1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Lozano-López DA, Hernández-Ortega LD, González-Mariscal L, Díaz-Coránguez M, Pinto-Dueñas DC, Castañeda-Arellano R. Preserving Blood-Brain Barrier Integrity in Ischemic Stroke: a Review on MSCs-sEVs Content and Potential Molecular Targets. Mol Neurobiol 2025:10.1007/s12035-025-04956-9. [PMID: 40259172 DOI: 10.1007/s12035-025-04956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Ischemic stroke (IS) is a life-threatening condition that constitutes the second leading cause of death globally. Despite its high impact on public health, there is a shortage of treatments due to the complexity of the cellular and molecular mechanisms implicated. One main limiting factor for successful IS therapeutic intervention is stroke-induced blood-brain barrier (BBB) damage, particularly over tight junction proteins (TJs). BBB disruption is a well-established feature of IS, accelerating ischemic tissue damage and worsening prognosis. In recent years, mesenchymal stem cells (MSCs) and their small extracellular vesicles (MSCs-sEVs) have emerged as promising therapeutic interventions for several neurological disorders, including IS. However, its effects on BBB repair after IS are not completely understood. In this review, we will discuss novel experimental evidence of MSCs-sEVs effects in BBB protection and highlight the relevance of molecules reported in MSCs-sEVs, their potential cellular and molecular targets, and putative mechanisms implicated in BBB repair, providing a promising research avenue that may translate into effective therapeutic strategies for IS.
Collapse
Affiliation(s)
- David Arturo Lozano-López
- Pharmacology Laboratory, Center for Multidisciplinary Health Research, University Center of Tonalá, University of Guadalajara, Guadalajara, México
| | - Luis Daniel Hernández-Ortega
- Molecular Biology Laboratory, Center for Multidisciplinary Health Research, University Center of Tonalá, University of Guadalajara, Guadalajara, México
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, México
| | - Mónica Díaz-Coránguez
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, México
| | - Diana Cristina Pinto-Dueñas
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, México
| | - Rolando Castañeda-Arellano
- Pharmacology Laboratory, Center for Multidisciplinary Health Research, University Center of Tonalá, University of Guadalajara, Guadalajara, México.
| |
Collapse
|
3
|
Sun Y, Wan G, Bao X. Extracellular Vesicles as a Potential Therapy for Stroke. Int J Mol Sci 2025; 26:3130. [PMID: 40243884 PMCID: PMC11989175 DOI: 10.3390/ijms26073130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Although thrombolytic therapy has enjoyed relative success, limitations remain, such as a narrow therapeutic window and inconsistent efficacy. Consequently, there is a pressing need to develop novel therapeutic approaches. In recent years, extracellular vesicles (EVs) have garnered increasing attention as a potential alternative to stem cell therapy. Because of their ability to cross the blood-brain barrier and exert neuroprotective effects in cerebral ischemia and hemorrhage, the exploration of EVs for clinical application in stroke treatment is expanding. EVs are characterized by high heterogeneity, with their composition closely mirroring that of their parent cells. This property enables EVs to distinguish between cerebral ischemia and hemorrhage, thus facilitating a more rapid and accurate diagnosis. Additionally, EVs can be engineered to carry specific molecules, such as miRNAs, targeting them to specific cells, potentially enhancing the therapeutic outcome and improving stroke prognosis. In this review, we will also explore the methodologies for the isolation and extraction of EVs, critically evaluating the advantages and disadvantages of various commonly employed separation techniques. Furthermore, we will briefly address current EV preservation and administration methods, providing a comprehensive overview of the state of EV-based therapies in stroke treatment.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.S.); (G.W.)
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.S.); (G.W.)
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.S.); (G.W.)
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100730, China
| |
Collapse
|
4
|
Hu J, Li Y, Quan X, Han Y, Chen J, Yuan M, Chen Y, Zhou M, Yu E, Zhou J, Wang D, Wang R, Zhao Y. Shengui Sansheng San alleviates the worsening of blood-brain barrier integrity resulted from delayed tPA administration through VIP/VIPR1 pathway. Chin Med 2025; 20:38. [PMID: 40102879 PMCID: PMC11916937 DOI: 10.1186/s13020-025-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Intravenous tissue plasminogen activator (tPA) is currently the only FDA-approved thrombolytic therapy for acute ischemic stroke (AIS), however, relative narrow therapeutic time window (within 4.5 h of AIS onset) and high risk of hemorrhagic transformation due to blood-brain barrier (BBB) disruption limit tPA therapeutic benefits for patients. In this study, we extended the time window of tPA administration (5 h after the occurrence of AIS) and investigated whether Chinese medicine classical formula Shengui Sansheng San (SSS) administration was able to alleviate BBB integrity worsening, and the mechanism was related to vasoactive intestinal peptide (VIP)/ VIP receptor 1 (VIPR1) pathway. METHODS SSS was extracted using aqueous heating method and SFE-CO2 technology, and quality control was performed using UHPLC/MS analysis. Male C57BL/6 mice were suffered from middle cerebral artery occlusion (MCAo), followed by the removal of a silicone filament after 5 h, then, t-PA was administered via tail vein injection at once, along with SSS administration by gavage. Hemoglobin levels and Evans blue leakage were measured to assess brain hemorrhagic transformation and BBB permeability, respectively. Transmission electron microscope (TEM) was utilized to present brain microvascular endothelial cells (BMECs) tight junction morphology. TTC staining and laser speckle contrast imaging were employed for infarct volume and cerebral blood flow measurements. The modified neurological severity score (mNSS) test was conducted to evaluate neurological function. The expressions of VIP, VIPR1, ZO-1, Occludin, Lectin, GFAP, NeuN were detected by immunofluorescence staining or western blotting. In vitro, bEnd.3 and N2a cells were insulted by oxygen-glucose deprivation (OGD), and VIPR1 siRNA, and VIP shRNA transfection were respectively performed, and the molecular docking was applied to verify the SSS in-serum active compounds interacted with VIPR1. The transwell system was utilized to detect OGD-insulted BMECs permeability. RESULTS SSS treatment significantly reduced the infarct area, cerebral hemorrhage, and neurological deficits, and enhanced cerebral blood flow in AIS mice received intravenous tPA beyond 4.5 h time window. Simultaneously, the permeability of BBB declined, with increased expressions of tight junction proteins ZO-1, and Occludin and proper BMECs tight junction morphology, and it suggested that VIP was released by neurons rather than astrocytes or BMECs. It also showed high expressions of VIP and VIPR1 in the penumbra area. The inhibition of VIP in N2a cells or VIPR1 in bEnd.3 cells abolished the viability and integrity of OGD-insulted bEnd.3 cells treated by tPA after SSS-containing serum administration, and the SSS in-serum active compounds were proved have high affinity to VIPR1 by molecular docking. CONCLUSION SSS alleviates the worsening of BBB integrity resulted from delayed tPA administration, reduces hemorrhagic transformation and infarction volume, and ameliorates brain blood flow and neurological function in AIS mice. The mechanisms are associated with the activation of VIP/VIPR1 pathway to enhance BMECs viability and maintain tight junction phenotype.
