging guidance for the treatment of uveal melanoma. J Nanobiotechnology 2023; 21:146. [PMID: 37143039 PMCID: PMC10161622 DOI: 10.1186/s12951-023-01891-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Uveal melanoma (UM) is adults' most common primary intraocular malignant tumor, prone to metastasis and high mortality. Eyeball enucleation commonly used in the clinic will lead to permanent blindness and mental disorders. Thus, new methods are urgently needed to diagnose and treat UM early to preserve patients' vision. METHODS AND RESULTS Herein, multifunctional nanoparticles (NPs) were synthesized by loading chlorin e6 (Ce6) in poly-lactic-co-glycolic acid (PLGA) NPs and wrapping FeIII-tannic acid (FeIII-TA) on the outside (FeIII-TA/PLGA/Ce6, designated as FTCPNPs). Then, the synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) antitumor effects of FTCPNPs excited by near-infrared (NIR) laser were evaluated. Moreover, we verified the mechanism of synergistic PTT/PDT leading to mitochondrial dysfunction and inducing tumor cell apoptosis. Additionally, FTCPNPs can be used as excellent magnetic resonance (MR)/photoacoustic (PA) imaging contrast agents, enabling imaging-guided cancer treatment. Finally, The NPs have good biological safety. CONCLUSION This noninvasive NIR light-triggered cooperative phototherapy can easily penetrate eye tissue and overcome the disadvantage of limited penetration of phototherapy. Therefore, cooperative phototherapy is expected to be used in fundus tumors. This treatment model is applied to UM for the first time, providing a promising strategy and new idea for integrating the diagnosis and treatment of UM.
Collapse
Affiliation(s)
- Tong Huang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinzhi Xu
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Chen Cheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jianxin Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China.
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
| |
Collapse
|
21
|
Wang H, Niu H, Luo X, Zhu N, Xiang J, He Y, Chen Z, Li G, Hu Y. Radiosensitizing effects of pyrogallol-loaded mesoporous or-ganosilica nanoparticles on gastric cancer by amplified ferroptosis. Front Bioeng Biotechnol 2023; 11:1171450. [PMID: 37143600 PMCID: PMC10151506 DOI: 10.3389/fbioe.2023.1171450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Radiotherapy (RT) incorporated multidisciplinary treatment is producing excellent clinical results, but its efficacy in treating late-stage gastric cancer is constrained by radioresistance and RT-related toxicity. Especially, since reactive oxygen species are the pivotal effectual molecules of ionizing radiation, improving ROS production by nanoparticles and other pharmacological modulation to amplify oxidation of polyunsaturated fatty acids and subsequent ferroptotic cell death is shown to enhance cancer cell radioresponse. Herein, we constructed a nanosystem by loading Pyrogallol (PG), a polyphenol compound and ROS generator, into mesoporous organosilica nanoparticles named as MON@pG. The nanoparticles exhibit proper size distribution with amplified ROS production and substantial glutathione depletion under X-ray radiation in gastric cancer cell line. Meanwhile, MON@PG enhanced radiosensitivity of gastric cancer in xenograft tumor model by ROS-mediated accumulation of DNA damage and apoptosis. Furthermore, this augmented oxidative process induced mitochondrial dysfunction and ferroptosis. In summary, MON@PG nanoparticles show the capacity to improve RT potency in gastric cancer by disrupting redox balance and augmenting ferroptosis.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Hongyan Niu
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xi Luo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfeng Xiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Zheng S, Hu H, Hou M, Zhu K, Wu Z, Qi L, Xia H, Liu G, Ren Y, Xu Y, Yan C, Zhao B. Proton pump inhibitor-enhanced nanocatalytic ferroptosis induction for stimuli-responsive dual-modal molecular imaging guided cancer radiosensitization. Acta Biomater 2023; 162:72-84. [PMID: 36931419 DOI: 10.1016/j.actbio.2023.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Although radiotherapeutic efficiency has been revealed to be positively correlated with ferroptosis, the neutral/alkaline cytoplasm pH value of tumor cells remains an intrinsic challenge for efficient Fenton/Fenton-like reaction-based ferroptosis induction. Herein, PEGylated hollow mesoporous organosilica nanotheranostics (HMON)-GOx@MnO2 nanoparticles (HGMP NPs) were designed as a ferroptosis inducer, which could specifically release Mn2+ in tumor cells to activate the Fenton-like reaction for ferroptosis induction. Proton pump inhibitors (PPIs) were synchronously administered for cytoplasm pH level regulation by inhibiting V-H+-ATPases activity, enhancing Fenton-like reaction-based ferroptosis induction. Moreover, reactive oxygen species production was facilitated via the glucose oxidase triggered cascade catalytic reaction by utilizing intracellular β-D-glucose for H2O2 self-supply and generation of additional cytoplasm H+. The PPI enhanced ferroptosis inducing nanosystem effectively inhibited tumor growth both in vitro and in vivo for tumor-specific ferroptosis induction and radiotherapy sensitization, suggesting that PPI administration could be an efficient adjuvant to reinforce Fenton/Fenton-like reaction-based ferroptosis induction for radiosensitization. STATEMENT OF SIGNIFICANCE: The cytoplasm pH value of tumor cells is typically neutral to alkaline, which is higher than that of the Fenton/Fenton-like reaction desired acidic environments, hindering its efficiency. In this study, PEGylated hollow mesoporous organosilica nanotheranostics (HMON)-GOx@MnO2 nanoparticles were synthesized as a ferroptosis inducer, which could specifically release Mn2+ via depleting glutathione and then activate the Fenton-like reaction in the tumor microenvironment. The glucose oxidase was applied for H2O2 self-supply and addition of cytoplasm H+ to further boost the Fenton-like reaction. We found that proton pump inhibitors (PPIs) increased intracellular acidification by inhibiting the activity of V-H+-ATPases to enhance the Fenton reaction-based ferroptosis induction, suggesting PPIs administration could be a feasible strategy to reinforce ferroptosis induction for radiosensitization.
