1
|
Hartung F, Krutmann J, Haarmann-Stemmann T. Evidence that the aryl hydrocarbon receptor orchestrates oxinflammatory responses and contributes to airborne particulate matter-induced skin aging. Free Radic Biol Med 2025; 233:264-278. [PMID: 40157462 DOI: 10.1016/j.freeradbiomed.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Exposure to airborne particulate matter (PM) is a substantial threat to public health, contributing to respiratory, cardiovascular, and skin-related diseases. Population-based studies strongly indicate that chronic exposure to airborne PM, especially combustion-derived PM2.5, accelerates skin aging and thus reduces the quality of life of those affected. There is increasing evidence that especially PM-bound polycyclic aromatic hydrocarbons (PAHs) critically contribute to the clinical manifestation of skin aging, i.e. the development of lentigines/pigment spots and coarse wrinkles. PAHs harm human skin primarily by activating the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor amongst others involved in orchestrating xenobiotic metabolism and immune responses. In this review, we summarize the available population-based data linking particulate air pollution exposure to skin aging. We explain in detail how PAH-rich PM induces the formation of oxidative stress, the release of pro-inflammatory mediators, the expression extracellular matrix degrading metalloproteases, and melanin synthesis, in an AHR-dependent manner, and how these events may culminate in the development of pigment spots and wrinkles, respectively. We also review the current data on the interaction of airborne PM with another factor of the skin aging exposome that exerts its deleterious effects in part through AHR-dependent signaling pathways, namely solar ultraviolet radiation.
Collapse
Affiliation(s)
- Frederick Hartung
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Låg M, Skuland T, Ballangby J, Grytting VS, Jørgensen RB, Snilsberg B, Øvrevik J, Holme JA, Refsnes M. Mechanisms involved in pro-inflammatory responses to traffic-derived particulate matter (PM) in THP-1 macrophages compared to HBEC3-KT bronchial epithelial cells. Toxicology 2025; 516:154174. [PMID: 40345318 DOI: 10.1016/j.tox.2025.154174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
The pro-inflammatory responses in THP-1-derived macrophages and human bronchial epithelial cells (HBEC3-KT) were examined after exposure to size-fractioned particulate matter (PM) sampled in two road tunnels. All tunnel PM samples induced release and expression of CXCL8 and IL-1β in THP-1 macrophages (50 µg/mL) and HBEC3-KT cells (100 µg/mL), but the potency of the samples differed between the cell types. The road tunnel PM induced pro-inflammatory responses in the macrophages to a much higher extent than diesel exhaust particles (DEP) and particles derived from the stone materials used in the asphalt. Tunnel PM induced a markedly higher increase in cytochrome P450 (CYP)1A1 expression in HBEC3-KT cells than in THP-1 macrophages. The content of organic carbon (OC) in PM correlated to the release of CXCL8 in HBEC3-KT cells, but not in THP-1 macrophages. Moreover, the aryl hydrocarbon receptor (AhR)-inhibitor CH223191 and the antioxidant N-acetyl cysteine (NAC) reduced the PM-induced cytokine release in the macrophages to a lower extent than in HBEC3-KT. In contrast, a toll-like receptor (TLR)2 antibody markedly reduced the PM-induced responses in THP-1 macrophages, but not in HBEC3-KT. A TLR4 antibody was without effect in both cell types. The levels of the microbial TLR2-ligand β-glucan in the PM samples were in a range that might be sufficient to induce pro-inflammatory responses. However, a microbial-independent mechanism could also be involved. In support of such a mechanism, the pro-inflammatory responses to a sample of α-quartz (Min-U-Sil 5), with low levels of β-glucan, were reduced by anti-TLR2. In conclusion, our results indicate that traffic-derived PM exert pro-inflammatory responses in THP-1 macrophages and HBEC3-KT cells via different PM constituents and mechanisms. OC/AhR-dependent mechanisms appeared to be important for PM-induced CXCL8 responses in HBEC3-KT cells, while the cytokine responses in THP-1 macrophages seemed to involve TLR2-mediated activation, either via β-glucan-dependent or -independent mechanisms.
Collapse
Affiliation(s)
- Marit Låg
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tonje Skuland
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jarle Ballangby
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Sæter Grytting
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Magne Refsnes
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Zhu Y, He D, Gao X, Wang A, Yu J, Wang S, Cui B, Mu G, Ma C, Tuo Y. β-Glucan Extracted from Pichia kudriavzevii DPUL-51-6Y, Kluyveromyces marxianus DPUL-F15, and Saccharomyces cerevisiae DPUL-C6 Shows Ameliorating Effects on DSS-Induced Ulcerative Colitis on BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10265-10278. [PMID: 40247719 DOI: 10.1021/acs.jafc.4c13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
β-Glucans derived from yeast are recognized as beneficial food additives. This study evaluated crude β-glucan extracts from Pichia kudriavzevii DPUL-51-6Y, Kluyveromyces marxianus DPUL-F15, and Saccharomyces cerevisiae DPUL-C6 strains for their anticolitis potential. Chemical analysis revealed that β-glucan was the primary component (71.88-78.47% purity). Notably, the S. cerevisiae extract displayed superior thermal stability and hydration capacity. In RAW264.7 macrophages, β-glucan pretreatment at 100 μg/mL significantly reduced LPS-induced nitric oxide production and pro-inflammatory cytokines by suppressing NF-κB signaling through the reduction of p65 and IκB-α while simultaneously activating the Nrf2 and AHR pathways. In DSS-induced colitis BALB/c mice, oral administration of crude β-glucans alleviated intestinal damage by enhancing tight junction protein expression and restoring gut microbiota composition, characterized by an increased abundance of Lactobacillus and Prevotella. These effects were correlated with the increased production of microbial metabolites, including indole-3-lactic acid, indole-3-β-acrylic acid, tryptophol, and short-chain fatty acids (acetic, propionic, and butyric acids). Mechanistically, β-glucan mitigated colitis through the dual activation of Nrf2/AHR pathways and the inhibition of NF-κB. This study suggests that yeast-derived β-glucan plays a significant role in mitigating the inflammatory response and may alleviate ulcerative colitis by reshaping the microbial community and metabolite profiles in the host intestinal tract.
Collapse
Affiliation(s)
- Yuguang Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Dashuai He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaoxi Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Sihan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Baosheng Cui
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Changlu Ma
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
4
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lin Y, Yang L, Wang D, Lei H, Zhang Y, Sun W, Liu J. Indigo alleviates psoriasis through the AhR/NF-κB signaling pathway: an in vitro and in vivo study. PeerJ 2024; 12:e18326. [PMID: 39465158 PMCID: PMC11505883 DOI: 10.7717/peerj.18326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Psoriasis is a chronic inflammatory skin disease. A strong association between the AhR/ NFκB axis and the inflammatory response in psoriasis. Indigo (IDG) has demonstrated significant anti-inflammatory properties. This study aimed to assess the anti-psoriatic efficacy of IDG while investigating the underlying mechanisms involved. Methods In the in vitro experiments, cell viability was assessed using the CCK-8. qRT-PCR was employed to measure the mRNA levels of NF-κB, TNF-α, IL-1β, AhR, and CYP1A1. Western blotting was conducted to examine alterations in cytoplasmic and nuclear AhR protein levels. Additionally, an IDG nanoemulsion (NE) cream was prepared for the in vivo experiments. A psoriasis-like skin lesion mice model was induced using IMQ (62.5 mg/day for 7 days). The severity of psoriasis was evaluated using PASI, and skin lesions were scored while epidermal thickness was assessed via HE staining. The expression of inflammatory markers, including IL-6, IL-13, IL-17A, MCP-1, and TNF-α, was detected in skin lesions using Luminex. The levels of CYP1A1, p65, and p-p65 proteins were determined by Western blotting. Results LPS stimulation significantly elevated TNF-α, IL-6, and NF-κB mRNA levels, which were notably reduced by IDG treatment. Additionally, IDG significantly enhanced the expression of AhR and CYP1A1 mRNA. Further investigation revealed that IDG facilitated AhR translocation from the cytoplasm to the nucleus. In the IMQ-induced psoriasis-like mouse model, IDG NE substantially ameliorated the severity of skin lesions. Moreover, IDG NE treatment reduced the upregulation of inflammatory cytokines such as IL-6, IL-17A, MCP-1, and TNF-α in IMQ-induced skin lesions. It was also observed that IDG NE treatment increased CYP1A1 protein expression while inhibiting p65 and p-p65 protein expression. Conclusion IDG emerges as a promising treatment for psoriasis, demonstrating effective therapeutic outcomes. Its mechanism of action is likely linked to the modulation of the AhR/NFκB signaling pathway.
