1
|
Martinkova L, Zatloukalova P, Kucerikova M, Friedlova N, Tylichova Z, Zavadil-Kokas F, Hupp TR, Coates PJ, Vojtesek B. Inverse correlation between TP53 gene status and PD-L1 protein levels in a melanoma cell model depends on an IRF1/SOX10 regulatory axis. Cell Mol Biol Lett 2024; 29:117. [PMID: 39237877 PMCID: PMC11378555 DOI: 10.1186/s11658-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.
Collapse
Affiliation(s)
- Lucia Martinkova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| | | | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Nela Friedlova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Zuzana Tylichova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
| | | | - Ted Robert Hupp
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, EH4 2XR, UK
| | | | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Han NR, Park HJ, Ko SG, Moon PD. Maltol has anti-cancer effects via modulating PD-L1 signaling pathway in B16F10 cells. Front Pharmacol 2023; 14:1255586. [PMID: 37731735 PMCID: PMC10508342 DOI: 10.3389/fphar.2023.1255586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Among skin cancers, melanoma has a high mortality rate. Recent advances in immunotherapy, particularly through immune checkpoint modulation, have improved the clinical treatment of melanoma. Maltol has various bioactivities, including anti-oxidant and anti-inflammatory properties, but the anti-melanoma property of maltol remains underexplored. The aim of this work is to explore the anti-melanoma potential of maltol through regulating immune checkpoints. Methods: The immune checkpoint PD-L1 was analyzed using qPCR, immunoblots, and immunofluorescence. Melanoma sensitivity towards T cells was investigated via cytotoxicity, cell viability, and IL-2 assays employing CTLL-2 cells. Results: Maltol was found to reduce melanin contents, tyrosinase activity, and expression levels of tyrosinase and tyrosinase-related protein 1. Additionally, maltol suppressed the proliferative capacity of B16F10 and induced cell cycle arrest. Maltol increased apoptotic rates by elevating cleaved caspase-3 and PARP. The co-treatment with maltol and cisplatin revealed a synergistic effect on inhibiting growth and promoting apoptosis. Maltol suppressed IFN-γ-induced PD-L1 and cisplatin-upregulated PD-L1 by attenuating STAT1 phosphorylation, thereby enhancing cisplatin's cytotoxicity against B16F10. Maltol augmented sensitivity to CTLL-2 cell-regulated melanoma destruction, leading to an increase in IL-2 production. Discussion: These findings demonstrate that maltol restricts melanoma growth through the downregulation of PD-L1 and elicits T cell-mediated anti-cancer responses, overcoming PD-L1-mediated immunotherapy resistance of cisplatin. Therefore, maltol can be considered as an effective therapeutic agent against melanoma.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Han NR, Park HJ, Ko SG, Moon PD. The Mixture of Natural Products SH003 Exerts Anti-Melanoma Effects through the Modulation of PD-L1 in B16F10 Cells. Nutrients 2023; 15:2790. [PMID: 37375695 DOI: 10.3390/nu15122790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is the most invasive and lethal skin cancer. Recently, PD-1/PD-L1 pathway modulation has been applied to cancer therapy due to its remarkable clinical efficacy. SH003, a mixture of natural products derived from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, and formononetin (FMN), an active constituent of SH003, exhibit anti-cancer and anti-oxidant properties. However, few studies have reported on the anti-melanoma activities of SH003 and FMN. This work aimed to elucidate the anti-melanoma effects of SH003 and FMN through the PD-1/PD-L1 pathway, using B16F10 cells and CTLL-2 cells. Results showed that SH003 and FMN reduced melanin content and tyrosinase activity induced by α-MSH. Moreover, SH003 and FMN suppressed B16F10 growth and arrested cells at the G2/M phase. SH003 and FMN also led to cell apoptosis with increases in PARP and caspase-3 activation. The pro-apoptotic effects were further enhanced when combined with cisplatin. In addition, SH003 and FMN reversed the increased PD-L1 and STAT1 phosphorylation levels induced by cisplatin in the presence of IFN-γ. SH003 and FMN also enhanced the cytotoxicity of CTLL-2 cells against B16F10 cells. Therefore, the