1
|
Zhang C, Chen X. Photothermal-Therapy-Based Targeting Thrombolytic Therapy. ACS APPLIED BIO MATERIALS 2025; 8:1820-1834. [PMID: 39992813 PMCID: PMC11921908 DOI: 10.1021/acsabm.4c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Thrombosis, a common underlying mechanism of myocardial infarction, ischemic stroke, and venous thromboembolism, is the leading cause of death in patients. Owing to their lack of targeting ability, short half-life, low utilization rate, and high risk of bleeding side effects, the current first-line thrombolytic drugs are unable to meet the requirements for effective treatment of thrombi. Photothermal therapy (PTT) represents a promising thrombolytic modality due to its precise spatiotemporal selectivity and minimal invasiveness. However, the efficacy of PTT is constrained by the limited penetration depth of conventional wavelengths, low energy conversion efficiency, and suboptimal performance of photothermal agents. Recent advancements have demonstrated that near-infrared (NIR)-mediated photothermal conversion nanomaterials exhibit significant advantages in treating thrombotic diseases. These NIR-mediated nanomaterials can rapidly convert light energy into heat via the Landau damping effect, achieving deeper tissue penetration without inducing damage, thereby enhancing the effectiveness of photothermal thrombolysis. Moreover, the modifiable nature of these nanomaterials facilitates the targeted aggregation of thrombolytic drugs at the site of thrombosis, enabling specific and effective therapy. In this review, we systematically summarize recent advances in photothermal nanomaterials with potential therapeutic applications for thrombus treatment. Specifically, we focus on composite photothermal nanomaterials that incorporate multiple components in the construction of nanocarriers. We highlight the modification technologies that utilize specific targeting ligands for enhanced thrombus treatment and the application strategies of biomimetic nanomaterials in antithrombotic therapy. Additionally, we discuss combined thrombolytic approaches such as light-triggered nitric oxide release, thrombolytic drug loading, and photodynamic therapy integration. These methods can help mitigate the risk of secondary microvascular embolization, which is crucial for comprehensive thrombus management. Collectively, these strategies offer novel insights into the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department
of Intensive Care Unit, The First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, P. R. China
- Guangxi
Clinical Research Center for Critical Care Medicine, Nanning 530021, P. R. China
| | - Xianfeng Chen
- Department
of Intensive Care Unit, The First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, P. R. China
- Guangxi
Clinical Research Center for Critical Care Medicine, Nanning 530021, P. R. China
| |
Collapse
|
2
|
Chuang AEY, Chen YL, Chiu HJ, Nguyen HT, Liu CH. Nasal administration of polysaccharides-based nanocarrier combining hemoglobin and diferuloylmethane for managing diabetic kidney disease. Int J Biol Macromol 2024; 282:136534. [PMID: 39406330 DOI: 10.1016/j.ijbiomac.2024.136534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024]
Abstract
The management of diabetic kidney disease (DKD) faces challenges stemming from intricate pathologies and suboptimal biodistributions during drug delivery. Although clinically available anti-inflammatory agents hold considerable promise for treating DKD, their therapeutic effectiveness is limited when utilized in isolation. To address this limitation, we introduced a novel self-oriented nanocarrier termed F-GCS@Hb-DIF, designed to synergistically integrate the therapeutic diferuloylmethane (DIF), the polysaccharide fucoidan/glycol chitosan (F-GCS), and phototherapeutic hemoglobin (Hb). F-GCS@Hb-DIF demonstrated the capability to autonomously navigate toward diseased renal sites and directly release drugs into the cytoplasm of target cells following intranasal administration. This self-directed drug delivery system increased the accumulation of Hb and DIF at the target site as per biodistribution data. This enhancement allowed F-GCS@Hb-DIF to adopt a synergistic approach in treating the complex pathologies of DKD during the two-week treatment period. This approach entails modulating immunity, promoting renal functional recovery with a tissue-protective effect, and alleviating renal inflammation. These results underscore the promising therapeutic potential of F-GCS@Hb-DIF in managing DKD and other degenerative diseases associated with diabetes.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Yo-Lin Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hung-Jui Chiu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan.