Collapse
Affiliation(s)
- Yu Lin
- Department of Dermatology, the First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the First Affliated Hospital of Jinan University, Guangzhou, China
| | - Lihong Yang
- Department of Dermatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Dongxiang Wang
- Department of Dermatology, the First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiqing Lei
- Department of Dermatology, the First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuelin Zhang
- Department of Dermatology, the First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Sun
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Jing Liu
- Department of Dermatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Sharma S, Rousselle D, Parker E, Ekpruke CD, Alford R, Babayev M, Commodore S, Silveyra P. Sensitivity of Mouse Lung Nuclear Receptors to Electronic Cigarette Aerosols and Influence of Sex Differences: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:810. [PMID: 38929056 PMCID: PMC11203813 DOI: 10.3390/ijerph21060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The emerging concern about chemicals in electronic cigarettes, even those without nicotine, demands the development of advanced criteria for their exposure and risk assessment. This study aims to highlight the sensitivity of lung nuclear receptors (NRs) to electronic cigarette e-liquids, independent of nicotine presence, and the influence of the sex variable on these effects. Adult male and female C57BL/6J mice were exposed to electronic cigarettes with 0%, 3%, and 6% nicotine daily (70 mL, 3.3 s, 1 puff per min/30 min) for 14 days, using the inExpose full body chamber (SCIREQ). Following exposure, lung tissues were harvested, and RNA extracted. The expression of 84 NRs was determined using the RT2 profiler mRNA array (Qiagen). Results exhibit a high sensitivity to e-liquid exposure irrespective of the presence of nicotine, with differential expression of NRs, including one (females) and twenty-four (males) in 0% nicotine groups compared to non-exposed control mice. However, nicotine-dependent results were also significant with seven NRs (females), fifty-three NRs (males) in 3% and twenty-three NRs (female) twenty-nine NRs (male) in 6% nicotine groups, compared to 0% nicotine mice. Sex-specific changes were significant, but sex-related differences were not observed. The study provides a strong rationale for further investigation.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Erik Parker
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Sarah Commodore
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Fransen LFH, Leonard MO. Mononuclear phagocyte sub-types in vitro display diverse transcriptional responses to dust mite exposure. Sci Rep 2024; 14:14187. [PMID: 38902328 PMCID: PMC11189906 DOI: 10.1038/s41598-024-64783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Mononuclear phagocytes (MNP), including macrophages and dendritic cells form an essential component of primary responses to environmental hazards and toxic exposures. This is particularly important in disease conditions such as asthma and allergic airway disease, where many different cell types are present. In this study, we differentiated CD34+ haematopoietic stem cells towards different populations of MNP in an effort to understand how different cell subtypes present in inflammatory disease microenvironments respond to the common allergen house dust mite (HDM). Using single cell mRNA sequencing, we demonstrate that macrophage subtypes MCSPP1+ and MLCMARCO+ display different patterns of gene expression after HDM challenge, noted especially for the chemokines CXCL5, CXCL8, CCL5 and CCL15. MLCCD206Hi alternatively activated macrophages displayed the greatest changes in expression, while neutrophil and monocyte populations did not respond. Further work investigated how pollutant diesel exhaust particles could modify these transcriptional responses and revealed that CXC but not CC type chemokines were further upregulated. Through the use of diesel particles with adsorbed material removed, we suggest that soluble pollutants on these particles are the active constituents responsible for the modifying effects on HDM. This study highlights that environmental exposures may influence tissue responses dependent on which MNP cell type is present, and that these should be considerations when modelling such events in vitro. Understanding the nuanced responsiveness of different immune cell types to allergen and pollutant exposure also contributes to a better understanding of how these exposures influence the development and exacerbation of human disease.
Collapse
Affiliation(s)
- Leonie F H Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Science and Innovation Campus, Harwell, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Science and Innovation Campus, Harwell, OX11 0RQ, UK.
| |
Collapse
|
8
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
10
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
11
|
Huang J, Wang YN, Zhou Y. Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells. World J Stem Cells 2023; 15:807-820. [PMID: 37700822 PMCID: PMC10494570 DOI: 10.4252/wjsc.v15.i8.807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stromal cells (BMSCs) are the commonly used seed cells in tissue engineering. Aryl hydrocarbon receptor (AhR) is a transcription factor involved in various cellular processes. However, the function of constitutive AhR in BMSCs remains unclear. AIM To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs (mBMSCs) and the underlying mechanism. METHODS Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs. The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid. The osteogenic potential was observed by alkaline phosphatase and alizarin red staining. The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction (qPCR) and western blot. After coculture with different mBMSCs, the cluster of differentiation (CD) 86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry. To explore the underlying molecular mechanism, the interaction of AhR with signal transducer and activator of transcription 3 (STAT3) was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot. RESULTS AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected. AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it. The ratio of CD86+ RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+ cells was increased. AhR directly interacted with STAT3. AhR overexpression increased the phosphorylation of STAT3. After inhibition of STAT3 via stattic, the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted. CONCLUSION AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China
| | - Yi-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China.
| |
Collapse
|
12
|
Refsnes M, Skuland T, Jørgensen R, Sæter-Grytting V, Snilsberg B, Øvrevik J, Holme JA, Låg M. Role of different mechanisms in pro-inflammatory responses triggered by traffic-derived particulate matter in human bronchiolar epithelial cells. Part Fibre Toxicol 2023; 20:31. [PMID: 37537647 PMCID: PMC10399033 DOI: 10.1186/s12989-023-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Traffic-derived particles are important contributors to the adverse health effects of ambient particulate matter (PM). In Nordic countries, mineral particles from road pavement and diesel exhaust particles (DEP) are important constituents of traffic-derived PM. In the present study we compared the pro-inflammatory responses of mineral particles and DEP to PM from two road tunnels, and examined the mechanisms involved. METHODS The pro-inflammatory potential of 100 µg/mL coarse (PM10-2.5), fine (PM2.5-0.18) and ultrafine PM (PM0.18) sampled in two road tunnels paved with different stone materials was assessed in human bronchial epithelial cells (HBEC3-KT), and compared to DEP and particles derived from the respective stone materials. Release of pro-inflammatory cytokines (CXCL8, IL-1α, IL-1β) was measured by ELISA, while the expression of genes related to inflammation (COX2, CXCL8, IL-1α, IL-1β, TNF-α), redox responses (HO-1) and metabolism (CYP1A1, CYP1B1, PAI-2) was determined by qPCR. The roles of the aryl hydrocarbon receptor (AhR) and reactive oxygen species (ROS) were examined by treatment with the AhR-inhibitor CH223191 and the anti-oxidant N-acetyl cysteine (NAC). RESULTS Road tunnel PM caused time-dependent increases in expression of CXCL8, COX2, IL-1α, IL-1β, TNF-α, COX2, PAI-2, CYP1A1, CYP1B1 and HO-1, with fine PM as more potent than coarse PM at early time-points. The stone particle samples and DEP induced lower cytokine release than all size-fractionated PM samples for one tunnel, and versus fine PM for the other tunnel. CH223191 partially reduced release and expression of IL-1α and CXCL8, and expression of COX2, for fine and coarse PM, depending on tunnel, response and time-point. Whereas expression of CYP1A1 was markedly reduced by CH223191, HO-1 expression was not affected. NAC reduced the release and expression of IL-1α and CXCL8, and COX2 expression, but augmented expression of CYP1A1 and HO-1. CONCLUSIONS The results indicate that the pro-inflammatory responses of road tunnel PM in HBEC3-KT cells are not attributed to the mineral particles or DEP alone. The pro-inflammatory responses seem to involve AhR-dependent mechanisms, suggesting a role for organic constituents. ROS-mediated mechanisms were also involved, probably through AhR-independent pathways. DEP may be a contributor to the AhR-dependent responses, although other sources may be of importance.
