1
|
Zheng W, Cheng Y, Shen H, Liu L, Hu W, Qian H. Research Progress on Antibacterial Applications of Bioactive Materials in Wound Infections: Design, Challenges, and Prospects. Adv Healthc Mater 2025; 14:e2405103. [PMID: 40114601 DOI: 10.1002/adhm.202405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Bacterial wound infections pose a significant threat to global health, exacerbated by the increase in multidrug-resistant bacteria (MDRB) and the formation of elastic biofilms. This review explores the transformative potential of bioactive materials in addressing these challenges, focusing on their design, mechanisms of action, and therapeutic effects. In vivo, bioactive materials are designed to respond to unique bacterial microenvironment (BME), utilizing enzyme activity, controlled gas release, surface functionalization, and immune regulation to combat infections. In vitro, this review provides a comprehensive overview of the latest advances in the rational design of these materials, emphasizing the synergistic integration of structural modifications (such as size and morphology) with external physical stimuli (such as light, sound, electricity, magnetism, and force) to enhance antibacterial performance. Finally, the outstanding challenges and prospects in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China
| | - Yuanfang Cheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hui Shen
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Litao Liu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
2
|
Patil A, Rajput A, Subbappa P, Pawar A. Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression. Int J Pharm 2025; 671:125257. [PMID: 39855281 DOI: 10.1016/j.ijpharm.2025.125257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Depression is a common mental condition causing depressed mood and loss of pleasure. The primary treatment approach for the management of depression consists of the use of selegiline (MAO-B) inhibitor compound. The present work aimed to develop and optimize selegiline-loaded nanostructured lipid carriers for transdermal application, utilizing a 23 full factorial design approach. The optimized nanostructured lipid carriers formulation (Batch B7) demonstrated a particle size of 158.71 ± 0.56 nm, a narrow size distribution (0.266 ± 0.006), high entrapment efficiency (59.60 ± 0.34 %), and a zeta potential of -23.2 ± 2.21 mV. Furthermore, x-ray diffraction and differential scanning calorimetry studies revealed the amorphous transformation of selegiline within the nanostructured lipid carrier. Transmission Electron Microscopy study has shown that nanostructured lipid carrier particles had a spherical shape with a smooth surface. These optimized nanostructured lipid carriers were then incorporated into a microneedle array patch for transdermal delivery. The selegiline-loaded nanostructured lipid carrier microneedle array patch exhibited no skin irritation in a rabbit model. It enhanced drug diffusion ex vivo (1.13-fold compared to pure selegiline-loaded microneedle array patch) with 90 % drug release in 12 h. The pharmacokinetic study demonstrated a steady and controlled release profile with a half-life of 29.9 ± 0.14 h and AUC0-t (26.57 ± 0.51 μg/ml*h) of selegiline loaded nanostructured lipid carrier microneedle array patch. On the contrary, a pure selegiline-loaded microneedle array patch showed a short half-life of 6.5 ± 0.26 h and AUC0-t (20.90 ± 0.31 μg/ml*h). The sustained release profile and prolonged half-life in plasma and the brain suggest improved therapeutic efficacy. Histopathology analysis revealed no significant toxicity to vital organs. Thus, a selegiline nanostructured lipid carrier-loaded microneedle array patch can increase brain bioavailability compared to a pure selegiline-loaded microneedle array patch for managing depression.