Collapse
Affiliation(s)
- Jiacheng Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Xingping Quan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People's Republic of China
| | - Jinfen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Mengchen Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Manfei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Enze Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Jiahao Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
| | - Dawei Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, People's Republic of China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China.
| |
Collapse
|
5
|
Yang Q, Li Y, Wang X, Ding Q, Tao Y, Li P, Lian X, Chen Y, Zhao L. A high cholesterol diet aggravates experimental colitis through SREBP2-modulated endocytosis and degradation of occludin and Zo-1 proteins. FEBS J 2025; 292:1052-1069. [PMID: 39279038 DOI: 10.1111/febs.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Disrupted cholesterol homeostasis plays a critical role in the development of multiple diseases, such as cardiovascular disease and cancer. However, the role of cholesterol in inflammatory bowel disease (IBD) remains unclear. In the present study, we investigated whether and how high levels of cholesterol in the diet affect experimental colitis in mice. A normal diet supplemented with 1.25% cholesterol (high cholesterol diet) caused more severe colitis and aggravated the disruption of intestinal tight junction structure, accompanied by higher colonic tissue total cholesterol (TC) levels in a dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Cholesterol aggravated DSS-induced intestinal epithelial barrier impairment and nuclear sterol regulatory element-binding protein 2 (nSREBP2) inhibition both in vivo and in vitro. In addition, nSREBP2 overexpression ameliorated cholesterol-induced intestinal epithelial barrier disruption in Caco2 cells. Interestingly, inhibition of SREBP2 disrupted intestinal epithelial barrier in the absence of cholesterol. Furthermore, SREBP2 regulated the protein expression of tight junction proteins (occludin/Zo-1) via modulating caveolin-1-mediated endocytosis and lysosomal degradation. Analysis of UK Biobank data indicated that, in fully adjusted models, higher serum TC concentrations were an independent protective factor for IBD incidence. The sterol regulatory element-binding factor 2 (SREBF2) gene rs2228313 (G/C) genetic variant was associated with the incidence of IBD and the CC genotype of SREBF2 rs2228313 was associated with higher serum TC levels and decreased the risk of IBD. In summary, a high cholesterol diet aggravates DSS-induced colitis in mice by down-regulating nSREBP2 expression, thereby promoting the endocytic degradation of tight junction proteins. In humans, SREBF2 gene single nucleotide polymorphism rs2228313 and serum TC levels are associated with IBD incidence.
Collapse
Affiliation(s)
- Qin Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
| | - Yongjia Li
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
| | - Xingxing Wang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
| | - Qiuying Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
| | - Yi Tao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, China
| | - Pan Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Xuemei Lian
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
- School of Public Health, Chongqing Medical University, China
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
| | - Lei Zhao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, China
| |
Collapse
|
6
|
Feng J, Yang Q, Chen M, Ning L, Wang Y, Luo D, Hu D, Lin Q, He F. Study of the correlation between the anti-ischemic stroke mechanism of 4-hydroxybenzaldehyde and its response to reactive oxygen species in brain metabolism. J Pharmacol Exp Ther 2025; 392:103395. [PMID: 40080989 DOI: 10.1016/j.jpet.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/24/2025] [Indexed: 03/15/2025] Open
Abstract
The active ingredient of Gastrodia elata, 4-hydroxybenzaldehyde (4-HBd), can rapidly enter the brain and undergo massive oxidation to produce the metabolite 4-hydroxybenzoic acid, which has no significant activity after equal dose gavage. It is crucial to clarify the metabolic pathway of 4-HBd and its correlation with the anti-ischemic stroke mechanism. The objective of this study was to explore the possible mechanism of 4-HBd in clearing reactive oxygen species (ROS) and protecting blood-brain barrier from oxidative stress damage during brain metabolism from the perspective of ROS response. A rat model of cerebral ischemia-reperfusion injury and a cellular oxidative stress response model were replicated to simulate the accumulation process of ROS in the brain. The changes in ROS and peroxidation products before and after 4-HBd intervention were detected, and the changes in oxidative metabolism were also measured to confirm the correlation between antioxidant stress damage and ROS capture/clearance in oxidative metabolism. 4-HBd has significant antioxidant stress resistance both in vitro and in vivo, and can reduce the levels of malondialdehyde and 4-hydroxy-2-nonenal in ischemic brain tissue. It can capture O2⋅- and ⋅OH in vitro and use the captured ROS to oxidize and metabolize 4-hydroxybenzoic acid. The oxidative metabolism process of 4-HBd in the brain is one of its mechanisms for exerting antioxidant stress damage and protecting blood-brain barrier. SIGNIFICANCE STATEMENT: The active ingredient 4-hydroxybenzaldehyde of Gastrodia elata can be converted into metabolite 4-hydroxybenzoic acid in the brain mainly through oxidative metabolic pathway. The mechanism of its action against oxidative stress damage of blood-brain barrier is related to the oxidative metabolic process in the brain that traps/clears reactive oxygen species and forms stable intermediates to terminate the free radical chain reaction. This is one of the main mechanisms of 4-hydroxybenzaldehyde's anti-ischemic stroke effect in the brain.
Collapse
Affiliation(s)
- Jin Feng
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Yang
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ming Chen
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Long Ning
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yan Wang
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dan Luo
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongxiong Hu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qing Lin
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China.
| | - Fangyan He
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
7
|
Sprincl V, Romanyuk N. miRNA in blood-brain barrier repair: role of extracellular vesicles in stroke recovery. Front Cell Neurosci 2025; 19:1503193. [PMID: 39990970 PMCID: PMC11842324 DOI: 10.3389/fncel.2025.1503193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Ischemic stroke is a leading cause of mortality and long-term disability globally. One of its aspects is the breakdown of the blood-brain barrier (BBB). The disruption of BBB's integrity during stroke exacerbates neurological damage and hampers therapeutic intervention. Recent advances in regenerative medicine suggest that mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) show promise for restoring BBB integrity. This review explores the potential of MSC-derived EVs in mediating neuroprotective and reparative effects on the BBB after ischemic stroke. We highlight the molecular cargo of MSC-derived EVs, including miRNAs, and their role in enhancing angiogenesis, promoting the BBB and neural repair, and mitigating apoptosis. Furthermore, we discuss the challenges associated with the clinical translation of MSC-derived EV therapies and the possibilities of further enhancing EVs' innate protective qualities. Our findings underscore the need for further research to optimize the therapeutic potential of EVs and establish their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Vojtech Sprincl
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Sandoval H, Ibáñez B, Contreras M, Troncoso F, Castro FO, Caamaño D, Mendez L, Escudero-Guevara E, Nualart F, Mistry HD, Kurlak LO, Vatish M, Acurio J, Escudero C. Extracellular Vesicles From Preeclampsia Disrupt the Blood-Brain Barrier by Reducing CLDN5. Arterioscler Thromb Vasc Biol 2025; 45:298-311. [PMID: 39665142 DOI: 10.1161/atvbaha.124.321077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The physiopathology of life-threatening cerebrovascular complications in preeclampsia is unknown. We investigated whether disruption of the blood-brain barrier, generated using circulating small extracellular vesicles (sEVs) from women with preeclampsia or placentae cultured under hypoxic conditions, impairs the expression of tight junction proteins, such as CLDN5 (claudin-5), mediated by VEGF (vascular endothelial growth factor), and activation of KDR (VEGFR2 [VEGF receptor 2]). METHODS We perform a preclinical mechanistic study using sEVs isolated from plasma of pregnant women with normal pregnancy (sEVs-NP; n=9), sEVs isolated from plasma of women with preeclampsia (sEVs-PE; n=9), or sEVs isolated from placentas cultured in normoxia (sEVs-Nor; n=10) or sEVs isolated from placentas cultured in hypoxia (sEVs-Hyp; n=10). The integrity of the blood-brain barrier was evaluated using in vitro (human [hCMEC/D3] and mouse [BEND/3 (brain endothelial cell 3)] brain endothelial cell lines) and in vivo (nonpregnant C57BL/6J mice [4-5 months old; n=13] injected with sEVs-Hyp) models. RESULTS sEVs-PE and sEVs-Hyp reduced total and membrane-associated protein CLDN5 levels (P<0.05). These results were negated with sEVs-PE sonication. sEVs-Hyp injected into nonpregnant mice generated neurological deficits and blood-brain barrier disruption, specifically in the posterior area of the brain, associated with brain endothelial cell uptake of sEVs, sEVs-Hyp high extravasation, and reduction in CLDN5 levels in the brain cortex. Furthermore, sEVs-PE and sEVs-sHyp had higher VEGF levels than sEVs-NP and sEVs-Nor. Human brain endothelial cells exposed to sEVs-PE exhibited a reduction in the activation of KDR. Reduction in CLDN5 observed in cells treated with sEVs-Hyp was further enhanced in cells treated with KDR selective inhibitor. CONCLUSIONS sEVs-PE disrupts the blood-brain barrier, an effect replicated with sEVs-Hyp, and involves reduced CLDN5 and elevated VEGF contained within these vesicles. However, our results do not support the participation of KDR activation in the downregulation of CLDN5 observed with sEVs-Hyp. These findings will improve our understanding of the pathophysiology of cerebrovascular alterations in women with preeclampsia.