Collapse
Affiliation(s)
- Shuting Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Honglei Hu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Kai Zhu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zede Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Hui Xia
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guoqiang Liu
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yunyan Ren
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Experiment Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
23
|
Ganji C, Muppala V, Khan M, Purnachandra Nagaraju G, Farran B. Mitochondrial-targeted nanoparticles: Delivery and therapeutic agents in cancer. Drug Discov Today 2023; 28:103469. [PMID: 36529353 DOI: 10.1016/j.drudis.2022.103469] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria are the powerhouses of cells and modulate the essential metabolic functions required for cellular survival. Various mitochondrial pathways, such as oxidative phosphorylation or production of reactive oxygen species (ROS) are dysregulated during cancer growth and development, rendering them attractive targets against cancer. Thus, the delivery of antitumor agents to mitochondria has emerged as a potential approach for treating cancer. Recent advances in nanotechnology have provided innovative solutions for overcoming the physical barriers posed by the structure of mitochondrial organelles, and have enabled the development of efficient mitochondrial nanoplatforms. In this review, we examine the importance of mitochondria during neoplastic development, explore the most recent smart designs of nano-based systems aimed at targeting mitochondria, and highlight key mitochondrial pathways in cancer cells.
Collapse
Affiliation(s)
- Chaithanya Ganji
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Veda Muppala
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Musaab Khan
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023; 11:1829-1848. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
25
|
Lv W, Wu H, Zhang Y, Li H, Shu H, Su C, Zhu Y, Wang T, Nie F. cRGD-targeted gold-based nanoparticles overcome EGFR-TKI resistance of NSCLC via low-temperature photothermal therapy combined with sonodynamic therapy. Biomater Sci 2023; 11:1677-1691. [PMID: 36625328 DOI: 10.1039/d2bm01825j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is a first-line targeted drug for the treatment of advanced non-small cell lung cancer (NSCLC) in clinical practice, but EGFR-TKI-acquired resistance limits its therapeutic effect. To address this challenge, a novel multifunctional gold-based targeted nanoparticle-based drug delivery system is fabricated. The gold-based nanoparticle is loaded with the EGFR-TKI (gefitinib) and IR780, and the surface-modified gold nanoshell layer has a photothermal effect for thermally triggered drug release. Finally, the unique binding of cyclic arginine-glycine-aspartic acid (cRGD) to the αvβ3 receptor ensured that the nanoparticle (cRGD-GIPG) targeted transport into drug-resistant NSCLC cells was functional. Due to the sonodynamic properties of IR780, ultrasound (US) irradiation promoted reactive oxygen species (ROS) generation, while low-temperature photothermal therapy (PTT) not only promoted the release of drug, but also further enhanced the cytotoxic effects of ROS. In turn, it blocked the activation of TGF-β/PDLIM5/SMAD resistance pathway and induced apoptosis of drug-resistant cells through mitochondrial apoptosis, enabling the treatment of EGFR-TKI-resistant NSCLC. The low-temperature PTT combined with sonodynamic therapy (SDT) by cRGD-GIPG thus shows potent anticancer activity against EGFR-TKI-resistant NSCLC cells in vitro and in vivo. The present work provides a valuable strategy for highly targeted and EGFR-TKI-resistant reversal therapy in NSCLC.
Collapse
Affiliation(s)
- Wenhao Lv
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, 730000, China
| | - Hao Wu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, 730000, China
| | - Yao Zhang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Hui Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Hong Shu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Chunhong Su
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Yangyang Zhu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, 730000, China
| | - Ting Wang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, 730000, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, 730000, China
| |
Collapse
|
26
|
Guo D, Dai X, Liu K, Liu Y, Wu J, Wang K, Jiang S, Sun F, Wang L, Guo B, Yang D, Huang L. A Self-Reinforcing Nanoplatform for Highly Effective Synergistic Targeted Combinatary Calcium-Overload and Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202424. [PMID: 36640265 DOI: 10.1002/adhm.202202424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Indexed: 01/15/2023]
Abstract
While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Guo
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyong Dai
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kewei Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuhong Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiamin Wu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Shengwei Jiang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fen Sun
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lijun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Laiqiang Huang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
28
|
Huang C, Lin B, Chen C, Wang H, Lin X, Liu J, Ren Q, Tao J, Zhao P, Xu Y. Synergistic Reinforcing of Immunogenic Cell Death and Transforming Tumor-Associated Macrophages Via a Multifunctional Cascade Bioreactor for Optimizing Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207593. [PMID: 36245299 DOI: 10.1002/adma.202207593] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Indexed: 02/05/2023]
Abstract
Immunogenic cell death (ICD) has aroused widespread attention because it can reconstruct a tumor microenvironment and activate antitumor immunity. This study proposes a two-way enhancement of ICD based on a CaO2 @CuS-MnO2 @HA (CCMH) nanocomposite to overcome the insufficient damage-associated molecular patterns (DAMPs) of conventional ICD-inducers. The near-infrared (NIR) irradiation (1064 nm) of CuS nanoparticles generates 1 O2 through photodynamic therapy (PDT) to trigger ICD, and it also damages the Ca2+ buffer function of mitochondria. Additionally, CaO2 nanoparticles react with H2 O to produce a large amount of O2 and Ca2+ , which respectively lead to enhanced PDT and Ca2+ overload during mitochondrial damage, thereby triggering a robust ICD activation. Moreover, oxidative-damaged mitochondrial DNA, induced by PDT and released from tumor cells, reprograms the immunosuppressive tumor microenvironment by transforming tumor-associated macrophages to the M1 subphenotype. This study shows that CCMH with NIR-II irradiation can elicit adequate DAMPs and an active tumor-immune microenvironment for both 4T1 and CT26 tumor models. Combining this method with an immune checkpoint blockade can realize an improved immunotherapy efficacy and long-term protection effect for body.