| |
Collapse
|
3
|
Yu M, Wu H, Hu H, Cheng Y, Qin Y, Yang K, Hu C, Guo W, Kong Y, Zhao W, Cheng X, Jiang H, Wang S. Emerging near-infrared targeting diagnostic and therapeutic strategies for ischemic cardiovascular and cerebrovascular diseases. Acta Biomater 2024:S1742-7061(24)00682-2. [PMID: 39577483 DOI: 10.1016/j.actbio.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ischemic cardiovascular and cerebrovascular diseases (ICCDs), including thrombosis, ischemic stroke and atherosclerosis, represent a significant threat to human health, and there is an urgent requirement for the implementation of emerging diagnostic and therapeutic approaches to improve symptoms and prognosis. As a promising noninvasive modality offering high spatial and temporal resolution with favorable biocompatible properties, near-infrared (NIR) light has demonstrated a vast and profound potential in the biomedical field in recent years. Meanwhile, nanomedicine carriers are undergoing rapid development due to their high specific surface area, elevated drug loading capacity, and unique physicochemical properties. The combination of NIR light with targeted nanoprobes modified with different functional components not only maintains the high penetration depth of NIR irradiation in biological tissues but also significantly enhances the targeting specificity at the lesion site. This strategy allows for the realization of on-demand drug release and photothermal effects, thus inspiring promising avenues for the diagnosis and treatment of ICCDs. However, the clinical translation of NIR imaging and therapy is still hindered by significant obstacles. The existing literature has provided a comprehensive overview of the advancements in NIR-based nanomedicine research. However, there is a notable absence of reviews that summarize the NIR-mediated targeting strategies against ICCDs in imaging and therapy. Therefore, this review concludes the application of the emerging targeting probes combined with NIR radiation for ICCDs classified by molecular targets, analyzes the current challenges, and provides improvement strategies and prospects for further clinical translation. STATEMENT OF SIGNIFICANCE: Ischemic cardiovascular and cerebrovascular diseases (ICCDs) represent a significant threat to human health. Recently, near-infrared (NIR) light combined with targeting probes have been employed for the diagnosis and treatment of ICCDs, offering exceptional advantages including rapid feedback, high penetration depth, on-demand drug release, and favorable biocompatibility. However, there is a notable absence of reviews that summarize the NIR light-mediated targeting strategies for the imaging and therapy of ICCDs. Therefore, this review summarizes the emerging targeting probes combined with NIR light classified by molecular targets, and the proposes potential improvement strategies for clinical translation. This review elucidates the potential and current status of NIR-based techniques in ICCDs, while also serving as a reference point for additional targeted therapeutic strategies for ICCDs.
Collapse
Affiliation(s)
- Mengran Yu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Huijun Wu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Haoyuan Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Ye Cheng
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Youran Qin
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Kaiqing Yang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - ChangHao Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Wei Guo
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Yuxuan Kong
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Weiwen Zhao
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Xueqin Cheng
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Hong Jiang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China.
| | - Songyun Wang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China.
| |
Collapse
|
4
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Chiang CC, Liu CH, Rethi L, Nguyen HT, Chuang AEY. Phototactic/Photosynthetic/Magnetic-Powered Chlamydomonas Reinhardtii-Metal-Organic Frameworks Micro/Nanomotors for Intelligent Thrombolytic Management and Ischemia Alleviation. Adv Healthc Mater 2024:e2401383. [PMID: 39155411 DOI: 10.1002/adhm.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.