Collapse
Affiliation(s)
- Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Belén Ibáñez
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Moisés Contreras
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Fidel O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Diego Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Lidice Mendez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Estefanny Escudero-Guevara
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
- PhD Program in Biomedical Sciences, Universidad de Talca, Chile (E.E.-G.)
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile (F.N.)
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA Bio-Bio, Faculty of Biological Sciences, University of Concepción, Chile (F.N.)
| | - Hiten D Mistry
- Division of Women and Children's Health, School of Life Course and Population Sciences, King's College London, United Kingdom (H.D.M.)
| | - Lesia O Kurlak
- Stroke Trials Unit, School of Medicine, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom (L.O.K.)
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V., C.E.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V., C.E.)
- Group of Research and Innovation in Vascular Health, Chillan, Chile (C.E.)
| |
Collapse
|
9
|
Chavarria D, Georges KA, O’Grady BJ, Hassan KK, Lippmann ES. Modular cone-and-plate device for mechanofluidic assays in Transwell inserts. Front Bioeng Biotechnol 2025; 13:1494553. [PMID: 39931136 PMCID: PMC11807968 DOI: 10.3389/fbioe.2025.1494553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
In this work, we present a cost effective and open-source modular cone-and-plate (MoCAP) device that incorporates shear stress in the popular Transwell® insert system. This system acts as a lid that incorporates flow into 24-well Transwell® inserts while preserving the ability to conduct molecular profiling assays. Moreover, the MoCAP device can be rapidly reconfigured to test multiple shear stress profiles within a single device. To demonstrate the utility of the MoCAP, we conducted select assays on several different brain microvascular endothelial cell (BMEC) lines that comprise models of the blood-brain barrier (BBB), since shear stress can play an important role in BBB function. Our results characterize how shear stress modulates passive barrier function and GLUT1 expression across the different BMEC lines. Overall, we anticipate this low cost mechanofluidic device will be useful to the mechanobiology community.
Collapse
Affiliation(s)
- Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kissamy A. Georges
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Khalid K. Hassan
- School for Science and Math at Vanderbilt, Vanderbilt University, Nashville, TN, United States
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
OuYang Y, Yi J, Chen B, Zeng F, Chen X, Yang H, Xu Y, Liu Z, Ning W, Liu B. Mechanism of Buyang Huanwu Decoction mediating Cav1-regulated Wnt pathway to promote neural regeneration in cerebral ischemic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119121. [PMID: 39551283 DOI: 10.1016/j.jep.2024.119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Promoting neural repair after cerebral ischemia (CI) is one of the important intervention strategies. Buyang Huanwu Decoction (BHD) is a traditional Chinese medicine prescription commonly used for the treatment of CI.Previous studies by the research group have shown that BHD can promote neural regeneration after CI. The core cause of motor, sensory, and autonomic dysfunction caused by CI injury is neuronal death. Promoting endogenous neural regeneration is of great significance for neural repair after CI. In this context, the Wnt pathway promotes endogenous neural regeneration worthy of attention. AIM OF THE STUDY This study aims to elucidate the mechanism by which BHD promotes neural regeneration after CI, focusing on how it mediates caveolin-1 (Cav1) to regulate the Wnt signaling pathway. MATERIALS AND METHODS Using the middle cerebral artery occlusion (MCAO) technique, a CI model was created. To establish the neuroprotective properties of BHD and determine the ideal therapeutic dosage for CI, neurobehavioral scores and pathological alterations were found across several groups of mice after varying doses of BHD were administered. Furthermore, Cav1 knockout (Cav1-/-) mice were used to confirm Cav1's function in BHD-mediated neuronal regeneration following CI. RESULTS In CI models, BHD was shown to enhance neural regeneration. In vivo research indicate that its mechanism of action is through Cav1 stimulation of the Wnt signaling pathway, which causes related brain-derived trophic factors to be upregulated. CONCLUSION This study confirmed, using knockout mice, that BHD promotes nerve regeneration following CI. The results indicate that Cav1 control of the Wnt signaling pathway is likely the mechanism by which this impact is mediated, so offering insights into the possible mechanism of action of BHD and reaffirming Cav1's function in brain regeneration following CI.
Collapse
Affiliation(s)
- Yin OuYang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China; Hunan Academy of Chinese Medicine, Changsha, 410000, China; Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Fanzuo Zeng
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China; Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Xuemei Chen
- Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Hua Yang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China; Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Yaqian Xu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Zhenkui Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 116600, China
| | - Wanling Ning
- Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha, 410000, China; Hunan University of Chinese Medicine, Changsha, 410000, China.
| |
Collapse
|
11
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
12
|
Zhou Y, Yang Y, Tian R, Cheang WS. Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro. Sci Rep 2025; 15:1542. [PMID: 39789118 PMCID: PMC11718003 DOI: 10.1038/s41598-025-85144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yifan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rui Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
13
|
Li Y, Quan X, Hu J, Han Y, Chen J, Zhou M, Zhang F, Yang Y, Liao M, Wang B, Zhao Y. BMSCs-derived small extracellular vesicles antagonize cerebral endothelial Caveolin-1 driven autophagic degradation of tight-junction proteins to protect blood-brain barrier post-stroke. Int J Biol Sci 2025; 21:842-859. [PMID: 39781452 PMCID: PMC11705626 DOI: 10.7150/ijbs.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function. Simultaneously, cerebral vascular endothelial overexpressed Caveolin-1 (Cav-1) together with its strong co-localization with autophagosome protein LC3B were suppressed, and ZO-1 and Occludin expressions were enhanced, whose results were consistent with those of oxygen-glucose-deprivation/reperfusion (OGD/R)-insulted brain endothelial cells (BECs) in vitro. Furthermore, by employing Cav-1 siRNA and pcDNA3.1 transfection, Co-immunoprecipitation, cycloheximide assay, and molecular docking, it proved that brain endothelial Cav-1 was an essential upstream of autophagy activation, contributing to tight-junction proteins delegation via the autophagy-lysosomal pathway. Altogether, our study demonstrates the novel mechanism of Cav-1-dependent tight-junction proteins autophagic disruption on BBB integrity after ischemic stroke, and BMSC-sEVs treatment can reverse such hazard cascades.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Jiacheng Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Fan Zhang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
| | - Yayue Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Mingchun Liao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Bin Wang
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
14
|
Yang TT, Liu Y, Shao YT, Li L, Pan DD, Wang T, Jiang ZZ, Li BJ, Qian ST, Yan M, Zhu X, Heng C, Liu JJ, Lu Q, Yin XX. Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells. Acta Pharmacol Sin 2024:10.1038/s41401-024-01421-6. [PMID: 39643641 DOI: 10.1038/s41401-024-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells. Our previous study showed that MST1 was involved in renal tubulointerstitial fibrosis of DKD. In the present study we investigated the role of MST1 in barrier function of GECs of DKD, and explored its regulatory mechanisms. In kidney tissue section of DKD patients and db/db mice, and high glucose (HG)-cultured mouse glomerular endothelial cells (mGECs), we showed that MST1 was inactivated in the GECs of DKD accompanied by disrupted glomerular endothelial barrier. In db/db mice and HG-cultured mGECs, knockdown of MST1 increased proteinuria levels, and disrupted glomerular endothelial barrier through decreasing TJs-related proteins, whereas MST1 overexpression restored glomerular endothelial barrier through regaining TJs-related proteins. In db/db mice and HG-cultured mGECs, we demonstrated that MST1 inhibition induced TJs's disruption of GECs via activating YAP1/TEAD signaling. Verteporfin (an inhibitor of YAP1-TEAD interaction) and PY-60 (a YAP1 agonist) were used to verify the role of YAP1/TEAD signaling in the regulation effect of MST1 on barrier function of mGECs. In conclusion, MST1 activation recovers glomerular endothelial barrier of DKD by regaining TJs-related proteins via inhibiting YAP1/TEAD signaling. This study highlights the multiple regulation of MST1 activation on kidney injury.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Department of Pharmacy, Yuncheng Central Hospital affiliated to Shanxi Medical University, Yuncheng, 044000, China
| | - Dan-Dan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhen-Zhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Si-Tong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang, 214500, China
| | - Jun-Jie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
15
|
Li J, Yang J, Jiang S, Tian Y, Zhang Y, Xu L, Hu B, Shi H, Li Z, Ran G, Huang Y, Ruan S. Targeted reprogramming of tumor-associated macrophages for overcoming glioblastoma resistance to chemotherapy and immunotherapy. Biomaterials 2024; 311:122708. [PMID: 39047538 DOI: 10.1016/j.biomaterials.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The resistance of glioblastoma multiforme (GBM) to standard chemotherapy is primarily attributed to the existence of tumor-associated macrophages (TAMs) in the GBM microenvironment, particularly the anti-inflammatory M2 phenotype. Targeted modulation of M2-TAMs is emerging as a promising strategy to enhance chemotherapeutic efficacy. However, combination TAM-targeted therapy with chemotherapy faces substantial challenges, notably in terms of delivery efficiency and targeting specificity. In this study, we designed a pH-responsive hierarchical brain-targeting micelleplex loaded with temozolomide (TMZ) and resiquimod (R848) for combination chemo-immunotherapy against GBM. This delivery system, termed PCPA&PPM@TR, features a primary Angiopep-2 decoration on the outer layer via a pH-cleavable linker and a secondary mannose analogue (MAN) on the middle layer. This pH-responsive hierarchical targeting strategy enables effective BBB permeability while simultaneous GBM- and TAMs-targeting delivery. GBM-targeted delivery of TMZ induces alkylation and triggers an anti-GBM immune response. Concurrently, TAM-targeted delivery of R848 reprograms their phenotype from M2 to pro-inflammatory M1, thereby diminishing GBM resistance to TMZ and amplifying the immune response. In vivo studies demonstrated that targeted modulation of TAMs using PCPA&PPM@TR significantly enhanced anti-GBM efficacy. In summary, this study proposes a promising brain-targeting delivery system for the targeted modulation of TAMs to combat GBM.