Collapse
Affiliation(s)
- Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaiming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xiaosheng Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
29
|
Xiao Y, Yao W, Lin M, Huang W, Li B, Peng B, Ma Q, Zhou X, Liang M. Icaritin-loaded PLGA nanoparticles activate immunogenic cell death and facilitate tumor recruitment in mice with gastric cancer. Drug Deliv 2022; 29:1712-1725. [PMID: 35635307 PMCID: PMC9176696 DOI: 10.1080/10717544.2022.2079769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore the anti-tumor effect of icaritin loading poly (lactic-co-glycolic acid) nanoparticles (refer to PLGA@Icaritin NPs) on gastric cancer (GC) cells. Transmission Electron Microscope (TEM), size distribution, zeta potential, drug-loading capability, and other physicochemical characteristics of PLGA@Icaritin NPs were carried out. Furthermore, flow cytometry, confocal laser scanning microscope (CLSM), Cell Counting Kit-8 (CCK-8), Transwell, Elisa assay and Balb/c mice were applied to explore the cellular uptake, anti-proliferation, anti-metastasis, immune response activation effects, and related anti-tumor mechanism of PLGA@Icaritin NPs in vitro and in vivo. PLGA@Icaritin NPs showed spherical shape, with appropriate particle sizes and well drug loading and releasing capacities. Flow cytometry and CLSM results indicated that PLGA@Icaritin could efficiently enter into GC cells. CCK-8 proved that PLGA@Icaritin NPs dramatically suppressed cell growth, induced Lactic dehydrogenase (LDH) leakage, arrested more GC cells at G2 phase, and inhibited the invasion and metastasis of GC cells, compared to free icaritin. In addition, PLGA@Icaritin could help generate dozens of reactive oxygen species (ROS) within GC cells, following by significant mitochondrial membrane potentials (MMPs) loss and excessive production of oxidative-mitochondrial DNA (Ox-mitoDNA). Since that, Ox-mitoDNA further activated the releasing of damage associated molecular pattern molecules (DAMPs), and finally led to immunogenic cell death (ICD). Our in vivo data also elaborated that PLGA@Icaritin exerted a powerful inhibitory effect (∼80%), compared to free icaritin (∼60%). Most importantly, our results demonstrated that PLGA@Icaritin could activate the anti-tumor immunity via recruitment of infiltrating CD4+ cells, CD8+ T cells and increased secretion of cytokine immune factors, including interferon-γ (IFN-γ) tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1).++ Our findings validate that the successful design of PLGA@Icaritin, which can effectively active ICD and facilitate tumor recruitment in GC through inducing mitoDNA oxidative damage.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Wenxia Yao
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Mingzhen Lin
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Wei Huang
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Ben Li
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Bin Peng
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510062, China
| | - Xinke Zhou
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| | - Min Liang
- Department of Oncology, Innovation centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China
| |
Collapse
|
30
|
Siddique S, Chow JCL. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2826. [PMID: 36014691 PMCID: PMC9416120 DOI: 10.3390/nano12162826] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 05/21/2023]
Abstract
Cancer theranostics is the combination of diagnosis and therapeutic approaches for cancer, which is essential in personalized cancer treatment. The aims of the theranostics application of nanoparticles in cancer detection and therapy are to reduce delays in treatment and hence improve patient care. Recently, it has been found that the functionalization of nanoparticles can improve the efficiency, performance, specificity and sensitivity of the structure, and increase stability in the body and acidic environment. Moreover, functionalized nanoparticles have been found to possess a remarkable theranostic ability and have revolutionized cancer treatment. Each cancer treatment modality, such as MRI-guided gene therapy, MRI-guided thermal therapy, magnetic hyperthermia treatment, MRI-guided chemotherapy, immunotherapy, photothermal and photodynamic therapy, has its strengths and weaknesses, and combining modalities allows for a better platform for improved cancer control. This is why cancer theranostics have been investigated thoroughly in recent years and enabled by functionalized nanoparticles. In this topical review, we look at the recent advances in cancer theranostics using functionalized nanoparticles. Through understanding and updating the development of nanoparticle-based cancer theranostics, we find out the future challenges and perspectives in this novel type of cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - James C L Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
31
|
Du Y, Wang S, Luan J, Zhang M, Chen B, Shen Y. GOx-Functionalized Platelet Membranes-Camouflaging Nanoreactors for Enhanced Multimodal Tumor Treatment. Int J Nanomedicine 2022; 17:2979-2993. [PMID: 35832118 PMCID: PMC9273187 DOI: 10.2147/ijn.s358138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Glucose oxidase (GOx)-based starvation therapy is a new cancer treatment strategy. However, the characteristics such as limited curative effect and hypoxic tumor environment hinder its further application seriously. Methods Herein, doxorubicin (DOX) loaded in hollow mesoporous copper sulfide (HMCuS) nanoparticles assembled with manganese dioxide (HMMD) as nanoshell was prepared. We developed a targeted enhanced cancer treatment method to camouflage HMMD by GOx-functionalized platelet (PLT) membranes (HMMD@PG). Results GOx can be specially transported to the tumor site with PLT membrane for effective starvation treatment. Glucose and oxygen (O2) in the tumor were converted to H2O2 under the catalysis of GOx. HMMD can catalyze H2O2 to produce O2 and consume glutathione (GSH) in time, which regulates the tumor microenvironment (TME) and improves the adverse conditions of anti-tumor. In addition, DOX encapsulated in HMCuS-MnO2 release was accelerated from the nanoparticles after the “gatekeeper” MnO2 is consumed. The study of anti-tumor mechanism shows that the remarkable tumor suppressive ability of HMMD@PG comes from the three peaks synergy of starvation treatment, photothermal treatment (PTT), and chemotherapy. This nanoplatform disguised by PLT membrane has significant tumor inhibition ability, good biocompatibility and almost has no side effects in main organs. Conclusion This work broadens the application mode of GOx and shows the new development of a multi-mode collaborative processing system of nanoplatforms based on cell membrane camouflage.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jianfeng Luan