Collapse
Affiliation(s)
- Anuradha Patil
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Praveen Subbappa
- Alliance Management and Supply Chain, Azurity Pharmaceuticals, Inc., 8 Cabot Road, Suite 2000, Woburn, MA 01801, USA
| | - Atmaram Pawar
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
3
|
Li X, Wang X, Chen G, Tian B. Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases. Biomater Sci 2025; 13:896-912. [PMID: 39807026 DOI: 10.1039/d4bm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis. Hydrogen gas effectively removes ROS from the body due to its good antioxidant properties, and hydrogen therapy has become a promising gas therapy strategy due to its inherent safety and stability. The combination of nanomaterials can achieve targeted delivery and effective accumulation of hydrogen, and has some ameliorating effects on diseases. Herein, we summarize the use of hydrogen-producing nanomaterials for the treatment of ROS-related diseases and talk about the prospects for the treatment of other ROS-induced disease models, such as acute kidney injury.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuezhu Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Lu X, Zhang J, Zuo W, Cheng B, Dong R, Wang W, Lu L. A dissolving microneedle patch loaded with plumbagin/hydroxypropyl-β-cyclodextrin inclusion complex for infected wound healing. Colloids Surf B Biointerfaces 2025; 246:114377. [PMID: 39577147 DOI: 10.1016/j.colsurfb.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/29/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Treating infected wounds is facing a serious challenge due to the rapid spread of antibiotic resistance worldwide. In the search for novel antimicrobial drugs, natural products often serve as a crucial resource. Plumbagin (PLB) is the most important natural active ingredient in the root of Plumbago zeylanica L. known for its excellent antibacterial ability. However, the application of PLB is limited because of its poor water solubility, instability, and tendency to sublimate. In this study, we propose a solution by designing a hyaluronic acid (HA)/polyvinylpyrrolidone (PVP) dissolving microneedle patch loaded with PLB/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex. PLB was encapsulated into the cavity of HP-β-CD to improve its solubility and stability using the neutralization agitation method. The formation of the inclusion complex significantly increased the water solubility of PLB to 1350 ± 6.8 μg/mL, which is 17 times higher than its original value of 79.3 ± 1.7 μg/mL. The encapsulation efficiency was found to be 94.82 ± 3.34 %. In vitro drug release studies, PLB microneedles loaded with PLB/HP-β-CD inclusion complex rapidly released into PBS within 15 min. Furthermore, the PLB microneedles exhibited strong antibacterial activity against Staphylococcus aureus (S. aureus) both in vivo and in vitro. They also remarkably accelerated the healing of infected wounds in mice by enhancing collagen deposition and re-epithelialization, reducing inflammation, and stimulating angiogenesis. Overall, this multifunctional microneedle patch shows promising potential for clinical applications in the healing of infected wounds.
Collapse
Affiliation(s)
- Xuemei Lu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wanyu Zuo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bingyu Cheng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Ruyin Dong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Weiyu Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Luyang Lu
- College of Pharmacy, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
5
|
Sapiun Z, Imran AK, Mohamad SNFS, Aisyah AN, Stephanie S, Himawan A, Manggau MA, Sartini S, Rifai Y, Permana AD. Hispidulin-rich fraction of Clerodendrum fragrans Wild. (Sesewanua) dissolving microneedle as antithrombosis candidate: A proof of concept study. Int J Pharm 2024; 666:124766. [PMID: 39332463 DOI: 10.1016/j.ijpharm.2024.124766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Existing conventional antithrombosis drugs have caused many side effects, opening up opportunities for the development of new thrombotic drugs. There is potential to use the hispidulin-rich fraction of sesewanua (HRFS) as a new antithrombotic. The oral route limitation of hispidulin, as a low water solubility and non-polar compound, can be addressed. This study explores the potential of HRFS in the form of dissolving microneedles (DMN). The formula was created using polymers such as polyvinyl alcohol (PVA), polyvinyl pyrrolidone K-30 (PVP), and non-ionic surfactant. Ex vivo permeation studies found that 184.95 µg/cm2 of hispidulin was released 60 h after the best formulation. After 14 days of applying HRFS-DMN, the anticoagulant and antioxidant activity in male albino rats showed higher Activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT) values and lower Inter Cellular Adhesion Molecule-1 (ICAM-1) values. No statistically significant differences were found between the effects of two and four HRFS-DMN and the injection of heparin at a dosage of 200 IU per kilogram. However, notable distinctions were observed when comparing HRFS-DMN to negative controls, oral and quercetin as positive controls at anti-ICAM activity. The findings confirmed the feasibility of HRFS-DMN for thrombosis and its effectiveness in delivering Hispidulin (HIS) into the bloodstream. This DMN is non-irritating, safe, and painless, showing promising outcomes in enhancing the efficacy of thrombosis treatment via the transdermal route.