mixture of natural products SH003 demonstrates therapeutic potential in cancer treatment by exerting anti-melanoma effects through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Mireștean CC, Iancu RI, Iancu DPT. Active Immune Phenotype in Head and Neck Cancer: Reevaluating the Iso-Effect Fractionation Based on the Linear Quadratic (LQ) Model-A Narrative Review. Curr Oncol 2023; 30:4805-4816. [PMID: 37232820 DOI: 10.3390/curroncol30050362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Altered fractionation concepts and especially moderate hypo-fractionation are evaluated as alternatives to standard treatment for head and neck squamous cell carcinoma (HNSCC), associated with or not concurrent with or sequential to chemotherapy. The calculation of the iso-equivalent dose regimens has as its starting point the linear quadratic (LQ) formalism traditionally based on the "4Rs" of radiobiology. The higher rates of therapeutic failure after radiotherapy of HNSCC are associated with the heterogeneity of radio-sensibility. The identification of genetic signatures and radio-resistance scores aims to improve the therapeutic ratio of radiotherapy and to conceptualize personalized fractionation schemes. The new data regarding the involvement of the sixth "R" of radiobiology in HNSCC, especially for the HPV-driven subtype, but also for the "immune active" minority of HPV-negative HNSCCs, bring to the fore a multifactorial variation of the α/β ratio. The involvement of the antitumor immune response and the dose/fractionation/volume factors as well as the therapeutic sequence in the case of new multimodal treatments including immune checkpoint inhibitors (ICIs) could be included as an additional term in the quadratic linear formalism especially for hypo-fractionation regimens. This term should take into account the dual immunomodulatory effect (immunosuppressant and stimulator of antitumor immunity) of radiotherapy, which varies from case to case and can bring benefit or a detrimental effect.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Railways Clinical Hospital Iasi, Department of Surgery, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Faculty of Dental Medicine, Oral Pathology Department, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, "St. Spiridon" Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Faculty of Medicine, Oncology and Radiotherapy Department, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Regional Institute of Oncology, Department of Radiation Oncology, 700483 Iași, Romania
| |
Collapse
|
5
|
Liquid biopsy for monitoring of tumor dormancy and early detection of disease recurrence in solid tumors. Cancer Metastasis Rev 2023; 42:161-182. [PMID: 36607507 PMCID: PMC10014694 DOI: 10.1007/s10555-022-10075-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer is one of the three leading causes of death worldwide. Even after successful therapy and achieving remission, the risk of relapse often remains. In this context, dormant residual cancer cells in secondary organs such as the bone marrow constitute the cellular reservoir from which late tumor recurrences arise. This dilemma leads the term of minimal residual disease, which reflects the presence of tumor cells disseminated from the primary lesion to distant organs in patients who lack any clinical or radiological signs of metastasis or residual tumor cells left behind after therapy that eventually lead to local recurrence. Disseminated tumor cells have the ability to survive in a dormant state following treatment and linger unrecognized for more than a decade before emerging as recurrent disease. They are able to breakup their dormant state and to readopt their proliferation under certain circumstances, which can finally lead to distant relapse and cancer-associated death. In recent years, extensive molecular and genetic characterization of disseminated tumor cells and blood-based biomarker has contributed significantly to our understanding of the frequency and prevalence of tumor dormancy. In this article, we describe the clinical relevance of disseminated tumor cells and highlight how latest advances in different liquid biopsy approaches can be used to detect, characterize, and monitor minimal residual disease in breast cancer, prostate cancer, and melanoma patients.