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Meilin Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yanfei Shen
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Wang H, Tao J, Xu C, Tian Y, Lu G, Yang B, Teng Z. Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy. NANOSCALE 2022; 14:9702-9714. [PMID: 35766330 DOI: 10.1039/d2nr00258b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticle flexibility is an important parameter in determining cell uptake and tumor accumulation, thus modulating therapeutic efficiency in cancer treatment. Herein, we successfully prepared CuS-embedded human serum albumin hollow nanocapsules (denoted CuS/HSA) by a hard-core-assisted layer-by-layer coating approach. This approach afforded CuS/HSA hollow nanocapsules with controllable shell thickness, tunable flexibility, uniform size (272.9 nm), a large hollow cavity, peroxidase-like activity, excellent photothermal conversion ability, and a high tetra-(4-aminophenyl) porphyrin (TAPP) loading capacity (27.3 wt%). The peroxidase-like activity of the CuS nanoparticles enabled them to overcome tumor hypoxia and augment the sonodynamic therapeutic (SDT) effects and photothermal conversion ability for photothermal therapy (PTT). In vitro experiments showed that the CuS/HSA-TAPP hollow nanocapsules efficiently induced cancer cell apoptosis under US irradiation and cancer cell ablation under laser irradiation, thus facilitating synergistic SDT and PTT. Importantly, the flexibility of the CuS/HSA hollow nanocapsules resulted in significantly enhanced cellular internalization and a longer mean residence time (131.3 h) than their solid counterparts (21.0 h). In a breast tumor model, the flexible CuS/HSA hollow nanocapsules exhibited high tumor accumulation of up to 27.1%. In vivo experiments demonstrated that the flexible CuS/HSA-TAPP hollow nanocapsules effectively eliminated breast tumors via the synergistic effect of SDT and PTT.
Collapse
Affiliation(s)
- Haijiao Wang
- Department of Gynecology Oncology, The First Hospital of Jilin University, Changchun 130021, Jilin, P. R. China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| | - Chaoli Xu
- Department of Ultrasound Diagnostic, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, P. R. China.
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210029, Jiangsu, P. R. China
| | - Bin Yang
- Department of Ultrasound Diagnostic, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, P. R. China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| |
Collapse
|
33
|
Peng C, Liang Y, Su N, Chen S, Yuan Z, Chen Y, Wu D, Wu B, Zhang Y, Xu Z, Zheng S, Li Y, Zhao B. Dual nanoenzymes loaded hollow mesoporous organotantalum nanospheres for chemo-radio sensitization. J Control Release 2022; 347:369-378. [PMID: 35577149 DOI: 10.1016/j.jconrel.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Chemo-radiotherapy has been extensively used in clinics, displaying substantial advantages in treatment and prognosis. Stimuli-responsive biodegradable nanoagents that can achieve not only delivery and controlled release of chemotherapeutics, but also hypoxia alleviation to enhance chemoradiotherapy therefore has tremendous potential. Herein, glutathione (GSH)-responsive, biodegradable, doxorubicin-carrying hollow mesoporous organotantalum nanospheres modified with Au and Pt dual nanoenzymes (HMOTP@Pt@Au@Dox) were constructed for chemo-radio sensitization. Degradation of HMOTP@Pt@Au@Dox can be self-activated through GSH stimulation and on-demand release packaged Dox owing to the disulfide bond in the hybrid framework of organotantalum nanospheres. Au and Pt nanoenzymes triggered cascade catalytic reactions that could alleviate hypoxia by utilizing β-d-glucose and H2O2, thereby sensitizing ROS-based chemoradiotherapy with synergistic starving therapy. Given the radiosensitization of high-Z elements (Ta, Pt, Au), nanoenzymes induced cascade catalytic reaction for hypoxia relief, and the depletion of the predominant antioxidant GSH, desirable tumor suppression could be achieved both in vitro and in vivo, indicating that HMOTP@Pt@Au@Dox is a promising nanoagent to boost chemo-radiotherapy.
Collapse
Affiliation(s)
- Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Cerebrovascular Diseases, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519099, China.
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siwen Chen
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yanqun Chen
- Department of Oncology, Kiang Wu Hospital, Macau 999078, China
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bin Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yang Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - ZiTing Xu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
34
|
Xiao B, Cui Y, Li B, Zhang J, Zhang X, Song M, Li Y. ROS antagonizes the protection of Parkin-mediated mitophagy against aluminum-induced liver inflammatory injury in mice. Food Chem Toxicol 2022; 165:113126. [PMID: 35569598 DOI: 10.1016/j.fct.2022.113126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Aluminum (Al) is a food pollutant that has extensive deleterious effects on the liver. Our previous research proposed that E3 ubiquitin ligase PARK2 knockout (Parkin-/-) could aggravate Al-induced liver damage by inhibiting mitophagy, during which the reactive oxygen species (ROS) content increases. Inhibition of mitophagy can activate inflammasome. But the link between Parkin-mediated mitophagy and liver inflammatory injury caused by Al, and the role of ROS in it remain unclear. In this study, we applied Al, Parkin-/- and N-acetyl-L-cysteine (NAC) to act on C57BL/6N mice to investigate them. We found that Al could induce liver inflammatory injury and Parkin-/- could aggravate it. Meanwhile, inhibition of ROS alleviated oxidative stress, mitochondrial damage, mitophagy and inflammatory injury caused by Al in Parkin-/- mice liver. These results indicated that ROS antagonized the protection of Parkin-mediated mitophagy against Al-induced liver inflammatory damage in mice.