Collapse
Affiliation(s)
- Zulfiayu Sapiun
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia; Department of Pharmacy, Health Polytechnic of Gorontalo, Gorontalo 96123, Indonesia
| | - Arlan K Imran
- Department of Pharmacy, Health Polytechnic of Gorontalo, Gorontalo 96123, Indonesia
| | - Siti Nur Fatimah S Mohamad
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Nur Aisyah
- Department of Pharmacy and Pharmaceutical Technology, Almarisah Madani University, Indonesia
| | - Stephanie Stephanie
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Achmad Himawan
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Marianti A Manggau
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Sartini Sartini
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Department of Pharmaceutical Science, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia.
| |
Collapse
|
6
|
Liu M, Jiang J, Wang Y, Liu H, Lu Y, Wang X. Smart drug delivery and responsive microneedles for wound healing. Mater Today Bio 2024; 29:101321. [PMID: 39554838 PMCID: PMC11567927 DOI: 10.1016/j.mtbio.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Wound healing is an ongoing concern for the medical community. The limitations of traditional dressings are being addressed by materials and manufacturing technology. Microneedles (MNs) are a novel type of drug delivery system that has been widely used in cancer therapy, dermatological treatment, and insulin and vaccine delivery. MNs locally penetrate necrotic tissue, eschar, biofilm and epidermis into deep tissues, avoiding the possibility of drug dilution and degradation and greatly improving administration efficiency with less pain. MNs represent a new direction for wound treatment and transdermal delivery. In this study, we summarise the skin wound healing process and the mechanical stimulation of MNs in the context of the wound healing process. We also introduce the structural design and manufacture of MNs. Subsequently, MNs are categorised according to the loaded drugs, where the design of the MNs according to the traumatic biological/biochemical microenvironment (pH, glucose, and bacteria) and the physical microenvironment (temperature, light, and ultrasound) is emphasised. Finally, the advantages of MNs are compared with traditional drug delivery systems and their prospects are discussed.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Jiang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiran Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiping Lu
- Senior once Class 5, Shanghai Pinghe School, Shanghai, 200000, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
7
|
Liu X, Guo C, Yang W, Wang W, Diao N, Cao M, Cao Y, Wang X, Wang X, Pei H, Jiang Y, Kong M, Chen D. Composite microneedles loaded with Astragalus membranaceus polysaccharide nanoparticles promote wound healing by curbing the ROS/NF-κB pathway to regulate macrophage polarization. Carbohydr Polym 2024; 345:122574. [PMID: 39227108 DOI: 10.1016/j.carbpol.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
The healing of chronic diabetic wounds remains a formidable challenge in modern times. In this study, a novel traditional Chinese medicine microneedle patch was designed based on the physiological characteristics of wounds, with properties including hemostasis, anti-inflammatory, antioxidant, antimicrobial, and induction of angiogenesis. Initially, white peony polysaccharide (BSP) with hemostatic properties and carboxymethyl chitosan (CMCS) with antimicrobial capabilities were used as materials for microneedle fabrication. To endow it with antimicrobial, procoagulant, and adhesive properties. Among them, loaded with ROS-sensitive nanoparticles of Astragalus polysaccharides (APS) based on effective components baicalein (Bai) and berberine (Ber) from Scutellaria baicalensis (SB) and Coptis chinensis (CC) drugs (APB@Ber). Together, they are constructed into multifunctional traditional Chinese medicine composite microneedles (C/B@APB@Ber). Bai and Ber synergistically exert anti-inflammatory and antimicrobial effects. Microneedle patches loaded with BSP and APS exhibited significant effects on cell proliferation and angiogenesis induction. The combination of composite polysaccharides enabled the microneedles to adhere stably to wounds and provide sufficient strength to penetrate the biofilm and induce dispersion. The combination of composite polysaccharides enabled the microneedles to adhere stably to wounds and provide sufficient strength to penetrate the biofilm and induce dispersion. Therefore, traditional Chinese medicine multifunctional microneedle patches offer potential medical value in promoting the healing of diabetic wounds.