Collapse
Affiliation(s)
- Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
6
|
Weng PW, Liu CH, Jheng PR, Chiang CC, Chen YT, Rethi L, Hsieh YSY, Chuang AEY. Spermatozoon-propelled microcellular submarines combining innate magnetic hyperthermia with derived nanotherapies for thrombolysis and ischemia mitigation. J Nanobiotechnology 2024; 22:470. [PMID: 39118029 PMCID: PMC11308583 DOI: 10.1186/s12951-024-02716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Thrombotic cardiovascular diseases are a prevalent factor contributing to both physical impairment and mortality. Thrombolysis and ischemic mitigation have emerged as leading contemporary therapeutic approaches for addressing the consequences of ischemic injury and reperfusion damage. Herein, an innovative cellular-cloaked spermatozoon-driven microcellular submarine (SPCS), comprised of multimodal motifs, was designed to integrate nano-assembly thrombolytics with an immunomodulatory ability derived from innate magnetic hyperthermia. Rheotaxis-based navigation was utilized to home to and cross the clot barrier, and finally accumulate in ischemic vascular organs, where the thrombolytic motif was "switched-on" by the action of thrombus magnetic red blood cell-driven magnetic hyperthermia. In a murine model, the SPCS system combining innate magnetic hyperthermia demonstrated the capacity to augment delivery efficacy, produce nanotherapeutic outcomes, exhibit potent thrombolytic activity, and ameliorate ischemic tissue damage. These findings underscore the multifaceted potential of our designed approach, offering both thrombolytic and ischemia-mitigating effects. Given its extended therapeutic effects and thrombus-targeting capability, this biocompatible SPCS system holds promise as an innovative therapeutic agent for enhancing efficacy and preventing risks after managing thrombosis.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Stockholm, SE106 91, Sweden
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
8
|
Li J, Lu K, Sun S, Peng J, Zhao L. Long-circulating nanoparticles as passive targeting nanocarriers for the treatment of thrombosis. NANOSCALE 2024; 16:6132-6141. [PMID: 38444355 DOI: 10.1039/d4nr00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thrombosis is the major cause of cardiovascular diseases. Only a small subset of patients could benefit from thrombolytic therapy due to the high bleeding risk brought about by the repeated administration of thrombolytic drugs. Nanoparticles with targeting ligands have been developed as nanocarriers of thrombolytic drugs to deliver the drug to the thrombus through active targeting. However, the passive targeting effect of nanoparticles on the thrombus is yet to be investigated. Herein, we prepared silica cross-linked micelles (SCLMs) with a long blood circulation half-life as drug carriers to target the thrombus through passive targeting. Compared with SCLMs modified with an active targeting ligand cRGD, the SCLMs exhibited similar targeting behavior to the thrombus in vivo. Loaded with the thrombolytic drug tirofiban, the passive targeting SCLMs showed a comparable therapeutic effect to cRGD-modified SCLMs in a mice model with pulmonary embolism and arterial thrombosis.
Collapse
Affiliation(s)
- Junyao Li
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Shaokai Sun
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Sun M, Liu C, Liu J, Wen J, Hao T, Chen D, Shen Y. A microthrombus-driven fixed-point cleaved nanosystem for preventing post-thrombolysis recurrence via inhibiting ferroptosis. J Control Release 2024; 367:587-603. [PMID: 38309306 DOI: 10.1016/j.jconrel.2024.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Thrombus-induced cardiovascular diseases threaten human health. Current treatment strategies often rely on urokinase plasminogen activator (uPA) for its efficacy, yet it has such limiting factors as short half-life, lack of thrombus targeting, and systemic side effects leading to unintended bleeding. In addition, thrombolytic interventions can trigger inflammation-induced damage at thrombus sites, which affects endothelial function. To address these challenges, Fer-1/uPA@pep-CREKA-Lipo (Fu@pep-CLipo) has been developed. This system achieves precise and efficient thrombolysis while enhancing the thrombus microenvironment and mitigating ischemia-reperfusion injury, with exceptional thrombus targeting ability via the strong affinity of the Cys-Arg-Glu-Lys-Ala (CREKA) peptide for fibrin. The Cys-Nle-TPRSFL-DSPE (pep) could respond to the thrombus microenvironment and fixed-point cleavage. The uPA component linked to the liposome surface is strategically cleaved upon exposure to abundant thrombin at thrombus sites. Importantly, the inclusion of Fer-1 within Fu@pep-CLipo contributes to reactive oxygen species (ROS) scavenging and significantly improves the thrombus microenvironment. This innovative approach not only achieves highly efficient and precise thrombolysis but also positively influences the expression of eNOS protein while suppressing inflammatory factors like TNF-α and IL-6. This dual action contributes to improved thrombus inflammatory microenvironment and mitigated ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Mengjuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Ji Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Jing Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Tianjiao Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China.
| |
Collapse
|
10
|
Jheng PR, Chiang CC, Kang JH, Fan YJ, Wu KCW, Chen YT, Liang JW, Bolouki N, Lee JW, Hsieh JH, Chuang EY. Cold atmospheric plasma-enabled platelet vesicle incorporated iron oxide nano-propellers for thrombolysis. Mater Today Bio 2023; 23:100876. [PMID: 38089433 PMCID: PMC10711232 DOI: 10.1016/j.mtbio.2023.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/08/2023] [Accepted: 11/18/2023] [Indexed: 10/16/2024] Open
Abstract
A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.
Collapse
Affiliation(s)
- Pei-Ru Jheng
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiunn-Horng Kang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kevin C.-W. Wu
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
| |
Collapse
|