Collapse
Affiliation(s)
- Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
35
|
Xia Y, Li B, Zhang F, Wu Q, Wen S, Jiang N, Liu D, Huang C, Liu S. Hydroxyapatite nanoparticles promote mitochondrial-based pyroptosis via activating calcium homeostasis and redox imbalance in vascular smooth muscle cells. NANOTECHNOLOGY 2022; 33:5101. [PMID: 35344944 DOI: 10.1088/1361-6528/ac61ca] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/27/2022] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite nanoparticles (HAP) have been widely used in various fields because of their natural biological origin and functional properties. The emerging evidence on their toxicities has attracted research interest. HAP-induced vascular smooth muscle cell (VSMC) damage is a key step in vascular calcification (VC), particularly in patients with chronic kidney disease. However, the injury effects and mechanism of action of HAP on VSMCs have not been extensively investigated. This study comprehensively characterized commercially available HAP and investigated its adverse biological effects in cultured A7R5 cells.In vitroexperiments revealed that internalized HAP was localized in lysosomes, followed by the release of Ca2+owing to the low pH microenvironment. Upon Ca2+homeostasis, Ca2+enters the mitochondria, leading to the simultaneous generation of reactive oxygen species (ROS). ROS subsequently attack mitochondrial transmembrane potentials, promote mitochondrial ROS production, and oxidize mitochondrial DNA (Ox-mtDNA). Mitochondrial permeability-transition pores open, followed by the release of more Ox-mtDNA from the mitochondria into the cytosol due to the redox imbalance. This activates NLRP3/caspase-1/gasdermin D-dependent pyroptosis and finally excretes inflammatory factors to induce VC; an antioxidant could rescue this process. It has been suggested that HAP could induce an imbalance in intracellular Ca2+homeostasis in A7R5 cells, followed by the promotion of mitochondrial dysfunction and cell pyroptosis, finally enhancing VC. To detect thein vivotoxicity of HAP, mice were treated with Cy7-labelled HAP NPs for 24 h.In vivoresults also demonstrated that HAP accumulated in the kidneys, accompined with increased Ca concentration, upregulated oxidative stress-related factor and kidney damage. Overall, our research elucidates the mechanism of calcium homeostasis and redox imbalance, providing insights into the prevention of HAP-induced cell death.
Collapse
Affiliation(s)
- Yubin Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515100, People's Republic of China
| | - Bohou Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Fengxia Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Qiong Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Sichun Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Nan Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Ding Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Cong Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515100, People's Republic of China
| | - Shuangxin Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
36
|
Yang L, Wang J, Lv H, Ji XM, Liu JM, Wang S. Hollow-Structured Microporous Organic Networks Adsorbents Enabled Specific and Sensitive Identification and Determination of Aflatoxins. Toxins (Basel) 2022; 14:137. [PMID: 35202164 PMCID: PMC8875801 DOI: 10.3390/toxins14020137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin (AFT) contamination, commonly in foods and grains with extremely low content while high toxicity, has caused serious economic and health problems worldwide. Now researchers are making an effort to develop nanomaterials with remarkable adsorption capacity for the identification, determination and regulation of AFT. Herein, we constructed a novel hollow-structured microporous organic networks (HMONs) material. On the basis of Fe3O4@MOF@MON, hydrofluoric acid (HF) was introduced to remove the transferable metal organic framework (MOF) to give hollow MON structures. Compared to the original Fe3O4@MOF@MON, HMON showed improved surface area and typical hollow cavities, thus increasing the adsorption capacity. More importantly, AFT is a hydrophobic substance, and our constructed HMON had a higher water contact angle, greatly enhancing the adsorption affinity. From that, the solid phase extraction (SPE-HPLC) method developed based on HMONs was applied to analyze four kinds of actual samples, with satisfied recoveries of 85-98%. This work provided a specific and sensitive method for the identification and determination of AFT in the food matrix and demonstrated the great potential of HMONs in the field of the identification and control of mycotoxins.
Collapse
Affiliation(s)
| | | | | | | | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (L.Y.); (J.W.); (H.L.); (X.-M.J.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (L.Y.); (J.W.); (H.L.); (X.-M.J.)
| |
Collapse
|
37
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Li P, Lin B, Chen Z, Liu P, Liu J, Li W, Liu P, Guo Z, Chen C. Biodegradable hollow mesoporous organosilica nanotheranostics (HMONs) as a versatile platform for multimodal imaging and phototherapeutic-triggered endolysosomal disruption in ovarian cancer. Drug Deliv 2021; 29:161-173. [PMID: 34967262 PMCID: PMC8725973 DOI: 10.1080/10717544.2021.2021322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A major impediment in the development of nanoplatform-based ovarian cancer therapy is endo/lysosome entrapment. To solve this dilemma, a hollow mesoporous organosilica-based nanoplatform (HMON@CuS/Gd2O3) with a mild-temperature photothermal therapeutic effect and multimodal imaging abilities was successfully synthesized. HMON@CuS/Gd2O3 exhibited an appropriate size distribution, L-glutathione (GSH)-responsive degradable properties, and high singlet oxygen generation characteristics. In this study, the nanoplatform specifically entered SKOV-3 cells and was entrapped in endo/lysosomes. With a mild near infrared (NIR) power density (.5 W/cm2), the HMON@CuS/Gd2O3 nanoplatform caused lysosome vacuolation, disrupted the lysosomal membrane integrity, and exerted antitumour effects in ovarian cancer. Additionally, our in vivo experiments indicated that HMON@CuS/Gd2O3 has enhanced T1 MR imaging, fluorescence (FL) imaging (wrapping fluorescent agent), and infrared thermal (IRT) imaging capacities. Using FL/MRI/IRT imaging, HMON@CuS/Gd2O3 selectively caused mild phototherapy in the cancer region, efficiently inhibiting the growth of ovarian cancer without systemic toxicity in vivo. Taken together, the results showed that these well-synthesized nanoplatforms are likely promising anticancer agents to treat ovarian cancer and show great potential for biomedical applications.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhian Chen
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weili Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Xu Z, Deng B, Wang X, Yu J, Xu Z, Liu P, Liu C, Cai Y, Wang F, Zong R, Chen Z, Xing H, Chen G. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J Nanobiotechnology 2021; 19:404. [PMID: 34865643 PMCID: PMC8647563 DOI: 10.1186/s12951-021-01152-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic wound healing remains a challenge because of its susceptibility to drug-resistant bacterial infection and its persistent proinflammatory state. Switching from proinflammatory M1 macrophages (Mφs) to proregenerative M2 dominant Mφs in a timely manner accelerates wound healing by coordinating inflammatory, proliferative, and angiogenic processes. METHODS We propose a sequential photothermal antibacterial and subsequent M2 Mφ polarization strategy based on nanofibers (NFs) consisting of polydopamine (PDA) coating on curcumin (Cur) nanocrystals to treat Methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds. RESULTS The PDA/Cur NFs showed excellent photothermal conversion and antibacterial effects due to the PDA shell under laser irradiation, consequently resulting in the release of the inner Cur with the ability to promote cell proliferation and reinforce the M2 Mφ phenotype in vitro. In vivo studies on MRSA-infected diabetic wounds showed that PDA/Cur NFs not only inhibited MRSA infection but also accelerated the wound regeneration process. Furthermore, the NFs displayed the ability to promote the M2 Mφ phenotype with enhanced collagen deposition, angiogenesis, and cell proliferation. CONCLUSION Overall, the NFs displayed great potential as promising therapeutics for healing infected diabetic wounds through a sequential photothermal antibacterial and M2 Mφ polarization strategy.