Collapse
Affiliation(s)
- Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuxin Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuemei Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xinxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Huijie Pei
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yifan Jiang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
8
|
Cui X, Geng H, Guo H, Wang L, Zhu Z, Zhang Y, Chen P, Wang X, Sun C. Visualizing the transdermal delivery of berberine loaded within chitosan microneedles using mass spectrometry imaging. Anal Bioanal Chem 2024; 416:6869-6877. [PMID: 39400576 DOI: 10.1007/s00216-024-05584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Berberine (BR), an alkaloid isolated from the Chinese traditional medicine Coptidis rhizoma, exhibits therapeutic effects on several diseases including bacterial infections, diabetes, and hyperlipidemia, but the oral availability is poor. In this work, we prepared the chitosan microneedle array-loaded BR (BR-CS MNAs) to transdermally deliver BR, and the spatial distribution of BR in heterogeneous skin tissues was analyzed and imaged by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Some endogenous phospholipids with specific spatial distribution were used to differentiate the epidermis and dermis regions of the skin. The results showed that BR was effectively delivered and could permeate to both epidermis and dermis regions of the skin. This demonstrated the feasibility of MALDI-MSI to evaluate the transdermal delivery efficiency of microneedle arrays and suggested BR could be transdermally delivered by CS MNAs.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Huanying Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
9
|
Li J, Yuan Z, Shi S, Chen X, Yu S, Qi X, Deng T, Zhou Y, Tang D, Xu S, Zhang J, Jiao Y, Yu W, Wang L, Yang L, Gao P. Microneedle patches incorporating zinc-doped mesoporous silica nanoparticles loaded with betamethasone dipropionate for psoriasis treatment. J Nanobiotechnology 2024; 22:706. [PMID: 39543615 PMCID: PMC11562306 DOI: 10.1186/s12951-024-02986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Treating psoriasis presents a major clinical challenge because of the limitations associated with traditional topical glucocorticoid therapy. This study introduced a drug delivery system utilizing zinc-doped mesoporous silica nanoparticle (Zn-MSN) and microneedle (MN), designed to enhance drug utilization for prolonged anti-inflammatory and anti-itch effects. The MN system facilitated the transdermal delivery of betamethasone dipropionate (BD), allowing its slow release. The BD@Zn-MSN-MN system promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype, achieving superior anti-inflammatory effects compared to the clinically used BD cream. Additionally, this study demonstrated that BD@Zn-MSN-MN could further alleviate itching in psoriasis-afflicted mice by decreasing the excitability of the transient receptor potential vanilloid V1 (TRPV1) ion channel positive neurons and reducing the release of calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). These findings offer new insights and effective therapeutic options for the future design of transdermal drug delivery for psoriasis.
Collapse
Grants
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 20DZ2254200 Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation
- 2023AH010073 Program for Excellent Sci-tech Innovation Teams of Universities in Anhui Province
- 2023AH010073 Program for Excellent Sci-tech Innovation Teams of Universities in Anhui Province
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- 82270916, U23A20508, 82371517, 32030043, 81800748 National Natural Science Foundation of China
- PW2022D-01 Pudong New Area Health Commission Research Project
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shuyu Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xingtao Chen
- Sichuan Provincial Laboratory of Orthopedic Engineering, Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shuangshuang Yu
- Department of Dermatology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui, 238000, China
| | - Xiaoshu Qi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tong Deng
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, China
| | - Yifei Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jue Zhang
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Liya Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
10
|
Jia J, Guo X, Wang Y, Wu M, Wang X, Zhao M, Zhao Y. Living photosynthetic microneedle patches for in situ oxygenation and postsurgical melanoma therapy. J Nanobiotechnology 2024; 22:698. [PMID: 39529107 PMCID: PMC11556041 DOI: 10.1186/s12951-024-02982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Surgical excision remains the principal treatment for melanoma, while tumor recurrence and delayed wound healing often occur due to the residual tumor cells and hypoxic microenvironment in the postoperative skin wounds. Herein, we present a living photosynthetic microneedle (MN) patch (namely MA/CM@MN) loaded with microalgae (MA) and cuttlefish melanin (CM) for postsurgical melanoma therapy and skin wound healing. Benefiting from the oxygenic photosynthesis of the alive MA in the MN base, the MA/CM@MN can generate oxygen under light exposure, thus facilitating skin cell proliferation and protecting cells against hypoxia-induced cell death. In addition, with CM nanoparticles embedded in the MN tips, the MA/CM@MN can be effectively heated up under near-infrared (NIR) irradiation, contributing to a strong tumor killing efficacy on melanoma cells in vitro. Further experiments demonstrate that the NIR-irradiated MA/CM@MN effectively prevents local tumor recurrence and simultaneously promotes the healing of tumor-induced wounds after incomplete tumor resection in melanoma-bearing mice, probably because the MA/CM@MN can inhibit tumor cell proliferation, stimulate tumor cell apoptosis, and mitigate tissue hypoxia in light. These results indicate that the living photosynthetic MN patch offers an effective therapeutic strategy for postoperative cancer therapy and wound healing applications.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xuhong Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuwei Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meiling Wu
- Department of Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaocheng Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shangdong, 250117, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China.