Collapse
Affiliation(s)
- Jianan Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Xu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiping Shi
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaohan Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyao Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shaobo Ruan
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
16
|
Li Y, Lu F, Zhang C, Xu H, Yang S. Dynamic susceptibility contrast-enhanced MRI with USPIO in evaluating angiogenesis of the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion rat model. Acta Radiol 2024; 65:1529-1539. [PMID: 39449316 DOI: 10.1177/02841851241290646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) can reflect the angiogenesis of ischemic stroke. PURPOSE To investigate the value of DSC-MRI with ultrasmall superparamagnetic particles of iron oxides (USPIO) in evaluating angiogenesis in the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion (pMCAO) rat model. MATERIAL AND METHODS A total of 21 Sprague-Dawley rats were randomly divided into the pMCAO and sham operation groups. Every rat in each group underwent DSC-MRI with USPIO at 3, 5, and 7 days. DSC-MRI parameters of the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), relative mean transit time (rMTT), and relative time to peak (rTTP) were measured, calculated, and compared among the different times. Sequential correlations were analyzed among the histopathological indexes with the microvascular density (MVD) and percentage of vascular area (%VA), the serum factors with vascular endothelial growth factor (VEGF), vascular cell adhesion molecule 1 (VCAM-1), and perfusion parameters, respectively. RESULTS The rCBV and rCBF in the peri-infarction area of pMCAO rats were significantly higher on day 7 than on day 3, whereas no significant changes in rMTT and rTTP were observed at 3, 5, and 7 days. Significantly positive correlations were found between rCBV and MVD, %VA, VEGF, VCAM-1, between rCBF and MVD, %VA, VEGF, and VCAM-1 at 3, 5, and 7 days in the pMCAO group. CONCLUSION The rCBV and rCBF deriving from USPIO-DSC may be potentially useful for evaluating the angiogenesis of the peri-infarction zones in the subacute phase of ischemic stroke.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Cheng Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Xu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
17
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Li F, Lu Y, Xi K, Li Y, Chen X, Wang P, Huang X. Interkingdom Communication via Extracellular Vesicles: Unraveling Plant and Pathogen Interactions and Its Potential for Next-Generation Crop Protection. Microorganisms 2024; 12:2392. [PMID: 39770594 PMCID: PMC11677615 DOI: 10.3390/microorganisms12122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recent advancements in the field of plant-pathogen interactions have spotlighted the role of extracellular vesicles (EVs) as pivotal mediators of cross-kingdom communication, offering new vistas for enhancing crop protection strategies. EVs are instrumental in the transport of small regulatory RNAs (sRNAs) and other bioactive molecules across species boundaries, thus playing a critical role in the molecular warfare between plants and pathogens. This review elucidates the sophisticated mechanisms by which plants utilize EVs to dispatch sRNAs that silence pathogenic genes, fortifying defenses against microbial threats. Highlighting both eukaryotic and prokaryotic systems, this review delves into the biogenesis, isolation, and functional roles of EVs, illustrating their importance not only in fundamental biological processes but also in potential therapeutic applications. Recent studies have illuminated the significant role of EVs in facilitating communication between plants and pathogens, highlighting their potential in host-defense mechanisms. However, despite these advancements, challenges remain in the efficient isolation and characterization of plant-derived EVs. Overcoming these challenges is critical for fully harnessing their potential in developing next-generation crop protection strategies. This review proposes innovative strategies for utilizing RNA-based interventions delivered via EVs to bolster plant resilience against diseases. By integrating the latest scientific findings with practical applications in agriculture, this review aims to enhance the connection between fundamental plant biology and the development of innovative crop management technologies.
Collapse
Affiliation(s)
- Fei Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuntong Lu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Kuanling Xi
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Yuke Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Xiaoyan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| |
Collapse
|
19
|
Zhang Y, Yang Q, Cheng H, Zhang Y, Xie Y, Zhang Q. Extracellular vesicles derived from endothelial progenitor cells modified by Houshiheisan promote angiogenesis and attenuate cerebral ischemic injury via miR-126/PIK3R2. Sci Rep 2024; 14:28166. [PMID: 39548169 PMCID: PMC11568282 DOI: 10.1038/s41598-024-78717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Angiogenesis following cerebral ischemia is crucial for restoring blood supply to the ischemic region. Extracellular vesicles (EVs) derived from endothelial progenitor cells (EPCs) offer potential therapeutic benefits in the treatment of cerebral ischemia. Houshiheisan (HSHS) has been shown to improve clinical outcomes in ischemic stroke patients, reduce cerebral ischemic damage in rats, and protect endothelial cells. However, the potential effects of HSHS-modified EPC-derived EVs (EVsHSHS) for cerebral ischemia remain unexplored. This study investigated the impact of EVsHSHS on angiogenesis using rats with permanent middle cerebral artery occlusion (pMCAO) and brain microvascular endothelial cells (BMECs) subjected to oxygen-glucose deprivation (OGD). Results demonstrated that EVsHSHS promoted the proliferation, migration, and tube formation of BMECs in vitro. In vivo, high doses of EVsHSHS exhibited better performance than equivalent doses of unmodified EPC-derived EVs in reducing cerebral infarction volume, improving cortical blood perfusion, decreasing neurological deficit scores, and increasing cortical microvessel density at day 7 post-modeling. The pro-angiogenic effects of EVsHSHS following cerebral ischemia were associated with the regulation of miR-126 and the PIK3R2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuyue Yang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hongfa Cheng
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yahui Xie
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuxia Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Quan X, Liu C, Chen J, Li Y, Yuan Z, Zheng Y, Mok GSP, Wang R, Zhao Y. Neutrophil-Mimetic Upconversion Photosynthetic Nanosystem Derived from Microalgae for Targeted Treatment of Thromboembolic Stroke. ACS NANO 2024; 18:30307-30320. [PMID: 39465976 DOI: 10.1021/acsnano.4c06247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Thromboembolic stroke constitutes the majority of brain strokes, resulting in elevated mortality and morbidity rates, as well as significant societal and economic burdens. Although intravenous thrombolysis serves as the standard clinical treatment, its narrow therapeutic window and the inflammatory response induced by tissue plasminogen activator (tPA) administration limit its efficacy. In the initial stages of stroke, the abrupt cessation of blood flow leads to an energy metabolism disorder, marked by a substantial decrease in adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) levels, causing irreversible damage to neural cells. In this study, we introduce a neutrophil-mimetic, microalgae-derived upconversion photosynthetic nanosystem designed for targeted treatment of thromboembolic stroke. This system features upconversion nanoparticles coated with a thylakoid membrane and wrapped in an activated neutrophil membrane, further decorated with ROS-responsive thrombolytic tPA on its surface. The neutrophil-mimetic design facilitates high targeting specificity and accumulation at the thrombus site after intravenous administration. Upon exposure to elevated levels of reactive oxygen species (ROS) at the thrombus location, the nanosystem promptly demonstrated potent thrombolytic efficacy through the surface-modified tPA. Furthermore, near-infrared II (NIR-II) laser irradiation activated the generation of ATP and NADPH, which inhibited inflammatory cell infiltration, platelet activation, oxidative stress, and neuronal injury. This constructed nanoplatform not only showcases exceptional targeting efficiency at the stroke site and controllable release of the thrombolytic agent but also facilitates ATP/NADPH-mediated thrombolytic, anti-inflammatory, antioxidative stress, and neuroprotective effects. Additionally, it offers valuable insights into the potential therapeutic applications of microalgae-based derivatives in managing thromboembolic stroke.