Collapse
Affiliation(s)
- Magne Refsnes
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Tonje Skuland
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Rikke Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Vegard Sæter-Grytting
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | | | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Marit Låg
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway.
| |
Collapse
|
13
|
Ullah K, Ai L, Humayun Z, Wu R. Targeting Endothelial HIF2α/ARNT Expression for Ischemic Heart Disease Therapy. BIOLOGY 2023; 12:995. [PMID: 37508425 PMCID: PMC10376750 DOI: 10.3390/biology12070995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Ischemic heart disease (IHD) is a major cause of mortality and morbidity worldwide, with novel therapeutic strategies urgently needed. Endothelial dysfunction is a hallmark of IHD, contributing to its development and progression. Hypoxia-inducible factors (HIFs) are transcription factors activated in response to low oxygen levels, playing crucial roles in various pathophysiological processes related to cardiovascular diseases. Among the HIF isoforms, HIF2α is predominantly expressed in cardiac vascular endothelial cells and has a key role in cardiovascular diseases. HIFβ, also known as ARNT, is the obligate binding partner of HIFα subunits and is necessary for HIFα's transcriptional activity. ARNT itself plays an essential role in the development of the cardiovascular system, regulating angiogenesis, limiting inflammatory cytokine production, and protecting against cardiomyopathy. This review provides an overview of the current understanding of HIF2α and ARNT signaling in endothelial cell function and dysfunction and their involvement in IHD pathogenesis. We highlight their roles in inflammation and maintaining the integrity of the endothelial barrier, as well as their potential as therapeutic targets for IHD.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lizhuo Ai
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zainab Humayun
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Holme JA, Låg M, Skueland T, Parenicová M, Ciganek M, Penciková K, Grytting VS, Neca J, Øvrevik J, Mariussen E, Jørgensen RB, Refsnes M, Machala M. Characterization of elements, PAHs, AhR-activity and pro-inflammatory responses of road tunnel-derived particulate matter in human hepatocyte-like and bronchial epithelial cells. Toxicol In Vitro 2023; 90:105611. [PMID: 37164185 DOI: 10.1016/j.tiv.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The aims were to characterize the content of elements and polycyclic aromatic hydrocarbons (PAHs) in size-separated particulate matter (PM) sampled in a road tunnel, estimate the contribution of PAHs to the toxic potential, and measure the pro-inflammatory potential of PM samples and extracts with increasing polarity. Several elements/metals previously associated with cytokine responses were found. Based on PAHs levels and published PAHs potency, the calculated mutagenic and carcinogenic activities of size-separated samples were somewhat lower for coarse than fine and ultrafine PM. The AhR-activity of the corresponding PM extracts measured in an AhR-luciferase reporter model (human hepatocytes) were more similar. The highest AhR-activity was found in the neutral (parent and alkylated PAHs) and polar (oxy-PAHs) fractions, while the semi-polar fractions (mono-nitrated-PAHs) had only weak activity. The neutral and polar aromatic fractions from coarse and fine PM were also found to induce higher pro-inflammatory responses and CYP1A1 expression in human bronchial epithelial cells (HBEC3-KT) than the semi-polar fractions. Fine PM induced higher pro-inflammatory responses than coarse PM. AhR-inhibition reduced cytokine responses induced by parent PM and extracts of both size fractions. Contributors to the toxic potentials include PAHs and oxy-PAHs, but substantial contributions from other organic compounds and/or metals are likely.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Marit Låg
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| | - Tonje Skueland
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Martina Parenicová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Miroslav Ciganek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Katerina Penciková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Vegard Sæter Grytting
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jiri Neca
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Espen Mariussen
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Magne Refsnes
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| |
Collapse
|
15
|
Wang Y, Yang Y, Dang C, Lu B, Luo Y, Fu J. Is it really safe to replace decabromodiphenyl ether (BDE209) with decabromodiphenyl ethane (DBDPE)?: A perspective from hepatotoxicity. ENVIRONMENTAL TOXICOLOGY 2023; 38:844-856. [PMID: 36660779 DOI: 10.1002/tox.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this paper, the hepatocytotoxicity and aryl hydrocarbon receptor (AHR) activity of decabromodiphenyl ethane (DBDPE), decabromodiphenyl ether (BDE209) and other 18 analogues were evaluated in vitro using human normal liver cell L02. These dioxin-like compounds showed differential hepatocytotoxicity (EC50 = 0.38-17.87 mg/L) and AHR activity (EROD activity = 4.53-46.35 U/μg). In silico study indicated the distance of π-π bonds between the benzene ring of compounds and residue Phe234 of AHR played a key role in the binding of AHR, and the substituents on the benzene ring also influenced the activity. Combining molecular biology and bioomics, the comprehensive investigations on the hepatotoxic mechanisms have demonstrated the AHR signaling pathway was the key mediation mechanism for the hepatotoxicity of DBDPE/BDE209. The cytochrome P450s (CYP2 family) mediated formation of reactive oxygenated intermediates might be the dominant toxic mechanism, which could produce oxidative stress or cause genotoxicity. Although the experimental toxicity of DBDPE was smaller relative to BDE209, the health risk of DBDPE may be much greater than we expected, due to the high potential to form a variety of dioxin-like intermediates by microbial oxidation of ethyl group. Therefore, whether it is really safe to replace BDE209 with DBDPE is a debatable question, and more ecotoxicological and health data are needed to clarify this issue.
Collapse
Affiliation(s)
- Yanting Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yushun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yin Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Celik-Turgut G, Olmez N, Koc T, Ozgun-Acar O, Semiz A, Dodurga Y, Lale Satiroglu-Tufan N, Sen A. Role of AHR, NF-kB and CYP1A1 crosstalk with the X protein of Hepatitis B virus in hepatocellular carcinoma cells. Gene 2023; 853:147099. [PMID: 36476661 DOI: 10.1016/j.gene.2022.147099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In this study, it was aimed to elucidate the interaction between aryl hydrocarbon receptor (AHR), nuclear factor-kappa B (NF-kB), and cytochrome P4501A1 (CYP1A1) with hepatitis B virus X protein (HBX) in a human liver cancer cell line (HepG2) transfected with HBX. First, AHR, NF-kB, and CYP1A1 genes were cloned into the appropriate region of the CheckMate mammalian two-hybrid recipient plasmids using a flexi vector system. Renilla and firefly luciferases were quantified using the dual-luciferase reporter assay system to measure the interactions. Secondly, transient transfections of CYP1A1 and NF-kB (RelA) were performed into HBX-positive and HBX-negative HepG2 cells. The mRNA expression of CYP1A1 and NF-kB genes were confirmed with RT-PCR, and cell viability was measured by WST-1. Further verification was assessed by measuring the activity and protein level of CYP1A1. Additionally, CYP1A1/HBX protein-protein interactions were performed with co-immunoprecipitation, which demonstrated no interaction. These results have clearly shown that the NF-kB and AHR genes interact with HBX without involving CYP1A1 and HBX protein-protein interactions. The present study confirms that AHR and NF-kB interaction plays a role in the HBV mechanism mediated via HBX and coordinating the carcinogenic or inflammatory responses; still, the CYP1A1 gene has no effect on this interaction.
Collapse
Affiliation(s)
- Gurbet Celik-Turgut
- Department of Organic Agriculture Management, Pamukkale University, Denizli, Turkey
| | - Nazmiye Olmez
- Departments of Biology, Pamukkale University, Denizli, Turkey
| | - Tugba Koc
- Departments of Biology, Pamukkale University, Denizli, Turkey
| | - Ozden Ozgun-Acar
- Seed Breeding & Genetics Application Research Center, Pamukkale University, Denizli, Turkey
| | - Asli Semiz
- Departments of Biomedical Engineering, Pamukkale University, Denizli, Turkey
| | - Yavuz Dodurga
- Departments of Medical Biology, Pamukkale University, Denizli, Turkey
| | | | - Alaattin Sen
- Departments of Biology, Pamukkale University, Denizli, Turkey; Departments of Molecular Biology and Genetics, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
17
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
18
|
Zhuang H, Li B, Xie T, Xu C, Ren X, Jiang F, Lei T, Zhou P. Indole-3-aldehyde alleviates chondrocytes inflammation through the AhR-NF-κB signalling pathway. Int Immunopharmacol 2022; 113:109314. [DOI: 10.1016/j.intimp.2022.109314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
19
|
Niu Q, Gao J, Wang L, Liu J, Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front Immunol 2022; 13:1034050. [PMID: 36466887 PMCID: PMC9716075 DOI: 10.3389/fimmu.2022.1034050] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA), which affects nearly 1% of the world's population, is a debilitating autoimmune disease. Bone erosion caused by periarticular osteopenia and synovial pannus formation is the most destructive pathological changes of RA, also leads to joint deformity and loss of function,and ultimately affects the quality of life of patients. Osteoclasts (OCs) are the only known bone resorption cells and their abnormal differentiation and production play an important role in the occurrence and development of RA bone destruction; this remains the main culprit behind RA. METHOD Based on the latest published literature and research progress at home and abroad, this paper reviews the abnormal regulation mechanism of OC generation and differentiation in RA and the possible targeted therapy. RESULT OC-mediated bone destruction is achieved through the regulation of a variety of cytokines and cell-to-cell interactions, including gene transcription, epigenetics and environmental factors. At present, most methods for the treatment of RA are based on the regulation of inflammation, the inhibition of bone injury and joint deformities remains unexplored. DISCUSSION This article will review the mechanism of abnormal differentiation of OC in RA, and summarise the current treatment oftargeting cytokines in the process of OC generation and differentiation to reduce bone destruction in patients with RA, which isexpected to become a valuable treatment choice to inhibit bone destruction in RA.