| |
Collapse
|
11
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
12
|
Kim TH, Kim MS, Kim NG, Linh NV, Doan HV, Kim YM, Park SH, Jung WK. Multifunctional Microneedle Patch with Diphlorethohydroxycarmalol for Potential Wound Dressing. Tissue Eng Regen Med 2024; 21:1007-1019. [PMID: 38877361 PMCID: PMC11416438 DOI: 10.1007/s13770-024-00655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Treatment of skin wounds with diverse pathological characteristics presents significant challenges due to the limited specific and efficacy of current wound healing approaches. Microneedle (MN) patches incorporating bioactive and stimulus materials have emerged as a promising strategy to overcome these limitations and integrating bioactive materials with anti-bacterial and anti-inflammatory properties for advanced wound dressing. METHODS We isolated diphlorethohydroxycarmalol (DPHC) from Ishige okamurae and assessed its anti-inflammatory and anti-bacterial effects on macrophages and its antibacterial activity against Cutibacterium acnes. Subsequently, we fabricated polylactic acid (PLA) MN patches containing DPHC at various concentrations (0-0.3%) (PDPHC MN patches) and evaluated their mechanical properties and biological effects using in vitro and in vivo models. RESUTLS Our findings demonstrated that DPHC effectively inhibited nitric oxide production in macrophages and exhibited rapid bactericidal activity against C. acnes. The PDPHC MN patches displayed potent antibacterial effects without cytotoxicity. Moreover, in 2,4-Dinitrochlorobenzene-stimulated mouse model, the PDPHC MN patches significantly suppressed inflammatory response and cutaneous lichenification. CONCLUSION The results suggest that the PDPHC MN patches holds promise as a multifunctional wound dressing for skin tissue engineering, offering antibacterial properties and anti-inflammatory properties to promote wound healing process.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Min-Sung Kim
- Cosmetics Industry Center, Health Division, Korea Conformity Laboratories, Seoul, 08503, Republic of Korea
| | - Nam-Gyun Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), 45 Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Young-Mog Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sang-Hyug Park
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), 45 Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), 45 Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
13
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
14
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
15
|
Yang Y, Wang X, Li Y, Yang F, Liu X, Wang A. Dencichine/palygorskite nanocomposite incorporated chitosan/polyvinylpyrrolidone film for accelerating wound hemostasis. Int J Biol Macromol 2024; 275:133399. [PMID: 38945323 DOI: 10.1016/j.ijbiomac.2024.133399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
The development of efficient, safe, environmentally friendly, and user-friendly hemostatic dressings remains a great challenge for researchers. A variety of clay minerals and plant extracts have garnered considerable attention due to their outstanding hemostatic efficacy and favorable biosafety. In this study, a facile solution casting strategy was employed to prepare nanocomposite films by incorporating natural nanorod-like palygorskite (Pal) and herb-derived hemostat dencichine (DC) based on chitosan and polyvinylpyrrolidone. The dynamic blood clotting index demonstrated that the nanocomposite film with a DC addition of 1.0 wt% exhibited significantly superior hemostatic properties compared to both pure DC powder or commercial hemostatic agent Yunnan Baiyao. This improvement was primarily attributed to proper blood affinity, increased porosity, enhanced adhesion of platelets and erythrocytes, as well as the accelerated activation of coagulation factors and platelets. Under the synergistic effect of Pal and DC, the nanocomposite film displayed suitable tensile strength (20.58 MPa) and elongation at break (47.29 %), which may be due to the strong intermolecular hydrogen bonding and electrostatic interaction between Pal/DC and macropolymers. Notably, the nanocomposite film exhibited remarkable antibacterial effectiveness and desirable cytocompatibility, as well as the capability of promoting wound healing in vitro. Taken together, the nanocomposite film synergized with Pal and DC is expected to be an efficacious and suitable wound dressing.