Collapse
Affiliation(s)
- Xingping Quan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Jinfen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, SAR 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Greta S P Mok
- Department of Electrical and Computer Engineering, University of Macau, Macau, SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| |
Collapse
|
21
|
Xu K, Zhao X, He Y, Guo H, Zhang Y. Stem cell-derived exosomes for ischemic stroke: a conventional and network meta-analysis based on animal models. Front Pharmacol 2024; 15:1481617. [PMID: 39508049 PMCID: PMC11537945 DOI: 10.3389/fphar.2024.1481617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of stem cell-derived exosomes for treating ischemic stroke and to screen for the optimal administration strategy. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases for relevant studies published from their inception to 31 December 2023. Conventional and network meta-analyses of the routes of administration, types, and immune compatibility of stem cell-derived exosomes were performed using the cerebral infarct volume (%) and modified neurological severity score (mNSS) as outcome indicators. Results A total of 38 randomized controlled animal experiments were included. Conventional meta-analysis showed that compared with the negative control group: intravenous administration significantly reduced the cerebral infarct volume (%) and mNSS; intranasal administration significantly reduced the cerebral infarct volume (%); and intracerebral administration significantly reduced the mNSS. Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos) and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos), induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural progenitor cell-derived exosomes (NPC-Exos) significantly reduced the cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no significant difference between urogenital stem cell-derived exosomes (USC-Exos) and negative controls. Engineered modified exosomes had better efficacy than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived exosomes significantly reduced the cerebral infarct volume (%) and the mNSS. The network meta-analysis showed that intravenous administration was the best route of administration for reducing the cerebral infarct volume (%) and mNSS. Among the 10 types of stem cell-derived exosomes that were administered intravenously, BMSC-Exos were the best type for reducing the cerebral infarct volume (%) and the mNSS. Allogeneic exosomes had the best efficacy in reducing the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes had the best efficacy in reducing the mNSS. Conclusion This meta-analysis, by integrating the available evidence, revealed that intravenous administration is the best route of administration, that BMSC-Exos are the best exosome type, that allogeneic exosomes have the best efficacy in reducing the cerebral infarct volume (%), and that xenogeneic exosomes have the best efficacy in reducing mNSS, which can provide options for preclinical studies. In the future, more high-quality randomized controlled animal experiments, especially direct comparative evidence, are needed to determine the optimal administration strategy for stem cell-derived exosomes for ischemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333.
Collapse
Affiliation(s)
- Kangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuxuan He
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongxin Guo
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
22
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
23
|
Xiao T, Yu X, Tao J, Yang L, Duan X. Metabolomics-Based Study of the Protective Effect of 4-Hydroxybenzyl Alcohol on Ischemic Astrocytes. Int J Mol Sci 2024; 25:9907. [PMID: 39337395 PMCID: PMC11432256 DOI: 10.3390/ijms25189907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Ischemic stroke is a common and dangerous disease in clinical practice. Astrocytes (ASs) are essential for maintaining the metabolic balance of the affected regions during the disease process. 4-Hydroxybenzyl alcohol (4HBA) from Gastrodia elata Bl. has potential neuroprotective properties due to its ability to cross the blood-brain barrier. In an in vitro experiment, we replicated the oxygen-glucose deprivation/reoxygenation model, and used methyl thiazoly tertrazolium, flow cytometry, kits, and other technical means to clarify the protective effect of 4HBA on primary ASs. In in vivo experiments, the 2VO model was replicated, and immunofluorescence and immunohistochemistry techniques were used to clarify the protective effect of 4HBA on ASs and the maintenance of the blood-brain barrier. Differential metabolites and related pathways were screened and verified using metabolomics analysis and western blot. 4HBA noticeably amplified AS cell survival, reduced mitochondrial dysfunction, and mitigated oxidative stress. It demonstrated a protective effect on ASs in both environments and was instrumental in stabilizing the blood-brain barrier. Metabolomic data indicated that 4HBA regulated nucleic acid and glutathione metabolism, influencing purines, pyrimidines, and amino acids, and it activated the N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway via N-methyl-D-aspartate R1/N-methyl-D-aspartate 2C receptors. Our findings suggest that 4HBA is a potent neuroprotective agent against ischemic stroke, enhancing AS cell survival and function while stabilizing the blood-brain barrier. The N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway is activated by 4HBA.
Collapse
Affiliation(s)
- Tian Xiao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xingzhi Yu
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jie Tao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
24
|
Cao Q, Zeng W, Nie J, Ye Y, Chen Y. The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment. Tissue Barriers 2024:2392361. [PMID: 39264117 DOI: 10.1080/21688370.2024.2392361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.
Collapse
Affiliation(s)
- Qi Cao
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Wei Zeng
- Department of Emergency, Chongqing Public Health Medical Center, Chongqing, China
| | - Jingmin Nie
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yongjun Ye
- Department of General Surgery, Chongqing Public Health Medical Center, Chongqing, China
| | - Yanchao Chen
- Department of General Internal Medicine, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
25
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
26
|
Lin J, Sun Y, Xia B, Wang Y, Xie C, Wang J, Hu J, Zhu L. Mertk Reduces Blood-Spinal Cord Barrier Permeability Through the Rhoa/Rock1/P-MLC Pathway After Spinal Cord Injury. Neurosci Bull 2024; 40:1230-1244. [PMID: 38592581 PMCID: PMC11365875 DOI: 10.1007/s12264-024-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Disruption of the blood-spinal cord barrier (BSCB) is a critical event in the secondary injury following spinal cord injury (SCI). Mertk has been reported to play an important role in regulating inflammation and cytoskeletal dynamics. However, the specific involvement of Mertk in BSCB remains elusive. Here, we demonstrated a distinct role of Mertk in the repair of BSCB. Mertk expression is decreased in endothelial cells following SCI. Overexpression of Mertk upregulated tight junction proteins (TJs), reducing BSCB permeability and subsequently inhibiting inflammation and apoptosis. Ultimately, this led to enhanced neural regeneration and functional recovery. Further experiments revealed that the RhoA/Rock1/P-MLC pathway plays a key role in the effects of Mertk. These findings highlight the role of Mertk in promoting SCI recovery through its ability to mitigate BSCB permeability and may provide potential targets for SCI repair.