Collapse
Affiliation(s)
- Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Sakthiswary R, Uma Veshaaliini R, Chin KY, Das S, Sirasanagandla SR. Pathomechanisms of bone loss in rheumatoid arthritis. Front Med (Lausanne) 2022; 9:962969. [PMID: 36059831 PMCID: PMC9428319 DOI: 10.3389/fmed.2022.962969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, in which the inflammatory processes involve the skeletal system and there is marked destruction of the bones and the surrounding structures. In this review, we discuss the current concepts of osteoimmunology in RA, which represent the molecular crosstalk between the immune and skeletal systems, resulting in the disruption of bone remodeling. Bone loss in RA can be focal or generalized, leading to secondary osteoporosis. We have summarized the recent studies of bone loss in RA, which focused on the molecular aspects, such as cytokines, autoantibodies, receptor activator of nuclear kappa-β ligand (RANKL) and osteoprotegerin (OPG). Apart from the above molecules, the role of aryl hydrocarbon receptor (Ahr), which is a potential key mediator in this process through the generation of the Th17 cells, is discussed. Hence, this review highlights the key insights into molecular mechanisms of bone loss in RA.
Collapse
Affiliation(s)
- Rajalingham Sakthiswary
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy College of Medicine and Health Sciences Sultan Qaboos University, Muscat, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy College of Medicine and Health Sciences Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
21
|
Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66:26-37. [PMID: 35690568 DOI: 10.1016/j.cytogfr.2022.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
The process of wound healing involves a complex and vast interplay of growth factors and cytokines that coordinate the recruitment and interaction of various cell types. A series of events involving inflammation, proliferation, and remodeling eventually leads to the restoration of the damaged tissue. Abrogation in the regulation of these events has been shown to result in excessive scarring or non-healing wounds. While the process of wound healing is not fully elucidated, it has been documented that the early events of wound healing play a key role in the outcome of the wound. Furthermore, high levels of inflammation have been shown to lead to scarring. The regulation of these events may result in scarless wound healing, especially in adults. The inhibition of transforming growth factor-β (TGF-β) and the administration of keratinocyte growth factors (KGF), KGF-1 and KGF-2, has in recent years yielded positive results in the acceleration of wound closure and reduced scarring. Here, we encapsulate recent knowledge on the roles of TGF-β, KGF1, and KGF2 in wound healing and scar formation and highlight the areas that need further investigation. We also discuss potential future directions for the use of growth factors in wound management.
Collapse
Affiliation(s)
| | | | - Hui Qi
- Wenzhou Medical University, China
| | | | | | - Lu Chao
- Wenzhou Medical University, China
| | | |
Collapse
|
22
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
23
|
Abrahams-October Z, Lloyd S, Pearce B, Johnson R, Benjeddou M. Promoter haplotype structure of solute carrier 22 member 2 (SLC22A2) in the Xhosa population of South Africa and their differential effect on gene expression. Gene 2022; 820:146292. [PMID: 35143948 DOI: 10.1016/j.gene.2022.146292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
SLC22A2 is abundantly expressed in the kidney and facilitates the transport of endogenous and exogenous cationic compounds. It plays a pivotal role in the transport of pharmacologically important compounds such as metformin, cisplatin, lamivudine and cimetidine. Polymorphisms within SLC22A2 could potentially contribute to the inter-individual variable response to drugs. The SLC22A2 gene is known to show polymorphism variability amongst populations of different ethnicities. The present study was undertaken to characterize the promoter haplotype structure of the SLC22A2 gene in the Xhosa population of South Africa. In addition to this, we also investigate the effects of the observed promoter haplotypes on gene expression levels in vitro. We identified six known single nucleotide polymorphisms in the promoter region, namely rs60249401 (G424A), rs113150889 (G289A), rs55920607 (C246T), rs59695691 (A195G), rs572296424 (G156A), rs150063153 (A95C/G) and one novel SNP at location 6:160258967 (A209T). While these polymorphisms appeared in other African and non-African populations, their minor allele frequencies differed considerably from the non-African populations and could be considered to be African specific. A total of nine promoter haplotypes were characterized and the functional significance of each haplotype on promoter activity was determined using a luciferase reporter assay system. Amongst the nine observed haplotypes, three haplotypes (i.e. haplotypes 7, 8 and 9) displayed a significant decrease in expression level when compared to the wild-type with p -values of: 0.0317, <0.0001 and 0.0013 respectively. The data presented here shows African specific promoter haplotypes to cause a decrease in SLC22A2 gene expression levels, which in turn may have an impact on the pharmacokinetic profiles of cationic drugs.
Collapse
Affiliation(s)
- Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Sheridon Lloyd
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505 Cape Town, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
24
|
Barker CG, Petsalaki E, Giudice G, Sero J, Ekpenyong EN, Bakal C, Petsalaki E. Identification of phenotype-specific networks from paired gene expression-cell shape imaging data. Genome Res 2022; 32:750-765. [PMID: 35197309 PMCID: PMC8997347 DOI: 10.1101/gr.276059.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.
Collapse
Affiliation(s)
- Charlie George Barker
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Eirini Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Julia Sero
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emmanuel Nsa Ekpenyong
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Chris Bakal
- Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
25
|
Hausburg MA, Bocker JM, Madayag RM, Mains CW, Banton KL, Liniewicz TE, Tanner A, Sercy E, Bar-Or R, Williams JS, Ryznar RJ, Bar-Or D. Characterization of Peritoneal Reactive Ascites Collected from Acute Appendicitis and Small Bowel Obstruction Patients. Clin Chim Acta 2022; 531:126-136. [PMID: 35346646 DOI: 10.1016/j.cca.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
26
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
27
|
Ishihara Y, Kado SY, Bein KJ, He Y, Pouraryan AA, Urban A, Haarmann-Stemmann T, Sweeney C, Vogel CFA. Aryl Hydrocarbon Receptor Signaling Synergizes with TLR/NF-κB-Signaling for Induction of IL-22 Through Canonical and Non-Canonical AhR Pathways. FRONTIERS IN TOXICOLOGY 2022; 3:787360. [PMID: 35295139 PMCID: PMC8915841 DOI: 10.3389/ftox.2021.787360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 22 (IL-22) is critically involved in gut immunity and host defense and primarily produced by activated T cells. In different circumstances IL-22 may contribute to pathological conditions or act as a cancer promoting cytokine secreted by infiltrating immune cells. Here we show that bone marrow-derived macrophages (BMM) express and produce IL-22 after activation of the aryl hydrocarbon receptor (AhR) when cells are activated through the Toll-like receptor (TLR) family. The additional activation of AhR triggered a significant induction of IL-22 in TLR-activated BMM. Deletion and mutation constructs of the IL-22 promoter revealed that a consensus DRE and RelBAhRE binding element are necessary to mediate the synergistic effects of AhR and TLR ligands. Inhibitor studies and analysis of BMM derived from knockout mice confirmed that the synergistic induction of IL-22 by AhR and TLR ligands depend on the expression of AhR and Nuclear Factor-kappa B (NF-κB) member RelB. The exposure to particulate matter (PM) collected from traffic related air pollution (TRAP) and wildfires activated AhR as well as NF-κB signaling and significantly induced the expression of IL-22. In summary this study shows that simultaneous activation of the AhR and NF-κB signaling pathways leads to synergistic and prolonged induction of IL-22 by integrating signals of the canonical and non-canonical AhR pathway.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Keith J. Bein
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Arshia A. Pouraryan
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Angelika Urban
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States,*Correspondence: Christoph F. A. Vogel,
| |
Collapse
|
28
|
Patidar V, Shah S, Kumar R, Singh PK, Singh SB, Khatri DK. A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Mol Biol Rep 2021; 49:2375-2391. [PMID: 34817776 DOI: 10.1007/s11033-021-06986-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.