Collapse
Affiliation(s)
- Yinfeng Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yalong Li
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xinyue Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China.
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
16
|
He C, Fang Z, Wu H, Li X, Cheng L, Wen Y, Lin J. A flexible and dissolving traditional Chinese medicine microneedle patch for sleep-aid intervention. Heliyon 2024; 10:e33025. [PMID: 38984296 PMCID: PMC11231539 DOI: 10.1016/j.heliyon.2024.e33025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
About a quarter of the world's population suffers from insomnia, and the number of the insomniacs is gradually increasing. However, the current drug therapy and non-drug therapy sleep-aid methods have certain limitations. In general, the sleep-aid effect of drug therapy is better than that of Non-drug therapy, but western medicine may lead to some side effects and drug abuse. Although the side effects of Chinese Herbal Medicine (CHM) are relatively small, making the herbal decoction is complex and time-consuming. Therefore, exploring a novel sleep-aid method is very significant. In this paper, a flexible and dissolving Traditional Chinese Medicine (TCM) microneedle patch is proposed for sleep-aid intervention. The TCM microneedle patch is a micrometer-scale intrusive object, and the herbal extracts are carried by the patch. The materials, design method, and fabrication process of the microneedle patch have been described in detail. Besides, the mechanical characteristics of the microneedle patch, sleep-aid effect evaluation method, and experimental scheme have been presented. Three microneedle tips with radii of 5 μm, 15 μm, and 22 μm are selected for simulation analysis. Abaqus simulation results indicate that the smaller the radius of the microneedle tip, the smaller the piercing force. Considering that the microneedle should easily penetrate the skin without buckling, that is, the piercing force should be larger than the buckling force, thus 15 μm, instead of 5 μm or 22 μm, is more suitable to be adopted as the radius of the microneedle tip. For the microneedle with the radius of 15 μm, the piercing force is 0.033 N, and the difference between the piercing force and buckling force is 0.036 N. Experimental results demonstrate that the fracture force of the microneedle is about 0.29 N, which is far larger than the piercing force and buckling force. The single-lead EEG signals of the frontal lobe are used to evaluate the sleep-aid effect of the TCM microneedle patch. After sleep-aid intervention on the Anmian and Yintang acupoints using the patches, for most subjects, the ratios of the low-frequency brain wave energies to the high-frequency brain wave energies are increased obviously, indicating that the proposed sleep-aid method is effective.
Collapse
Affiliation(s)
- Chunhua He
- School of Computer, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Zewen Fang
- School of Computer, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Heng Wu
- School of Automation, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Xiaoping Li
- School of Computer, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Lianglun Cheng
- School of Computer, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Yangxing Wen
- First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, PR China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangzhou, 510000, Guangdong, PR China
| |
Collapse
|
17
|
Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, Guo K, Zhong YF, Fang QQ, Wu XJ, Chen J, Tan WQ. Targeting Diverse Wounds and Scars: Recent Innovative Bio-design of Microneedle Patch for Comprehensive Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306565. [PMID: 38037685 DOI: 10.1002/smll.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
Wounds and the subsequent formation of scars constitute a unified and complex phased process. Effective treatment is crucial; however, the diverse therapeutic approaches for different wounds and scars, as well as varying treatment needs at different stages, present significant challenges in selecting appropriate interventions. Microneedle patch (MNP), as a novel minimally invasive transdermal drug delivery system, has the potential for integrated and programmed treatment of various diseases and has shown promising applications in different types of wounds and scars. In this comprehensive review, the latest applications and biotechnological innovations of MNPs in these fields are thoroughly explored, summarizing their powerful abilities to accelerate healing, inhibit scar formation, and manage related symptoms. Moreover, potential applications in various scenarios are discussed. Additionally, the side effects, manufacturing processes, and material selection to explore the clinical translational potential are investigated. This groundwork can provide a theoretical basis and serve as a catalyst for future innovations in the pursuit of favorable therapeutic options for skin tissue regeneration.