Collapse
Affiliation(s)
- Jiezhao Lin
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuanfang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bin Xia
- Department of Orthopedics, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, 610299, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinfeng Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinwei Hu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
27
|
Wang D, Zhao J, Zhang J, Lv C, Bao S, Gao P, He M, Li L, Zhao H, Zhang C. Targeting TNF-α: The therapeutic potential of certolizumab pegol in the early period of cerebral ischemia reperfusion injury in mice. Int Immunopharmacol 2024; 137:112498. [PMID: 38908079 DOI: 10.1016/j.intimp.2024.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The neuroinflammatory response triggered by cerebral ischemia-reperfusion injury (CIRI) is characterized by the upsurge of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, which promote leukocyte infiltration and subsequent accumulation in the ischemic zone. This accumulation further intensifies inflammation and aggravates ischemic damage. Certolizumab pegol (CZP), a monoclonal antibody targeting TNF-α, is widely used in treating various inflammatory diseases. This study explored the therapeutic potential of CZP in a mouse model of CIRI, induced by middle cerebral artery occlusion (MCAO), focusing on its influence on the microglial inflammatory response. In vitro analyses revealed that CZP markedly inhibits TNF-α-stimulated inflammation in primary microglia with an EC50 of 1.743 ng/mL. In vivo, MCAO mice treated with CZP (10 μg/mouse, i.p.) for 3 days showed reduced infarct volume, partially improved neurological function, and diminished blood-brain barrierdisruption. Additionally, CZP treatment curtailed microglial activation and the release of pro-inflammatory mediators in the early stages of stroke. It also favorably modulated microglial M1/M2 polarization, rebalanced Th17/Treg cells dynamics, and inhibited Caspase-8-mediated GSDMD cleavage, preventing microglial pyroptosis. Collectively, this study described that the treatment with CZP reversed damaging process caused by CIRI, offering a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jingyu Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Changling Lv
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Miao He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Lijuan Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; School of Public Health, Dali University, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
28
|
Liu G, Wang Q, Tian L, Wang M, Duo D, Duan Y, Lin Y, Han J, Jia Q, Zhu J, Li X. Blood-Brain Barrier Permeability is Affected by Changes in Tight Junction Protein Expression at High-Altitude Hypoxic Conditions-this may have Implications for Brain Drug Transport. AAPS J 2024; 26:90. [PMID: 39107477 DOI: 10.1208/s12248-024-00957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024] Open
Abstract
Changes to blood-brain barrier structure and function may affect the delivery of drugs into the brain. It is worthwhile to exploring more study on how the blood-brain barrier changes in structure and function and how that affects drug transport in high-altitude hypoxic environment. The DIA high-throughput sequencing technique indicate that the rats blood-brain barrier has been identified to have 7252 proteins overall and 8 tight junction proteins, among which Claudin-7 was a plateau-specific tight junction protein under high-altitude hypoxia, and based on the interaction network study, 2421 proteins are found to interact with one another, with ZO-1 being the primary target. The results of the projected gene function analysis demonstrated that changes in tight junction proteins are related to the control of TRP channels by inflammatory mediators, the wnt signaling pathway, the ABC transporter system, and drug metabolism-CYP450 enzyme regulation. Additionally, the electron microscopy, the Evans blue combination with confocal laser scanning microscopy, and the Western Blot and RT-qPCR revealed that high-altitude hypoxic environment induces blood-brain barrier tight junctions to open, blood-brain barrier permeability increases, ZO-1, Occludin, Claudin-5 protein and mRNA expression decreased. Our research implies that structural and functional alterations in the blood-brain barrier induced by high altitude hypoxia may impact drug transport inside the central nervous system, and that drug transporters and drug-metabolizing enzymes may be key players in this process.
Collapse
Affiliation(s)
- Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Qian Wang
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Lu Tian
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Mengyue Wang
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Yue Lin
- Affiliated Hospital of Qinghai University, Xining, China
| | - Junjun Han
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 256 Ningda Road, Xining, 810016, China
| | - Junbo Zhu
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China.
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 256 Ningda Road, Xining, 810016, China.
| |
Collapse
|
29
|
Zhou C, Zhou Y, Vong CT, Khan H, Cheang WS. 3,3',4,5'-Tetramethoxy-trans-stilbene and 3,4',5-trimethoxy-trans-stilbene prevent oxygen-glucose deprivation-induced injury in brain endothelial cell. J Cell Mol Med 2024; 28:e70008. [PMID: 39153195 PMCID: PMC11330235 DOI: 10.1111/jcmm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 μM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
- Macau Centre for Research and Development in Chinese MedicineUniversity of MacauMacau SARChina
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan University MardanMardanPakistan
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| |
Collapse
|
30
|
Zhu L, Zhong W, Meng X, Yang X, Zhang W, Tian Y, Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J Nanobiotechnology 2024; 22:424. [PMID: 39026255 PMCID: PMC11256638 DOI: 10.1186/s12951-024-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xuchen Meng
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenchuan Zhang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yayuan Tian
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
31
|
Tang X, He Y, Liu J, Xu J, Peng Q. Exosomes: The endogenous nanomaterials packed with potential for diagnosis and treatment of neurologic disorders. Colloids Surf B Biointerfaces 2024; 239:113938. [PMID: 38718474 DOI: 10.1016/j.colsurfb.2024.113938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 03/17/2025]
Abstract
Neurologic disorders (NDs) are serious diseases that threaten public health. However, due to the complex pathogenesis and significant individual differences in traditional treatments, specific treatment methods for NDs are still lacking. Exosomes, the smallest extracellular vesicles secreted by eukaryotic cells, are receiving increasing attention in the field of NDs. They contain misfolded proteins related to various NDs, including amyloid-beta, Tau proteins, and α-synuclein, indicating their promising roles in the diagnosis and treatment of NDs. In this review, an overview of the biogenesis, composition, and biological functions of exosomes is provided. Moreover, we summarize their potential roles in the pathogenesis of three prevalent NDs (including Alzheimer's disease, Ischemic stroke, and Parkinson's disease). On this basis, the diagnostic potential and therapeutic value of exosomes carrying various bioactive molecules are discussed in detail. Also, the concerns and perspectives of exosome-based diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxuan He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinchi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
33
|
Song SN, Dong WP, Dong XX, Guo F, Ren L, Li CX, Wang JM. Cerebral endothelial cells mediated enhancement of brain pericyte number and migration in oxygen-glucose deprivation involves the HIF-1α/PDGF-β signaling. Brain Res 2024; 1832:148849. [PMID: 38452844 DOI: 10.1016/j.brainres.2024.148849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The present study focused on whether hypoxia-inducible factor-1alpha (HIF-1α) and platelet-derived factor-beta (PDGF-β) are involved in the crosstalk between brain microvascular endothelial cells (BMECs) and brain vascular pericytes (BVPs) under ischaemic-hypoxic conditions. Mono-cultures or co-cultures of BVPs and BMECs were made for the construction of the blood-brain barrier (BBB) model in vitro and then exposed to control and oxygen-glucose deprivation (OGD) conditions. BBB injury was determined by assessing the ability, apoptosis, and migration of BVPs and the transendothelial electrical resistance and horseradish peroxidase permeation of BMECs. Relative mRNA and protein levels of HIF-1α and PDGF-β, as well as tight junction proteins ZO-1 and claudin-5 were analyzed by western blotting, reverse transcription quantitative PCR, and/or immunofluorescence staining. Dual-luciferase reporter assays assessed the relationship between PDGF-β and HIF-1α. Co-culturing with BMECs alleviated OGD-induced reduction in BVP viability, elevation in BVP apoptosis, and repression in BVP migration. Co-culturing with BVPs protected against OGD-induced impairment on BMEC permeability. OGD-induced HIF-1α upregulation enhanced PDGF-β expression in mono-cultured BMECs and co-cultured BMECs with BVPs. Knockdown of HIF-1α impaired the effect of BMECs on BVPs under OGD conditions, and PDGFR-β silencing in BVPs blocked the crosstalk between BMECs and BVPs under OGD conditions. The crosstalk between BMECs and BVPs was implicated in OGD-induced BBB injury through the HIF-1α/PDGF-β signaling.