Collapse
Affiliation(s)
- Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, China
| | - Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jie Yu
- Department of Traditional Chinese Medicine, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Penggang Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Caihong Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Cai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Fei Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hua Xing
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
40
|
Hu H, Deng X, Song Q, Yang W, Zhang Y, Liu W, Wang S, Liang Z, Xing X, Zhu J, Zhang J, Shao Z, Wang B, Zhang Y. Mitochondria-targeted accumulation of oxygen-irrelevant free radicals for enhanced synergistic low-temperature photothermal and thermodynamic therapy. J Nanobiotechnology 2021; 19:390. [PMID: 34823543 PMCID: PMC8620660 DOI: 10.1186/s12951-021-01142-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although lower temperature (< 45 °C) photothermal therapy (LPTT) have attracted enormous attention in cancer therapy, the therapeutic effect is still unsatisfying when applying LPTT alone. Therefore, combining with other therapies is urgently needed to improve the therapeutic effect of LPTT. Recently reported oxygen-irrelevant free radicals based thermodynamic therapy (TDT) exhibit promising potential for hypoxic tumor treatment. However, overexpression of glutathione (GSH) in cancer cells would potently scavenge the free radicals before their arrival to the specific site and dramatically diminish the therapeutic efficacy. METHODS AND RESULTS In this work, a core-shell nanoplatform with an appropriate size composed of arginine-glycine-aspartate (RGD) functioned polydopamine (PDA) as a shell and a triphenylphosphonium (TPP) modified hollow mesoporous manganese dioxide (H-mMnO2) as a core was designed and fabricated for the first time. This nanostructure endows a size-controllable hollow cavity mMnO2 and thickness-tunable PDA layers, which effectively prevented the pre-matured release of encapsulated azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIBI) and revealed pH/NIR dual-responsive release performance. With the mitochondria-targeting ability of TPP, the smart nanocomposites (AIBI@H-mMnO2-TPP@PDA-RGD, AHTPR) could efficiently induce mitochondrial associated apoptosis in cancer cells at relatively low temperatures (< 45 °C) via selectively releasing oxygen-irrelevant free radicals in mitochondria and facilitating the depletion of intracellular GSH, exhibiting the advantages of mitochondria-targeted LPTT/TDT. More importantly, remarkable inhibition of tumor growth was observed in a subcutaneous xenograft model of osteosarcoma (OS) with negligible side effects. CONCLUSIONS The synergistic therapy efficacy was confirmed by effectively inducing cancer cell death in vitro and completely eradicating the tumors in vivo. Additionally, the excellent biosafety and biocompatibility of the nanoplatforms were confirmed both in vitro and in vivo. Taken together, the current study provides a novel paradigm toward oxygen-independent free-radical-based cancer therapy, especially for the treatment of hypoxic solid tumors.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Xiangtian Deng
- School of Medicine, Nankai University, Tianjin, 300071 China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, 300071 China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zihui Liang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan, 430062 China
| | - Xin Xing
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Jian Zhu
- School of Medicine, Nankai University, Tianjin, 300071 China
| | - Junzhe Zhang
- School of Medicine, Nankai University, Tianjin, 300071 China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yingze Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| |
Collapse
|
41
|
Chen J, Yang Y, Lin B, Xu Z, Yang X, Ye S, Xie Z, Li Y, Hong J, Huang Z, Huang W. Hollow mesoporous organosilica nanotheranostics incorporating formimidoyltransferase cyclodeaminase (FTCD) plasmids for magnetic resonance imaging and tetrahydrofolate metabolism fission on hepatocellular carcinoma. Int J Pharm 2021; 612:121281. [PMID: 34774692 DOI: 10.1016/j.ijpharm.2021.121281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
The formimidoyltransferase cyclodeaminase (FTCD) gene encodes an enzyme required for the catabolism of histidine and tetrahydrofolate (THF). Previous studies showed that FTCD plays a role as a tumour suppressor gene in hepatocellular carcinoma (HCC). It is unknown whether the restoration of functional FTCD may exhibit an anti-tumour effect on HCC. This study constructed a delivery system based on hollow mesoporous organosilica nanotheranostics (HMON) capable of efficiently loading Mn ions and FTCD plasmids. This study showed that the Mn-doped and FTCD-loaded nanoparticles (HMON@Mn-PEI@FTCD) could efficiently induce the expression of FTCD and achieve enhanced magnetic resonance imaging. In vitro results demonstrated that the upregulation of FTCD induced by HMON@Mn-PEI@FTCD nanoparticles dramatically reduced intracellular THF levels, inhibited of NADPH/NADP+ and GSH/GSSG ratios, and induced reactive oxygen species generation and mitochondrial oxidative stress. As a result, cytochrome c release increased with the opening of the mitochondrial permeability transition pore, which finally activated the caspase-dependent cell apoptosis pathway. Therefore, our designed HMON@Mn-PEI@FTCD could induce apoptosis by activating the mitochondria-mediated apoptosis signalling pathway, and finally significantly suppressed the proliferation of HCC both in vitro and in vivo, which provides an effective strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China; National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China; Guangdong Doctoral Workstation, Chaozhou Central Hospital, Chaozhou 521000, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zexian Xu
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Xi Yang
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Shaoguang Ye
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Zhaoxiong Xie
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China.