Collapse
Affiliation(s)
- Vaibhav Patidar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shruti Shah
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
29
|
Líbalová H, Závodná T, Vrbová K, Sikorová J, Vojtíšek-Lom M, Beránek V, Pechout M, Kléma J, Ciganek M, Machala M, Neča J, Rössner P, Topinka J. Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503414. [PMID: 34798934 DOI: 10.1016/j.mrgentox.2021.503414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (μg PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene expression changes in human lung BEAS-2B cells, exposed for 4 h and 24 h to a subtoxic dose of each PM extract. After 4 h exposure, numerous dysregulated genes and processes such as oxidative stress, lipid and steroid metabolism, PPARα signaling and immune response, were found to be common for both extract treatments. On the other hand, 24 h exposure resulted in more distinctive gene expression patterns. Although we identified several common modulated processes indicating the metabolism of PAHs and activation of aryl hydrocarbon receptor (AhR), E15 specifically dysregulated a variety of other genes and pathways related to cancer promotion and progression. Overall, our findings suggest that the ethanol addition to gasoline changed the intrinsic properties of PM emissions and increased the PAH content in PM organic extract, thus contributing to a more extensive toxic response particularly after 24 h exposure in BEAS-2B cells.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Kristýna Vrbová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jitka Sikorová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Vojtíšek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Vít Beránek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, Kamycka 127, 165 21, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo namesti 13, 121 35, Prague, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
30
|
Disner GR, Lopes-Ferreira M, Lima C. Where the Aryl Hydrocarbon Receptor Meets the microRNAs: Literature Review of the Last 10 Years. Front Mol Biosci 2021; 8:725044. [PMID: 34746229 PMCID: PMC8566438 DOI: 10.3389/fmolb.2021.725044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally responsive ligand-activated transcription factor, identified in the ‘70s for its toxic responses to halogenated polycyclic aromatic hydrocarbons, such as dioxin. Recently, AhR has been recognized as engaged in multiple physiological processes in health and diseases, particularly in the immune system, inflammatory response, tumorigenesis, and cellular differentiation by epigenetic mechanisms involving miRNAs. However, there is still scarce information about AhR-dependent miRNA regulation and miRNA-mediated epigenetic control in pathologies and therapies. In this review, we explore the mutual regulation of AhR and miRNA over the last decade of studies since many miRNAs have dioxin response elements (DRE) in their 3’ UTR, as well as AhR might contain binding sites of miRNAs. TCDD is the most used ligand to investigate the impact of AhR activation, and the immune system is one of the most sensitive of its targets. An association between TCDD-activated AhR and epigenetic mechanisms like post-transcriptional regulation by miRNAs, DNA methylation, or histone modification has already been confirmed. Besides, several studies have shown that AhR-induced miR-212/132 cluster suppresses cancers, attenuates autoimmune diseases, and has an anti-inflammatory role in different immune responses by regulating cytokine levels and immune cells. Together the ever-expanding new AhR roles and the miRNA therapeutics are a prominent segment among biopharmaceuticals. Additionally, AhR-activated miRNAs can serve as valuable biomarkers of diseases, notably cancer progression or suppression and chemical exposure. Once AhR-dependent gene expression may hinge on the ligand, cell type, and context singularity, the reviewed outcomes might help contextualize state of the art and support new trends and emerging opportunities in the field.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
31
|
Schaffert A, Arnold J, Karkossa I, Blüher M, von Bergen M, Schubert K. The Emerging Plasticizer Alternative DINCH and Its Metabolite MINCH Induce Oxidative Stress and Enhance Inflammatory Responses in Human THP-1 Macrophages. Cells 2021; 10:cells10092367. [PMID: 34572016 PMCID: PMC8466537 DOI: 10.3390/cells10092367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
The use of the plasticizer bis(2-ethylhexyl)phthalate (DEHP) and other plasticizers in the manufacture of plastic products has been restricted due to adverse health outcomes such as obesity, metabolic syndrome, and asthma, for which inflammation has been described to be a driving factor. The emerging alternative plasticizer 1,2-cyclohexanedioic acid diisononyl ester (DINCH) still lacks information regarding its potential effects on the immune system. Here, we investigated the effects of DINCH and its naturally occurring metabolite monoisononylcyclohexane-1,2-dicarboxylic acid ester (MINCH) on the innate immune response. Human THP-1 macrophages were exposed to 10 nM–10 μM DINCH or MINCH for 4 h, 16 h, and 24 h. To decipher the underlying mechanism of action, we applied an untargeted proteomic approach that revealed xenobiotic-induced activation of immune-related pathways such as the nuclear factor κB (NF-κB) signaling pathway. Key drivers were associated with oxidative stress, mitochondrial dysfunction, DNA damage repair, apoptosis, and autophagy. We verified increased reactive oxygen species (ROS) leading to cellular damage, NF-κB activation, and subsequent TNF and IL-1β release, even at low nM concentrations. Taken together, DINCH and MINCH induced cellular stress and pro-inflammatory effects in macrophages, which may lead to adverse health effects.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
| | - Josi Arnold
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), 04318 Leipzig, Germany;
- Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; (A.S.); (J.A.); (I.K.); (M.v.B.)
- Correspondence: ; Tel.: +49-341-235-1819
| |
Collapse
|
32
|
Misaki K, Takano H, Kanazawa H, Inoue KI. Biological Response-Enhancing Activity with Antigens in A549 Cells Exposed to Representative Polycyclic Aromatic Hydrocarbons. ACS OMEGA 2021; 6:22224-22232. [PMID: 34497913 PMCID: PMC8412928 DOI: 10.1021/acsomega.1c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The question of what kinds of airborne particles, including diesel exhaust particles and their adherent chemical constituents, exacerbate the activity of allergic and inflammatory respiratory diseases has not been elucidated in detail. Therefore, chemicals that have amplifying actions on Dermatophagoides farinae (Df) body extract-induced IL-8, the inflammatory cytokines of the innate immune system, were comprehensively examined using commonly used human alveolar epithelial cells, A549, as simple screening for 17 polycyclic aromatic hydrocarbons (PAHs), which are representative organic constituents in atmospheric samples. The significant amplifying actions of two PAHs, dibenzo[a,l]pyrene (DB[a,l]P) at 50 nM and dibenzo[a,i]pyrene (DB[a,i]P) at 2 μM for 48 h, for IL-8 protein release induced by mite antigens in epithelial cells were observed for the first time. In contrast, the enhancement of IL-8 was not observed in protein levels for these PAHs without the antigens. Meanwhile, the significant synergistic amplifying effect of DB[a,l]P at 50 nM on proinflammatory actions was measured in gene expression (i.e., IL-8, IL-6, ICAM-1, and TNF-α) levels in the experimental setting; for the results, the induction of TNF-α may have been the essential factor that enhanced the amplifying activity of DB[a,l]P for IL-8 gene expression and protein release. Examining the exacerbating effect on allergic pathophysiological states for DB[a,l]P is planned for further study.
Collapse
Affiliation(s)
- Kentaro Misaki
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hirohisa Takano
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Department
of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hiroaki Kanazawa
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ken-ichiro Inoue
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
33
|
Yang X, Chen Y, Zhou Y, Wu C, Li Q, Wu J, Hu WW, Zhao WQ, Wei W, Wu CP, Jiang JT, Ji M. GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion. Oncogene 2021; 40:4307-4323. [PMID: 34079082 DOI: 10.1038/s41388-021-01837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Glypican-5 (GPC5) is a member of heparan sulfate proteoglycans, and its biological importance in initiation and progression of lung cancer remains controversial. In the present study, we revealed that GPC5 transcriptionally enhanced the expression of CTDSP1 (miR-26b host gene) via AhR-ARNT pathway, and such up-regulation of CTDSP1 intracellularly contributed to the inhibited proliferation of lung cancer cells. Moreover, exosomes derived from GPC5-overexpressing human lung cancer cells (GPC5-OE-derived exosomes) had an extracellular repressive effect on human lymphatic endothelial cells (hLECs), leading to decreased tube formation and migration. Comparison between GPC5-WT- and GPC5-OE-derived exosomes showed that miR-26b (embedded within introns of CTDSP1 gene) was significantly up-regulated in GPC5-OE-derived exosomes and critical to the influence on hLECs. On the mechanism, we demonstrated that miR-26b transferred into hLECs directly targeted to PTK2 3'-UTR and led to PTK2 down-regulation, resulting in defects in tube formation and migration of hLECs. By uncovering the regulation network among GPC5, miR-26b, miR-26b host gene (CTDSP1), and target gene (PTK2), our findings demonstrated that GPC5 functioned as a tumor suppressor in human lung cancer.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China.
- Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China
- Institute of Cell Therapy, Soochow University, Changzhou, P.R. China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wen Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Qing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chang Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jing Ting Jiang
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China.
- Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| |
Collapse
|
34
|
Biagioli M, Marchianò S, Roselli R, Di Giorgio C, Bellini R, Bordoni M, Gidari A, Sabbatini S, Francisci D, Fiorillo B, Catalanotti B, Distrutti E, Carino A, Zampella A, Costantino G, Fiorucci S. Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem Pharmacol 2021; 188:114564. [PMID: 33872570 PMCID: PMC8052506 DOI: 10.1016/j.bcp.2021.114564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The severe acute respiratory syndrome (SARS)-CoV-2 is the pathogenetic agent of Corona Virus Induced Disease (COVID)19. The virus enters the human cells after binding to the angiotensin converting enzyme (ACE)2 receptor in target tissues. ACE2 expression is induced in response to inflammation. The colon expression of ACE2 is upregulated in patients with inflammatory bowel disease (IBD), highlighting a potential risk of intestinal inflammation in promoting viral entry in the human body. Because mechanisms that regulate ACE2 expression in the intestine are poorly understood and there is a need of anti-SARS-CoV-2 therapies, we have settled to investigate whether natural flavonoids might regulate the expression of Ace2 in intestinal models of inflammation. The results of these studies demonstrated that pelargonidin activates the Aryl hydrocarbon Receptor (AHR) in vitro and reverses intestinal inflammation caused by chronic exposure to high fat diet or to the intestinal braking-barrier agent TNBS in a AhR-dependent manner. In these two models, development of colon inflammation associated with upregulation of Ace2 mRNA expression. Colon levels of Ace2 mRNA were directly correlated with Tnf-α mRNA levels. Molecular docking studies suggested that pelargonidin binds a fatty acid binding pocket on the receptor binding domain of SARS-CoV-2 Spike protein. In vitro studies demonstrated that pelargonidin significantly reduces the binding of SARS-CoV-2 Spike protein to ACE2 and reduces the SARS-CoV-2 replication in a concentration-dependent manner. In summary, we have provided evidence that a natural flavonoid might hold potential in reducing intestinal inflammation and ACE2 induction in the inflamed colon in a AhR-dependent manner.
Collapse
Affiliation(s)
- Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Rosalinda Roselli
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Rachele Bellini
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Martina Bordoni
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Anna Gidari
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Samuele Sabbatini
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Daniela Francisci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Bruno Catalanotti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy,Corresponding author
| |
Collapse
|
35
|
Sada M, Watanabe M, Inui T, Nakamoto K, Hirata A, Nakamura M, Honda K, Saraya T, Kurai D, Kimura H, Ishii H, Takizawa H. Ruxolitinib inhibits poly(I:C) and type 2 cytokines-induced CCL5 production in bronchial epithelial cells: A potential therapeutic agent for severe eosinophilic asthma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:363-373. [PMID: 33534941 PMCID: PMC8127547 DOI: 10.1002/iid3.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Rationale Severe eosinophilic asthma is characterized by airway eosinophilia and corticosteroid‐resistance, commonly overlapping with type 2 inflammation. It has been reported that chemokine (C‐C motif) ligand 5 (CCL5) is involved in the exacerbation of asthma by RNA virus infections. Indeed, treatment with a virus‐associated ligand and a T helper type 2 cell (Th2) cytokine can synergistically stimulate CCL5 production in bronchial epithelial cells. We aimed to evaluate the mechanisms underlying CCL5 production in this in vitro model and to assess the potential of Janus kinase 1 (JAK1) as a novel therapeutic target via the use of ruxolitinib. Methods We stimulated primary normal human bronchial epithelial (NHBE) cells and BEAS‐2B cells with poly(I:C) along with interleukin‐13 (IL‐13) or IL‐4, and assessed CCL5 production. We also evaluated the signals involved in virus‐ and Th2‐cytokine‐induced CCL5 production and explored a therapeutic agent that attenuates the CCL5 production. Results Poly(I:C) stimulated NHBE and BEAS‐2B cells to produce CCL5. Poly(I:C) and IL‐13 increased CCL5 production. Poly(I:C)‐induced CCL5 production occurred via the TLR3–IRF3 and IFNAR/JAK1–phosphoinositide 3‐kinase (PI3K) pathways, but not the IFNAR/JAK1–STATs pathway. In addition, IL‐13 did not augment poly(I:C)‐induced CCL5 production via the canonical IL‐13R/IL‐4R/JAK1–STAT6 pathway but likely via subsequent TLR3‐IRF3‐IFNAR/JAK1‐PI3K pathways. JAK1 was identified to be a potential therapeutic target for severe eosinophilic asthma. The JAK1/2 inhibitor, ruxolitinib, was demonstrated to more effectively decrease CCL5 production in BEAS‐2B cells than fluticasone propionate. Conclusion We have demonstrated that JAK1 is a possible therapeutic target for severe corticosteroid‐resistant asthma with airway eosinophilia and persistent Th2‐type inflammation, and that ruxolitinib has potential as an alternative pharmacotherapy.
Collapse
Affiliation(s)
- Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Aya Hirata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Kurai
- Division of Infectious Diseases, Department of General Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
The Aryl Hydrocarbon Receptor in Asthma: Friend or Foe? Int J Mol Sci 2020; 21:ijms21228797. [PMID: 33233810 PMCID: PMC7699852 DOI: 10.3390/ijms21228797] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has emerged as an important player in asthma control. AhR is responsive to environmental molecules and endogenous or dietary metabolites and regulates innate and adaptive immune responses. Binding of this receptor by different ligands has led to seemingly opposite responses in different asthma models. In this review, we present two sides of the same coin, with the beneficial and deleterious roles of AhR evaluated using known endogenous or exogenous ligands, deficient mice or antagonists. On one hand, AhR has an anti-inflammatory role since its activation in dendritic cells blocks the generation of pro-inflammatory T cells or shifts macrophages toward an anti-inflammatory M2 phenotype. On the other hand, AhR activation by particle-associated polycyclic aromatic hydrocarbons from the environment is pro-inflammatory, inducing mucus hypersecretion, airway remodelling, dysregulation of antigen presenting cells and exacerbates asthma features. Data concerning the role of AhR in cells from asthmatic patients are also reviewed, since AhR could represent a potential target for therapeutic immunomodulation.
Collapse
|
37
|
Park R, Madhavaram S, Ji JD. The Role of Aryl-Hydrocarbon Receptor (AhR) in Osteoclast Differentiation and Function. Cells 2020; 9:cells9102294. [PMID: 33066667 PMCID: PMC7602422 DOI: 10.3390/cells9102294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays a crucial role in bone remodeling through altering the interplay between bone-forming osteoblasts and bone-resorbing osteoclasts. While effects of AhR signaling in osteoblasts are well understood, the role and mechanism of AhR signaling in regulating osteoclastogenesis is not widely understood. AhR, when binding with exogenous ligands (environmental pollutants such as polycylic aryl hydrocarbon (PAH), dioxins) or endogenous ligand indoxyl-sulfate (IS), has dual functions that are mediated by the nature of the binding ligand, binding time, and specific pathways of distinct ligands. In this review, AhR is discussed with a focus on (i) the role of AhR in osteoclast differentiation and function and (ii) the mechanisms of AhR signaling in inhibiting or promoting osteoclastogenesis. These findings facilitate an understanding of the role of AhR in the functional regulation of osteoclasts and in osteoclast-induced bone destructive conditions such as rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- Robin Park
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; (R.P.); (S.M.)
| | - Shreya Madhavaram
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; (R.P.); (S.M.)