Collapse
Affiliation(s)
- Shi-Na Song
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Department of Geriatrics, General Hospital of TISCO, Taiyuan, 030001, China
| | - Wen-Ping Dong
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, 030001, China
| | - Xin-Xin Dong
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, 030001, China.
| | - Fang Guo
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, 030001, China
| | - Lin Ren
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, 030001, China.
| | - Chang-Xin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | | |
Collapse
|
34
|
Zhou W, Wang X, Dong Y, Gao P, Zhao X, Wang M, Wu X, Shen J, Zhang X, Lu Z, An W. Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer's Disease, Parkinson's Disease, and stroke. Theranostics 2024; 14:3358-3384. [PMID: 38855176 PMCID: PMC11155406 DOI: 10.7150/thno.95953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Wantong Zhou
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Yumeng Dong
- Capital Medical University, 10 Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Peifen Gao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Mengxia Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlin An
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
35
|
Mahajan A, Gunewardena S, Morris A, Clauss M, Dhillon NK. Analysis of MicroRNA Cargo in Circulating Extracellular Vesicles from HIV-Infected Individuals with Pulmonary Hypertension. Cells 2024; 13:886. [PMID: 38891019 PMCID: PMC11172129 DOI: 10.3390/cells13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
The risk of developing pulmonary hypertension (PH) in people living with HIV is at least 300-fold higher than in the general population, and illicit drug use further potentiates the development of HIV-associated PH. The relevance of extracellular vesicles (EVs) containing both coding as well as non-coding RNAs in PH secondary to HIV infection and drug abuse is yet to be explored. We here compared the miRNA cargo of plasma-derived EVs from HIV-infected stimulant users with (HIV + Stimulants + PH) and without PH (HIV + Stimulants) using small RNA sequencing. The data were compared with 12 PH datasets available in the GEO database to identify potential candidate gene targets for differentially altered miRNAs using the following functional analysis tools: ingenuity pathway analysis (IPA), over-representation analysis (ORA), and gene set enrichment analysis (GSEA). MiRNAs involved in promoting cell proliferation and inhibition of intrinsic apoptotic signaling pathways were among the top upregulated miRNAs identified in EVs from the HIV + Stimulants + PH group compared to the HIV + Stimulants group. Alternatively, the downregulated miRNAs in the HIV + Stimulants + PH group suggested an association with the negative regulation of smooth muscle cell proliferation, IL-2 mediated signaling, and transmembrane receptor protein tyrosine kinase signaling pathways. The validation of significantly differentially expressed miRNAs in an independent set of HIV-infected (cocaine users and nondrug users) with and without PH confirmed the upregulation of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular proliferation and downregulation of miR-5571, -4670 negatively regulating smooth muscle proliferation in EVs from HIV-PH patients. This increase in miR-301a-3p and decrease in miR-4670 were negatively correlated with the CD4 count and FEV1/FVC ratio, and positively correlated with viral load. Collectively, this data suggest the association of alterations in the miRNA cargo of circulating EVs with HIV-PH.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Matthias Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
37
|
Aliakbari F, Marzookian K, Parsafar S, Hourfar H, Nayeri Z, Fattahi A, Raeiji M, Boroujeni NN, Otzen DE, Morshedi D. The impact of hUC MSC-derived exosome-nanoliposome hybrids on α-synuclein fibrillation and neurotoxicity. SCIENCE ADVANCES 2024; 10:eadl3406. [PMID: 38569030 PMCID: PMC10990263 DOI: 10.1126/sciadv.adl3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Amyloid aggregation of α-synuclein (αSN) protein amplifies the pathogenesis of neurodegenerative diseases (NDs) such as Parkinson's disease (PD). Consequently, blocking aggregation or redirecting self-assembly to less toxic aggregates could be therapeutic. Here, we improve brain-specific nanocarriers using a hybrid of exosomes (Ex) from human umbilical cord mesenchymal stem cells (hUC MSCs) and nanoliposomes containing baicalein (Ex-NLP-Ba) and oleuropein (Ex-NLP-Ole). The hybrids contained both lipid membranes, Ex proteins, and baicalein or oleuropein. Fluorescence resonance energy transfer analysis confirmed their proper integration. The hybrids reduced the extent of αSN fibrillation and interfered with secondary nucleation and disaggregation. They not only reduced αSN pathogenicity but also enhanced drug internalization into cells, surpassing the efficacy of NLP alone, and also crossed the blood-brain barrier in a cellular model. We conclude that Ex can be successfully extracted and efficiently merged with NLPs while retaining its original properties, demonstrating great potential as a theranostic drug delivery vehicle against NDs like PD.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Kimia Marzookian
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Soha Parsafar
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamdam Hourfar
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Nayeri
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arghavan Fattahi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Raeiji
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Narges Nasrollahi Boroujeni
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
38
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
39
|
Meng W, Ma Z, Ye H, Liu L, Han Q, Shi Q. Polyphenolic oligomer-derived multienzyme activity for the treatment of ischemic Stroke through ROS scavenging and blood-brain barrier restoration. J Mater Chem B 2024; 12:2123-2138. [PMID: 38314923 DOI: 10.1039/d3tb02676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Oxidative stress and blood-brain barrier (BBB) injury are two major stress disorders before and after ischemic stroke (IS) therapy. The intense inflammatory response also causes damage to nerve cells, affecting the repair of brain tissue. In this study, polyphenolic nanoparticles (PPNs) with strong free radical scavenging ability were designed to treat IS multimodally. To investigate the mechanism of polyphenolic polymerization, solid nanoparticles were synthesized using four kinds of polyphenol compounds as the basic unit under the control of temperature. The form of polymerization between monomers with different structures led to changes in the chemical properties of the corresponding nanoparticles as well as the antioxidant capacity at the cellular level. Particularly, PPNs can significantly improve cerebral infarction and penetrate and repair the BBB, and even downregulate levels of inflammatory cytokines. Molecular signaling pathway studies have shown that PPNs can provide comprehensive treatment of IS by promoting the expression of tight junction protein and enhancing the activity of antioxidant enzymes. Therefore, PPNs combined with the antioxidant, anti-inflammatory and BBB repair ability not only provide a perfect therapeutic pathway but also give ideas for the development of natural material carriers that have a wide application prospect.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
40
|
Li Y, Chen J, Quan X, Chen Y, Han Y, Chen J, Yang L, Xu Y, Shen X, Wang R, Zhao Y. Extracellular Vesicles Maintain Blood-Brain Barrier Integrity by the Suppression of Caveolin-1/CD147/VEGFR2/MMP Pathway After Ischemic Stroke. Int J Nanomedicine 2024; 19:1451-1467. [PMID: 38371456 PMCID: PMC10874237 DOI: 10.2147/ijn.s444009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, People’s Republic of China
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| |
Collapse
|
41
|
Chen J, Chen FY, Lu CJ, Yi SW. Baicalein alleviates palmitic acid-induced endothelial cell dysfunction via inhibiting endoplasmic reticulum stress. Clin Hemorheol Microcirc 2024; 88:235-245. [PMID: 38905036 DOI: 10.3233/ch-242230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Endothelial cells play a critical role in maintaining vascular function and kinetic homeostasis, but excessive accumulation of palmitic acid (PA) may lead to endoplasmic reticulum stress and trigger endothelial cell dysfunction. Baicalin (BCL), a natural plant extract, has received widespread attention for its biological activities in anti-inflammation and anti-oxidative stress. However, the mechanism of BCL on PA-induced endothelial cell dysfunction is unclear. Therefore, the aim of this study was to investigate whether BCL could inhibit PA-induced endoplasmic reticulum stress and thus attenuate endothelial cell dysfunction. METHODS Human umbilical vein endothelial cells (HUVECs) were divided into Control, PA, PA + BCL-10 μM, PA + BCL-20 μM, and PA + BCL-50 μM groups. The PA group was treated with PA (200 μM), while the PA + BCL groups were co-treated with different concentrations of BCL (10 μM, 20 μM, 50 μM) for 24 hours. Cell viability was detected by MTT. Cell migration ability was determined by Transwell assay, apoptosis level by flow cytometry, and tube formation ability by tube formation assay. Finally, the levels of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and angiogenesis-related proteins (VEGFA and FGF2) were detected by western blot, MMP-9, as well as the protein levels of endoplasmic reticulum stress biomarkers (GRP78, CHOP, PERK, and ATF4). RESULTS The results at the cellular level showed that cell viability, migration ability and tube formation ability of PA-induced HUVECs were significantly reduced, while apoptosis level was significantly increased. However, administration of different concentrations of BCL significantly enhanced PA-induced cell viability, migration ability and tube formation ability of HUVECs while inhibiting apoptosis. The results of protein levels showed that the protein levels of Bax and cleaved caspase-3 were observably up-regulated in the cells of the PA group, while the protein level of Bcl-2 was significantly down-regulated; compared with the PA group, the protein levels of Bax and cleaved caspase-3 were much lower and the Bcl-2 protein level was much higher in the PA + BCL group. Additionally, the protein levels of VEGFA, FGF2 and MMP-9 were raised and those of GRP78, CHOP, PERK and ATF4 were lowered in the PA + BCL group of cells in a concentration-dependent manner. CONCLUSION BCL significantly attenuates PA-induced endothelial cell dysfunction by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jian Chen
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| | - Fei-Yu Chen
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| | - Chan-Jun Lu
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| | - Sheng-Wu Yi
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| |
Collapse
|
42
|
Shen S, Hong T, Liu Z, Liu S, Ni H, Jiang Z, Yang Y, Zheng M. In vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides obtained by different assisted extractions and their fermented products against HT-29 human colon cancer cells. Food Funct 2023; 14:10747-10758. [PMID: 37975749 DOI: 10.1039/d3fo04421a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, we studied the in vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides (PHPs) with microwave, ultrasonic, ultra-high pressure-assisted extraction and the protective effect of their fermented products against HT-29 human colon cancer cells. The results showed that PHPs were largely degraded at the 18 h stage of ascending colon fermentation, further greatly increasing the contents of reducing sugars and short-chain fatty acids (p < 0.05). Particularly, the PHPs subjected to ultra-high pressure-assisted extraction (UHP-PHP) showed the highest reducing sugar content of 1.68 ± 0.01 mg mL-1 and butyric acid content of 410.77 ± 7.99 mmol mL-1. Moreover, UHP-PHP showed a better effect in increasing the ratio of Bacteroidetes/Firmicutes and decreasing the abundance of Proteobacteria and Escherichia coli. PHPs could protect against HT-29 cells by increasing the ROS levels in a concentration-dependent manner, especially UHP-PHP fermented in a descending colon for 24 h. This was related to the up-regulated apoptosis-related genes (Bax and Bak), down-regulated protein expression of Bcl-2 and activation of the p-AKT protein, thereby promoting the apoptosis of HT-29 cells. Our results can facilitate the modification of PHPs and their practical application in the development of intestinal health improving products.