| | - Jianwen Hong
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China; Guangdong Doctoral Workstation, Chaozhou Central Hospital, Chaozhou 521000, China.
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China; The third Affiliated Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
42
|
Zhou QM, Lu YF, Zhou JP, Yang XY, Wang XJ, Yu JN, Du YZ, Yu RS. Self-amplification of oxidative stress with tumour microenvironment-activatable iron-doped nanoplatform for targeting hepatocellular carcinoma synergistic cascade therapy and diagnosis. J Nanobiotechnology 2021; 19:361. [PMID: 34749740 PMCID: PMC8576982 DOI: 10.1186/s12951-021-01102-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma is insensitive to many chemotherapeutic agents. Ferroptosis is a form of programmed cell death with a Fenton reaction mechanism. It converts endogenous hydrogen peroxide into highly toxic hydroxyl radicals, which inhibit hepatocellular carcinoma progression. METHODS The morphology, elemental composition, and tumour microenvironment responses of various organic/inorganic nanoplatforms were characterised by different analytical methods. Their in vivo and in vitro tumour-targeting efficacy and imaging capability were analysed by magnetic resonance imaging. Confocal microscopy, flow cytometry, and western blotting were used to investigate the therapeutic efficacy and mechanisms of complementary ferroptosis/apoptosis mediated by the nanoplatforms. RESULTS The nanoplatform consisted of a silica shell doped with iron and disulphide bonds and an etched core loaded with doxorubicin that generates hydrogen peroxide in situ and enhances ferroptosis. It relied upon transferrin for targeted drug delivery and could be activated by the tumour microenvironment. Glutathione-responsive biodegradability could operate synergistically with the therapeutic interaction between doxorubicin and iron and induce tumour cell death through complementary ferroptosis and apoptosis. The nanoplatform also has a superparamagnetic framework that could serve to guide and monitor treatment under T2-weighted magnetic resonance imaging. CONCLUSION This rationally designed nanoplatform is expected to integrate cancer diagnosis, treatment, and monitoring and provide a novel clinical antitumour therapeutic strategy.
Collapse
Affiliation(s)
- Qiao-Mei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China
| | - Jia-Ping Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China
| | - Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China
| | - Xiao-Jie Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China
| | - Jie-Ni Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, People's Republic of China.
| |
Collapse
|
43
|
Guan L, Chen J, Tian Z, Zhu M, Bian Y, Zhu Y. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. VIEW 2021. [DOI: 10.1002/viw.20200117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lei Guan
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering Huanggang Normal University Huanggang Hubei Province China
| | - Min Zhu
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yuhai Bian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Yufang Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering Huanggang Normal University Huanggang Hubei Province China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| |
Collapse
|
44
|
Shan X, Zhang X, Wang C, Zhao Z, Zhang S, Wang Y, Sun B, Luo C, He Z. Molecularly engineered carrier-free co-delivery nanoassembly for self-sensitized photothermal cancer therapy. J Nanobiotechnology 2021; 19:282. [PMID: 34544447 PMCID: PMC8454134 DOI: 10.1186/s12951-021-01037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has been extensively investigated as a tumor-localizing therapeutic modality for neoplastic disorders. However, the hyperthermia effect of PTT is greatly restricted by the thermoresistance of tumor cells. Particularly, the compensatory expression of heat shock protein 90 (HSP90) has been found to significantly accelerate the thermal tolerance of tumor cells. Thus, a combination of HSP90 inhibitor and photothermal photosensitizer is expected to significantly enhance antitumor efficacy of PTT through hyperthermia sensitization. However, it remains challenging to precisely co-deliver two or more drugs into tumors. METHODS A carrier-free co-delivery nanoassembly of gambogic acid (GA, a HSP90 inhibitor) and DiR is ingeniously fabricated based on a facile and precise molecular co-assembly technique. The assembly mechanisms, photothermal conversion efficiency, laser-triggered drug release, cellular uptake, synergistic cytotoxicity of the nanoassembly are investigated in vitro. Furthermore, the pharmacokinetics, biodistribution and self-enhanced PTT efficacy were explored in vivo. RESULTS The nanoassembly presents multiple advantages throughout the whole drug delivery process, including carrier-free fabrication with good reproducibility, high drug co-loading efficiency with convenient dose adjustment, synchronous co-delivery of DiR and GA with long systemic circulation, as well as self-tracing tumor accumulation with efficient photothermal conversion. As expected, HSP90 inhibition-augmented PTT is observed in a 4T1 tumor BALB/c mice xenograft model. CONCLUSION Our study provides a novel and facile dual-drug co-assembly strategy for self-sensitized cancer therapy.