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence:
| |
Collapse
|
38
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
39
|
Jin UH, Michelhaugh SK, Polin LA, Shrestha R, Mittal S, Safe S. Omeprazole Inhibits Glioblastoma Cell Invasion and Tumor Growth. Cancers (Basel) 2020; 12:2097. [PMID: 32731514 PMCID: PMC7465678 DOI: 10.3390/cancers12082097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The aryl hydrocarbon receptor (AhR) is expressed in gliomas and the highest staining is observed in glioblastomas. A recent study showed that the AhR exhibited tumor suppressor-like activity in established and patient-derived glioblastoma cells and genomic analysis showed that this was due, in part, to suppression of CXCL12, CXCR4 and MMP9. Methods: Selective AhR modulators (SAhRMs) including AhR-active pharmaceuticals were screened for their inhibition of invasion using a spheroid invasion assay in patient-derived AhR-expressing 15-037 glioblastoma cells and in AhR-silenced 15-037 cells. Invasion, migration and cell proliferation were determined using spheroid invasion, Boyden chambers and scratch assay, and XTT metabolic assays for cell growth. Changes in gene and gene product expression were determined by real-time PCR and Western blot assays, respectively. In vivo antitumorigenic activity of omeprazole was determined in SCID mice bearing subcutaneous patient-derived 15-037 cells. Results: Results of a screening assay using patient-derived 15-037 cells (wild-type and AhR knockout) identified the AhR-active proton pump inhibitor omeprazole as an inhibitor of glioblastoma cell invasion and migration only AhR-expressing cells but not in cells where the AhR was downregulated. Omeprazole also enhanced AhR-dependent repression of the pro-invasion CXCL12, CXCR4 and MMP9 genes, and interactions and effectiveness of omeprazole plus temozolomide were response-dependent. Omeprazole (100 mg/kg/injection) inhibited and delayed tumors in SCID mice bearing patient-derived 15-037 cells injected subcutaneously. Conclusion: Our results demonstrate that omeprazole enhances AhR-dependent inhibition of glioblastoma invasion and highlights a potential new avenue for development of a novel therapeutic mechanism-based approach for treating glioblastoma.
Collapse
Affiliation(s)
- Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Sharon K. Michelhaugh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA; (S.K.M.); (S.M.)
| | - Lisa A. Polin
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA; (S.K.M.); (S.M.)
- Carilion Clinic-Neurosurgery, Roanoke, VA 24014, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
40
|
Li Y, Lin N, Ji X, Mai J, Li Q. Organotin compound DBDCT induces CYP3A suppression through NF-κB-mediated repression of PXR activity. Metallomics 2020; 11:936-948. [PMID: 30848264 DOI: 10.1039/c8mt00361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organotin anticancer agent di-n-butyl-di-(4-chlorobenzohydroxamato)tin(iv) (DBDCT) exerted an inhibitory effect on its major metabolic enzyme cytochrome CYP3A. But whether hepatic drug-metabolizing enzymes and their regulatory nuclear receptors including pregnane PXR and constitutive androstane CAR binding with retinoid receptor RXR as a heterodimer are involved in the DBDCT-mediated regulation of CYP3A remains unclear. This study was undertaken to determine the mechanisms responsible for the effects of DBDCT on CYP3A suppression, focusing on the PXR-mediated and NF-κB pathways. The results indicated DBDCT suppressed CYP3A expression by inhibiting CAR expression. But what's interesting is, both protein and mRNA of PXR increased with increasing DBDCT. A further exploration, dual luciferase reporter gene analysis, clarified that DBDCT induced CYP3A expression elevation via the PXR-mediated pathway and this induction was countered by activation of NF-κB, which played a pivotal role in suppression of CYP3A through disrupting the association of the PXR-RXRα complex with DNA sequences by EMSA. PXR-mediated CYP3A expression was similarly demonstrated by RNAi. As expected, expression of CYP3A and its mRNA levels were reduced by DBDCT only in NF-κB(+/+) but not in NF-κB(-/-) cells. The inductive effect of DBDCT on CYP3A4 mRNA was enhanced in PXR shRNA-transfected cells but weakened in the ip65 group, which showed both PXR up-regulated CYP3A expression and NF-κB p65 activation directly contributed to CYP3A inhibition. In conclusion, activated NF-κB by DBDCT interacts directly with the DNA-binding domain of PXR, and disrupts the binding between the PXR-RXR dimer, thereby affecting the regulatory process for CYP3A transcription and, therefore, leading to a decrease of the expression of the PXR-regulated CYP3A.
Collapse
Affiliation(s)
- Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicol In Vitro 2020; 62:104656. [DOI: 10.1016/j.tiv.2019.104656] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
|
42
|
Li H, Li W, Wang Q. 1,25-dihydroxyvitamin D 3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells. BMC Oral Health 2019; 19:236. [PMID: 31684930 PMCID: PMC6829944 DOI: 10.1186/s12903-019-0935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background Antiinflammatory effect of 1,25-dihydroxyvitamin D3 (1,25D3) has been reported in periodontitis, but the exact mechanisms remain unclear. Oral epithelial cells are recently highlighted as an important regulator of inflammation in this disease. This in vitro study was established to investigate the effect of 1,25D3 on key proinflammatory cytokine IL-6 production and aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB) signaling in oral epithelial cells upon the stimulation of lipopolysaccharide (LPS) from periodontal pathogens. Methods OKF6/TERT-2 oral keratinocytes were incubated with LPS and different concentrations of 1,25D3, and levels of IL-6 production were determined using enzyme-linked immunosorbent assay (ELISA). Expression of vitamin D receptor (VDR), and activation of AhR was examined using western blot analysis, and phosphorylation of NF-κB was detected using cell-based protein phosphorylation ELISA. Results 1,25D3 inhibited LPS-induced IL-6 overexpression in OKF6/TERT-2 cells. Additionally, 1,25D3 increased VDR expression and AhR activation, and repressed NF-κB phosphorylation. Furthermore, 1,25D3 suppressed IL-6 expression and enhanced VDR expression and regulated AhR/NF-κB signaling activation in a dose-dependent manner after 48 h treatment. Conclusions These results suggest that 1,25D3 may inhibit LPS-induced IL-6 overexpression in human oral epithelial cells through AhR/NF-κB signaling. Our findings may provide an explanation for the antiinflammatory effect and therapeutic benefit of 1,25D3 in periodontitis.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China.,Loma Linda University School of Dentistry, 24876 Taylor Street, Loma Linda, CA, 92354, USA
| |
Collapse
|
43
|
Ma JK, Saad Eldin WF, El-Ghareeb WR, Elhelaly AE, Khedr MHE, Li X, Huang XC. Effects of Pyrene on Human Liver HepG2 Cells: Cytotoxicity, Oxidative Stress, and Transcriptomic Changes in Xenobiotic Metabolizing Enzymes and Inflammatory Markers with Protection Trial Using Lycopene. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7604851. [PMID: 31687396 PMCID: PMC6803749 DOI: 10.1155/2019/7604851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023]
Abstract
Pyrene is one of the major polycyclic aromatic hydrocarbons formed during heat treatment of meat and in car exhausts; however, few studies have investigated pyrene-induced adverse effects on human cell lines. This study aimed at the investigation of pyrene-induced cytotoxicity and oxidative damage in human liver HepG2 cells at environmentally relevant concentrations. Pyrene-induced changes in mRNA expression of xenobiotic metabolizing enzymes (XMEs), xenobiotic transporters, antioxidant enzymes, and inflammatory markers were investigated using real-time PCR. As a protection trial, the ameliorative effects of lycopene, a carotenoid abundantly found in tomato, were investigated. The possible mechanisms behind such effects were examined via studying the co exposure effects of pyrene and lycopene on regulatory elements including the aryl hydrocarbon receptor (Air) and elytroid 2-related factor 2 (RF). The achieved results indicated that pyrene caused significant cytotoxicity at 50 n, with a clear production of reactive oxygen species (ROS) in a dose-dependent manner. Pyrene upregulated mRNA expression of phase I enzymes including CYP1A1, 1A2, and CYP1B1 and inflammatory markers including TNFα and Cox2. However, pyrene significantly downregulated phase II enzymes, xenobiotic transporters, and antioxidant enzymes. Interestingly, lycopene significantly reduced pyrene-induced cytotoxicity and ROS production. Moreover, lycopene upregulated detoxification and antioxidant enzymes, probably via its regulatory effects on Air- and RF-dependent pathways.