Collapse
Affiliation(s)
- Shiqi Shen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
- Xiamen Ocean Vocational College, Xiamen 361021, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| |
Collapse
|
43
|
Huang X, Liu X, Zeng J, Du P, Huang X, Lin J. Bone marrow mesenchymal stem cell-derived exosomal microRNA regulates microglial polarization. PeerJ 2023; 11:e16359. [PMID: 38025715 PMCID: PMC10640847 DOI: 10.7717/peerj.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Objective This study aimed to explore the effects of bone marrow mesenchymal stem cell (BMSC)-derived exosomal miR-146a-5p on microglial polarization and the potential underlying mechanisms in oxygen-glucose deprivation (OGD)-exposed microglial cells. Methods Exosomes were isolated from BMSCs, and their characteristics were examined. The effects of BMSC-derived exosomes on microglial polarization were investigated in OGD-exposed BV-2 cells. Differentially expressed miRNAs were identified and their biological function was explored using enrichment analyses. The regulatory role of miR-146a-5p in microglial polarization was studied via flow cytometry. Finally, the downstream target gene Traf6 was validated, and the role of the miR-146a-5p/Traf6 axis in modulating microglial polarization was investigated in OGD-exposed BV-2 cells. Results BMSC-derived exosomes were successfully isolated and characterized. A total of 10 upregulated and 33 downregulated miRNAs were identified. Exosomal treatment resulted in significant changes in microglial polarization markers. miR-146a-5p was found to be significantly downregulated in OGD-exposed microglial cells treated with exosomes. Manipulation of miR-146a-5p expression modulated microglial polarization. Moreover, the miR-146a-5p/Traf6 axis regulated microglial polarization. Conclusion Our findings demonstrate that BMSC-derived exosomal via miR-146a-5p modulates microglial polarization by targeting Traf6, providing a potential thermal target for the treatment of neurological diseases involving microglial activation.
Collapse
Affiliation(s)
- Xianwei Huang
- Department of Emergency, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiong Liu
- Department of Emergency, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiaqi Zeng
- Department of Emergency, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Penghui Du
- Department of Emergency, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaodong Huang
- Department of Emergency, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiyan Lin
- Department of Emergency, Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
44
|
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, Baskakov IV. Reactive astrocytes associated with prion disease impair the blood brain barrier. Neurobiol Dis 2023; 185:106264. [PMID: 37597815 PMCID: PMC10494928 DOI: 10.1016/j.nbd.2023.106264] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. RESULTS In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. CONCLUSIONS To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yue Li
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Konstantin G Birukov
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| |
Collapse
|
45
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
46
|
Gao M, Wang J, Lv Z. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life (Basel) 2023; 13:1468. [PMID: 37511844 PMCID: PMC10381885 DOI: 10.3390/life13071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent research revealed that dietary genistein supplementation for breeder hens can improve the immune function of offspring chicks. However, it remains unknown whether this maternal effect could improve the intestinal health of offspring. This study was conducted to explore the mechanism involved in the maternal effect of genistein on the intestinal mucosa and microbial homeostasis of chicken offspring. A total of 120 Qiling breeder hens were fed a basal diet, a 20 mg/kg genistein-supplemented diet, or a 40 mg/kg genistein-supplemented diet for 4 weeks before collecting their eggs. After hatching, 180 male offspring (60 chickens from each group) were randomly selected and divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a low-dose genistein-supplemented diet (LGE); (3) the offspring of hens fed a high-dose genistein-supplemented diet (HGE). At 17 d, 72 male offspring (48 chickens from CON and 24 chickens from LGE) were divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the CON group challenged with LPS (LPS); (3) the LGE group challenged with LPS (LPS + LGE). The results showed that maternal genistein supplementation increased the birth weight and serum level of total protein (TP), followed by improved intestinal villus morphology. Continuously, the maternal effect on the body weight of chicks lasted until 21 d. Additionally, it was observed that maternal genistein supplementation exhibited protective effects against LPS-induced morphological damage and intestinal mucosal barrier dysfunction by upregulating the expression of tight junction proteins, specifically ZO-1, Claudin1, E-cadherin, and Occludin, at 21 d. Using 16S rRNA gene sequencing, we demonstrated that maternal supplementation of genistein has the potential to facilitate the maturation of newly hatched chicken offspring by enhancing the abundance of Escherichia coli. Additionally, maternal genistein supplementation can effectively reduce the abundance of Gammaproteobacteria, thus mitigating the risk of bacterial diversity impairment of LPS. In light of these findings, maternal genistein supplementation holds promise as a potential strategy for ameliorating intestinal mucosal damage and modulating the microbiome in chicken offspring.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Wu S, Wang J, Liu J, Zhu H, Li R, Wan X, Lei J, Li Y, You C, Hu F, Zhang S, Zhao K, Shu K, Lei T. Programmed cell death 10 increased blood-brain barrier permeability through HMGB1/TLR4 mediated downregulation of endothelial ZO-1 in glioblastoma. Cell Signal 2023; 107:110683. [PMID: 37075875 DOI: 10.1016/j.cellsig.2023.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Dysfunction of blood brain barrier (BBB) contributes to the development of peritumoral edema (PTE) and GBM progression. Programmed cell death 10 (PDCD10) exerts various influence on cancers, especially in glioblastoma (GBM). We previously found that PDCD10 expression was positively correlated with PTE extent in GBM. Thus, the present study aims to investigate the emerging role of PDCD10 in regulating BBB permeability in GBM. Here we found that in vitro indirect co-culture of ECs with Pdcd10-overexpressed GL261 cells resulted in a significant increase of FITC-Dextran (MW, 4000) leakage by reducing endothelial zonula occluden-1 (ZO-1) and Claudin-5 expression in ECs respectively. Overexpression of Pdcd10 in GBM cells (GL261) triggered an increase of soluble high mobility group box 1 (HMGB1) release, which in turn activated endothelial toll like receptor 4 (TLR4) and downstream NF-κB, Erk1/2 and Akt signaling in ECs through a paracrine manner. Moreover, Pdcd10-overexpressed GL261 cells facilitated a formation of abnormal vasculature and increased the BBB permeability in vivo. Our present study demonstrates that upregulation of PDCD10 in GBM triggered HMGB1/TLR4 signaling in ECs and significantly decreased endothelial ZO-1 expression, which in turn dominantly increased BBB permeability and contributed to tumor progression in GBM.
Collapse
Affiliation(s)
- Sisi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Jingdian Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Jin Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Yu Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China.
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| |
Collapse
|