Collapse
Affiliation(s)
- Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
45
|
Zhang L, Fan Y, Yang Z, Yang M, Wong CY. NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy. J Nanobiotechnology 2021; 19:265. [PMID: 34488803 PMCID: PMC8420023 DOI: 10.1186/s12951-021-01003-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Though the combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) appears to be very attractive in cancer treatment, hypoxia and overproduced glutathione (GSH) in the tumor microenvironment (TME) limit their efficacy for further application. RESULTS In this work, a smart hypoxia-irrelevant free radical nanogenerator (AIPH/PDA@CuS/ZIF-8, denoted as APCZ) was synthesized in situ via coating copper sulphide (CuS)-embedded zeolitic imidazolate framework-8 (ZIF-8) on the free radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane]-dihydrochloride (AIPH)-loaded polydopamine (PDA). APCZ showed promising GSH-depleting ability and near-infrared (NIR)-II photothermal performance for combined cancer therapy. Once internalized by 4T1 cells, the outer ZIF-8 was rapidly degraded to trigger the release of CuS nanoparticles (NPs), which could react with local GSH and sequentially hydrogen peroxide (H2O2) to form hydroxyl radical (·OH) for CDT. More importantly, the hyperthermia generated by APCZ upon 1064 nm laser excitation not only permitted NIR-II photothermal therapy (PTT) and promoted CDT, but also triggered the decomposition of AIPH to give toxic alkyl radical (·R) for oxygen-independent PDT. Besides, the PDA together with CuS greatly decreased the GSH level and resulted in significantly enhanced PDT/CDT in both normoxic and hypoxic conditions. The tumors could be completely eradicated after 14 days of treatment due to the prominent therapeutic effects of PTT/PDT/CDT. Additionally, the feasibility of APCZ as a photoacoustic (PA) imaging contrast agent was also demonstrated. CONCLUSIONS The novel APCZ could realize the cooperative amplification effect of free radicals-based therapies by NIR-II light excitation and GSH consumption, and act as a contrast agent to improve PA imaging, holding tremendous potential for efficient diagnosis and treatment of deep-seated and hypoxic tumors.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR. .,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.
| |
Collapse
|
46
|
Yuan M, Liang S, Zhou Y, Xiao X, Liu B, Yang C, Ma P, Cheng Z, Lin J. A Robust Oxygen-Carrying Hemoglobin-Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. NANO LETTERS 2021; 21:6042-6050. [PMID: 34254814 DOI: 10.1021/acs.nanolett.1c01220] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of novel sonosensitizers with outstanding reactive oxygen (ROS) generation capacity and great biocompatibility poses a significant challenge for the clinical practice of sonodynamic therapy (SDT). In this work, hemoglobin (Hb) with natural metalloporphyrin was first shown to possess great potential as a sonosensitizer. Compared with traditional organic sonosensitizers, Hb had satisfactory sono-sensitizing efficiency because four the porphyrin molecules were separated by four polypeptide chains. This effectively avoided the problem of low ROS quantum yield caused by the stacking of hydrophobic porphyrins. Meanwhile, Hb is an efficient and safe oxygen carrier that may release O2 at hypoxic tumors site, which improved tumor oxygenation and subsequently enhanced SDT efficacy. Therefore, Hb was integrated with zeolitic imidazolate framework 8 (ZIF-8) to form a nanoplatform that demonstrated a potent suppression effect on deep-seated tumors under ultrasound irradiation.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ying Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
47
|
Liu M, Wu X, Cui Y, Liu P, Xiao B, Zhang X, Zhang J, Sun Z, Song M, Shao B, Li Y. Mitophagy and apoptosis mediated by ROS participate in AlCl 3-induced MC3T3-E1 cell dysfunction. Food Chem Toxicol 2021; 155:112388. [PMID: 34242719 DOI: 10.1016/j.fct.2021.112388] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
Aluminum (Al), as a common environmental pollutant, causes osteoblast (OB) dysfunction and then leads to Al-related bone diseases (ARBD). One of the mechanisms of ARBD is oxidative stress, which leads to an increase in the production of reactive oxygen species (ROS). ROS can induce mitochondrial damage, thereby inducing mitophagy and apoptosis. But whether mitophagy and apoptosis mediated by ROS, and the role of ROS in AlCl3-induced MC3T3-E1 cell dysfunction is still unclear. In this study, MC3T3-E1 cells used 0 mM Al (control group), 2 mM Al (Al group), 5 mM N-acetyl cysteine (NAC) (NAC group), 2 mM Al and 5 mM NAC (Al + NAC group) for 24 h. We found AlCl3-induced MC3T3-E1 cell dysfunction accompanied by oxidative stress, apoptosis, and mitophagy. While NAC, a ROS scavenger treatment, restored cell function and alleviated the mitophagy and apoptosis. These results suggested that mitophagy and apoptosis mediated by ROS participate in AlCl3-induced MC3T3-E1 cell dysfunction.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Xia Wu
- College of Food Science, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Zhuo Sun
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
48
|
Liu D, Huang H, Zhao B, Guo W. Natural Melanin-Based Nanoparticles With Combined Chemo/Photothermal/Photodynamic Effect Induce Immunogenic Cell Death (ICD) on Tumor. Front Bioeng Biotechnol 2021; 9:635858. [PMID: 33681171 PMCID: PMC7935529 DOI: 10.3389/fbioe.2021.635858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Melanin, as a natural product, has been used as an extraordinary ingredient for nanomedicine due to its great biocompatibility and light responsive property. In this study, polydopamine (PDA), an analog of melanin, was extracted from dopamine and encapsulated with doxorubicin (DOX). The as-prepared nanoparticles (NPs) with good stability, great biosafety and high near infrared (NIR) responsive property ameliorated the cell uptake of DOX in OS-RC-2/ADR cells, exhibited synergistic chemo/photothermal (PTT)/photodynamic (PDT) effects, induced the release of damage associated molecular patterns (DAMPs), and finally, led to immunogenic cell death (ICD). In general, it was suggested that PDA-DOX NPs with NIR irradiation could serve as a promising agent for tumor therapy.
Collapse
Affiliation(s)
- Ding Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|