Collapse
Affiliation(s)
- Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Jin Wu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jian Chen
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| |
Collapse
|
18
|
He Y, He D, Fan L, Ren S, Wang L, Sun J. Application of hydrogel microneedles in the oral cavity. Biopolymers 2024; 115:e23573. [PMID: 38506560 DOI: 10.1002/bip.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.
Collapse
Affiliation(s)
- Yiyao He
- Graduate School of Dalian Medical University, Dalian, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Wang
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| |
Collapse
|
19
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
20
|
Zhang Q, Liu X, He J. Applications and prospects of microneedles in tumor drug delivery. J Mater Chem B 2024; 12:3336-3355. [PMID: 38501172 DOI: 10.1039/d3tb02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As drug delivery devices, microneedles are used widely in the local administration of various drugs. Such drug-loaded microneedles are minimally invasive, almost painless, and have high drug delivery efficiency. In recent decades, with advancements in microneedle technology, an increasing number of adaptive, engineered, and intelligent microneedles have been designed to meet increasing clinical needs. This article summarizes the types, preparation materials, and preparation methods of microneedles, as well as the latest research progress in the application of microneedles in tumor drug delivery. This article also discusses the current challenges and improvement strategies in the use of microneedles for tumor drug delivery.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
21
|
He X, Liu L, Gu F, Huang R, Liu L, Nian Y, Zhang Y, Song C. Exploration of the anti-inflammatory, analgesic, and wound healing activities of Bletilla Striata polysaccharide. Int J Biol Macromol 2024; 261:129874. [PMID: 38307430 DOI: 10.1016/j.ijbiomac.2024.129874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1β, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.
Collapse
Affiliation(s)
- Xiaomei He
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Longyun Liu
- School of Biotechnology, Hefei Vocational and Technical College, Hefei 230000, China
| | - Fangli Gu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Renshu Huang
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Li Liu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yuting Nian
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Cheng Song
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China.
| |
Collapse
|
22
|
Zhang Q, Na J, Liu X, He J. Exploration of the Delivery of Oncolytic Newcastle Disease Virus by Gelatin Methacryloyl Microneedles. Int J Mol Sci 2024; 25:2353. [PMID: 38397030 PMCID: PMC10888545 DOI: 10.3390/ijms25042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared by micro-molding and photocrosslinking. The release and expression of NDV were tested by immunofluorescence and hemagglutination experiments. The experiments proved that GelMA was successfully synthesized and had hydrogel characteristics. NDV was evenly dispersed in the allantoic fluid without agglomeration, showing a characteristic virus morphology. NDV particle size was 257.4 ± 1.4 nm, zeta potential was -13.8 ± 0.5 mV, virus titer TCID50 was 107.5/mL, and PFU was 2 × 107/mL, which had a selective killing effect on human liver cancer cells in a dose and time-dependent manner. The NDV@GelMA microneedles were arranged in an orderly cone array, with uniform height and complete needle shape. The distribution of virus-like particles was observed on the surface. GelMA microneedles could successfully penetrate 5% agarose gel and nude mouse skin. Optimal preparation conditions were freeze-drying. We successfully prepared GelMA hydrogel microneedles containing NDV, which could effectively encapsulate NDV but did not detect the release of NDV.
Collapse
Affiliation(s)
| | | | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (J.N.)