Collapse
Affiliation(s)
- Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Walaa Fathy Saad Eldin
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Abdelazim Elsayed Elhelaly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center for Emerging Infectious Diseases, School of Medicine, Gifu University, Gifu 501-1193, Japan
| | - Mariam H. E. Khedr
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Xiang Li
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
44
|
Zhao Y, Fu Y, Sun Y, Zou M, Peng X. Transcriptional Regulation of gga-miR-451 by AhR:Arnt in Mycoplasma gallisepticum (HS Strain) Infection. Int J Mol Sci 2019; 20:ijms20123087. [PMID: 31238581 PMCID: PMC6627052 DOI: 10.3390/ijms20123087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) have been determined to be important regulators for pathogenic microorganism infection. However, it is largely unclear how miRNAs are triggered during pathogen infection. We previously reported that the up-regulation of gga-miR-451 negatively regulates the Mycoplasma gallisepticum (MG)-induced production of inflammatory cytokines via targeting tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ). The aim of this study was to investigate the mechanism regulating gga-miR-451 in MG infection in chickens. Analysis of gga-miR-451 precursor, pri-miR-451, and pre-miR-451 indicated that the regulation occurred transcriptionally. We also identified the transcriptional regulatory region of gga-miR-451 that contained consensus-binding motif for aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (Arnt) complex, which is known as the transcription factor that regulates gene expression. Luciferase reporter assays combined with chromatin immunoprecipitation (ChIP) demonstrated that AhR:Arnt bound directly to the promoter elements of gga-miR-451, which were responsible for gga-miR-451 transcription in the context of MG infection. Furthermore, upregulation of AhR:Arnt significantly induced gga-miR-451 and inhibited YWHAZ expression, suggesting that AhR:Arnt may play an anti-inflammatory role in MG infection. This discovery suggests that induced gga-miR-451 expression is modulated by AhR:Arnt in response to MG infection.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yali Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|
46
|
Patrizi B, Siciliani de Cumis M. TCDD Toxicity Mediated by Epigenetic Mechanisms. Int J Mol Sci 2018; 19:ijms19124101. [PMID: 30567322 PMCID: PMC6320947 DOI: 10.3390/ijms19124101] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Dioxins are highly toxic and persistent halogenated organic pollutants belonging to two families i.e., Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzo Furans (PCDFs). They can cause cancer, reproductive and developmental issues, damage to the immune system, and can deeply interfere with the endocrine system. Dioxins toxicity is mediated by the Aryl-hydrocarbon Receptor (AhR) which mediates the cellular metabolic adaptation to these planar aromatic xenobiotics through the classical transcriptional regulation pathway, including AhR binding of ligand in the cytosol, translocation of the receptor to the nucleus, dimerization with the AhR nuclear translocator, and the binding of this heterodimeric transcription factor to dioxin-responsive elements which regulate the expression of genes involved in xenobiotic metabolism. 2,3,7,8-TCDD is the most toxic among dioxins showing the highest affinity toward the AhR receptor. Beside this classical and well-studied pathway, a number of papers are dealing with the role of epigenetic mechanisms in the response to environmental xenobiotics. In this review, we report on the potential role of epigenetic mechanisms in dioxins-induced cellular response by inspecting recent literature and focusing our attention on epigenetic mechanisms induced by the most toxic 2,3,7,8-TCDD.
Collapse
Affiliation(s)
- Barbara Patrizi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
| | | |
Collapse
|
47
|
Addi T, Poitevin S, McKay N, El Mecherfi KE, Kheroua O, Jourde-Chiche N, de Macedo A, Gondouin B, Cerini C, Brunet P, Dignat-George F, Burtey S, Dou L. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Arch Toxicol 2018; 93:121-136. [PMID: 30324315 DOI: 10.1007/s00204-018-2328-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is associated with high risk of thrombosis. Indole-3 acetic acid (IAA), an indolic uremic toxin, induces the expression of tissue factor (TF) in human umbilical vein endothelial cells (HUVEC) via the transcription factor aryl hydrocarbon receptor (AhR). This study aimed to understand the signaling pathways involved in AhR-mediated TF induction by IAA. We incubated human endothelial cells with IAA at 50 µM, the maximal concentration found in patients with CKD. IAA induced TF expression in different types of human endothelial cells: umbilical vein (HUVEC), aortic (HAoEC), and cardiac-derived microvascular (HMVEC-C). Using AhR inhibition and chromatin immunoprecipitation experiments, we showed that TF induction by IAA in HUVEC was controlled by AhR and that AhR did not bind to the TF promoter. The analysis of TF promoter activity using luciferase reporter plasmids showed that the NF-κB site was essential in TF induction by IAA. In addition, TF induction by IAA was drastically decreased by an inhibitor of the NF-κB pathway. IAA induced the nuclear translocation of NF-κB p50 subunit, which was decreased by AhR and p38MAPK inhibition. Finally, in a cohort of 92 CKD patients on hemodialysis, circulating TF was independently related to serum IAA in multivariate analysis. In conclusion, TF up-regulation by IAA in human endothelial cells involves a non-genomic AhR/p38 MAPK/NF-κB pathway. The understanding of signal transduction pathways related to AhR thrombotic/inflammatory pathway is of interest to find therapeutic targets to reduce TF expression and thrombotic risk in patients with CKD.
Collapse
Affiliation(s)
- Tawfik Addi
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Stéphane Poitevin
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Nathalie McKay
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Kamel Eddine El Mecherfi
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
- Université Mohamed Boudiaf USTO, Dpt génétique Moléculaire Appliquée (GMA), Oran, Algeria
| | - Omar Kheroua
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Noémie Jourde-Chiche
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Alix de Macedo
- Service de Pédiatrie-Néonatologie, Hôpital Fondation Saint Joseph, Marseille, France
| | | | - Claire Cerini
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Philippe Brunet
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Françoise Dignat-George
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Stéphane Burtey
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Laetitia Dou
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
48
|
Riemschneider S, Kohlschmidt J, Fueldner C, Esser C, Hauschildt S, Lehmann J. Aryl hydrocarbon receptor activation by benzo(a)pyrene inhibits proliferation of myeloid precursor cells and alters the differentiation state as well as the functional phenotype of murine bone marrow-derived macrophages. Toxicol Lett 2018; 296:106-113. [DOI: 10.1016/j.toxlet.2018.07.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|
49
|
Gourronc FA, Robertson LW, Klingelhutz AJ. A delayed proinflammatory response of human preadipocytes to PCB126 is dependent on the aryl hydrocarbon receptor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16481-16492. [PMID: 28699004 PMCID: PMC5764822 DOI: 10.1007/s11356-017-9676-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 05/10/2023]
Abstract
Inflammation in adipose tissue is recognized as a causative factor in the development of type II diabetes. Adipocyte hypertrophy as well as bacterial and environmental factors have been implicated in causing inflammation in mature adipocytes. Exposure to persistent organic pollutants such as polychlorinated biphenyls (PCBs) has been associated with the development of type II diabetes. We show here that PCB126, a dioxin-like PCB, activates a robust proinflammatory state in fat cell precursors (preadipocytes). The response was found to be dependent on aryl hydrocarbon receptor (AhR) activation, although induction of the response was delayed compared to upregulation of CYP1A1, a classic AhR-responsive gene. Treatment of preadipocytes with a nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) inhibitor partially attenuated the PCB126-induced inflammatory response and partly, but not completely, ameliorated disruption of adipogenesis caused by PCB126. Our results indicate a role for PCB126 in mediating an inflammatory response through AhR in preadipocytes that interferes with adipogenesis.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, 2202 MERF, 375 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
50
|
Rothhammer V, Borucki DM, Kenison JE, Hewson P, Wang Z, Bakshi R, Sherr DH, Quintana FJ. Detection of aryl hydrocarbon receptor agonists in human samples. Sci Rep 2018; 8:4970. [PMID: 29563571 PMCID: PMC5862868 DOI: 10.1038/s41598-018-23323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/09/2018] [Indexed: 11/09/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with important functions in the immune response and cancer. AHR agonists are provided by the environment, the commensal flora and the metabolism. Considering AHR physiological functions, AHR agonists may have important effects on health and disease. Thus, the quantification of AHR agonists in biological samples is of scientific and clinical relevance. We compared different reporter systems for the detection of AHR agonists in serum samples of Multiple Sclerosis (MS) patients, and assessed the influence of transfection methods and cell lines in a reporter-based in vitro assay. While the use of stable or transient reporters did not influence the measurement of AHR agonistic activity, the species of the cell lines used in these reporter assays had important effects on the reporter readings. These observations suggest that cell-specific factors influence AHR activation and signaling. Thus, based on the reported species selectivity of AHR ligands and the cell species-of-origin effects that we describe in this manuscript, the use of human cell lines is encouraged for the analysis of AHR agonistic activity in human samples. These findings may be relevant for the analysis of AHR agonists in human samples in the context of inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongyan Wang
- Dept. of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Sherr
- Dept. of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|