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (J.N.)
| |
Collapse
|
23
|
An H, Gu Z, Huang Z, Huo T, Xu Y, Dong Y, Wen Y. Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids Surf B Biointerfaces 2024; 233:113636. [PMID: 37979482 DOI: 10.1016/j.colsurfb.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The management and treatment of wounds are complex and pose a substantial financial burden to the patient. However, the complex environment of wounds leads to inadequate drug absorption to achieve the desired therapeutic effect. As a novel technological platform, microneedles are widely used in drug delivery because of their multiple drug loading, multistage drug release, and multiple designs of topology. This study systematically summarizes and analyzes the manufacturing methods and limitations of different microneedles, as well as the latest research advances in pain management, drug delivery, and healing promotion, and presents the challenges and opportunities for clinical applications. On this basis, the development of microneedles in external wound repair and management is envisioned, and it is hoped that this study can provide guidelines for the design of microneedle systems in different application contexts, including the selection of materials, preparation methods, and structural design, to achieve better healing and regeneration results.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Huo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081 China.
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
24
|
Bai L, Wang T, Deng Q, Zheng W, Li X, Yang H, Tong R, Yu D, Shi J. Dual properties of pharmacological activities and preparation excipient: Bletilla striata polysaccharides. Int J Biol Macromol 2024; 254:127643. [PMID: 37898246 DOI: 10.1016/j.ijbiomac.2023.127643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Bletilla striata has been used for thousands of years and shows the functions of stopping bleeding, reducing swelling, and promoting healing in traditional applications. For Bletilla striata, Bletilla striata polysaccharides (BSP) is the main active ingredient, exhibiting biological functions of anti-inflammatory, anti-oxidant, anti-fibrotic, immune modulation, anti-glycation, and so on. In addition, BSP has exhibited the characteristics of excipient such as bio-adhesion, bio-degradability, and bio-safety and has been prepared into a series of preparations such as nanoparticles, microspheres, microneedles, hydrogels, etc. BSP, as both a drug and an excipient, has already aroused more and more attention. In this review, publications in recent years related to the extraction and identification, biological activities, and excipient application of BSP are reviewed. Specifically, we focused on the advances in the application of BSP as a formulation excipient. We hold opinion that BSP not only needed more researches in the mechanisms, but also the development into hydrogels, nano-formulations, tissue engineering, and so on. And we believe that this paper provides a beneficial reference for further BSP innovation and in-depth research and promotes the use of these natural products in pharmaceutical applications.
Collapse
Affiliation(s)
- Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zheng
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Liang P, Bi T, Zhou Y, Wang C, Ma Y, Xu H, Shen H, Ren W, Yang S. Carbonized Platycladus orientalis Derived Carbon Dots Accelerate Hemostasis through Activation of Platelets and Coagulation Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303498. [PMID: 37607318 DOI: 10.1002/smll.202303498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Achieving rapid and effective hemostasis remains a multidisciplinary challenge. Here, distinctive functional carbon dots derived from carbonized Platycladus orientalis (CPO-CDs) are developed using one-step hydrothermal method. The negatively charged surface of CPO-CDs retains partial functional groups from CPO precursor, exhibiting excellent water solubility and high biocompatibility. Both rat liver injury model and tail amputation model have confirmed the rapid and effective hemostatic performance of CPO-CDs on exogenous hemorrhage. Further, on endogenous blood-heat hemorrhage syndrome rat model, CPO-CDs could inhibit hemorrhage and alleviate inflammation response. Interestingly, the excellent hemostasis performance of CPO-CDs is ascribed to activate exogenous coagulation pathway and common coagulation pathway. More importantly, metabolomics of rat plasma suggests that the hemostasis effect of CPO-CDs is closely related to platelet functions. Therefore, the designed in vitro experiments are performed and it is discovered that CPO-CDs significantly promote platelets adhesion, activation, and aggregation. Further, the underlying mechanism investigation suggests that Src/Syk signal pathway plays a key role in platelets activation triggered by CPO-CDs. Overall, CPO-CDs with rapid and excellent hemostatic performance are discovered for the first time, which could be an excellent candidate for the treatment of hemorrhagic diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Chengmei Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
26
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|