Collapse
|
6
|
Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021; 13:5621. [PMID: 34830776 PMCID: PMC8615859 DOI: 10.3390/cancers13225621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic spread and recurrence are intimately linked to therapy failure, which remains an overarching clinical challenge for patients with cancer. Cancer cells often disseminate early in the disease process and can remain dormant for years or decades before re-emerging as metastatic disease, often after successful treatment. The interactions of dormant cancer cells and their metastatic niche, comprised of various stromal and immune cells, can determine the length of time that cancer cells remain dormant, as well as when they reactivate. New studies are defining how innate immune cells in the primary tumor may be corrupted to help facilitate many aspects of dissemination and re-emergence from a dormant state. Although the scientific literature has partially shed light on the drivers of immune escape in cancer, the specific mechanisms regulating metastasis and dormancy in the context of anti-tumor immunity are still mostly unknown. This review follows the journey of metastatic cells from dissemination to dormancy and the onset of metastatic outgrowth and recurrent tumor development, with emphasis on the role of the innate immune system. To this end, further research identifying how immune cells interact with cancer cells at each step of cancer progression will pave the way for new therapies that target the reactivation of dormant cancer cells into recurrent, metastatic cancers.
Collapse
Affiliation(s)
- Noah M. Chernosky
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Kunadt D, Stölzel F. Effective Immunosurveillance After Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia. Cancer Manag Res 2021; 13:7411-7427. [PMID: 34594134 PMCID: PMC8478160 DOI: 10.2147/cmar.s261721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
The number of patients receiving allogeneic hematopoietic stem cell transplantation (alloHCT) has increased constantly over the last years due to advances in transplant technology development, supportive care, transplant safety, and donor availability. Currently, acute myeloid leukemia (AML) is the most frequent indication for alloHCT. However, disease relapse remains the main cause of therapy failure. Therefore, concepts of maintaining and, if necessary, reinforcing a strong graft-versus-leukemia (GvL) effect is crucial for the prognosis and long-term survival of the patients. Over the last decades, it has become evident that effective immunosurveillance after alloHCT is an entangled complex of donor-specific characteristics, leukemia-associated geno- and phenotypes, and acquired resistance mechanisms. Furthermore, adoption of effector cells such as natural killer (NK) cells, alloreactive and regulatory T-cells with their accompanying receptor repertoire, and cell–cell interactions driven by messenger molecules within the stem cell and the bone marrow niche have important impact. In this review of pre- and posttransplant elements and mechanisms of immunosurveillance, we highlight the most important mechanisms after alloHCT.
Collapse
Affiliation(s)
- Desiree Kunadt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
8
|
Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021; 9:1075. [PMID: 34572263 PMCID: PMC8467932 DOI: 10.3390/biomedicines9091075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.
Collapse
Affiliation(s)
- Shima Makaremi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak 3848176941, Iran;
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Alessandro Sgambato
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 5972362 Rome, Italy;
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 5972362 Rome, Italy
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Antonella Argentiero
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Oronzo Brunetti
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95121 Catania, Italy;
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| |
Collapse
|
9
|
Li W, Li M, Wang H, Peng Y, Dong S, Lu Y, Wang F, Xu F, Liu L, Zhao Q. Infiltrating Immune Cells in Gastric Cancer: A Novel Predicting Model for Prognosis. J Cancer 2021; 12:965-975. [PMID: 33442396 PMCID: PMC7797666 DOI: 10.7150/jca.51079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Objective: Immune cells infiltrating has been proved to be associated with prognosis in gastric cancer (GC) by studies. This study aims to explore the prognosis value of infiltrating immune cells in gastric cancer. Methods: In our study, the CIBERSORT algorithm was used to calculate the fraction of 22 tumor-infiltrating immune cells (TIIC) in 100 normal and 300 tumor samples from the GEO cohort and 30 normal and 344 tumor samples from the TCGA cohort. Univariate and multivariate Cox regression were used to construct an immune risk score model. Multivariate cox regression was also used to validate whether our risk score model could predict prognosis in GC independently. Furthermore, the model was validated in different patient subgroups to test its independence. P<0.05 was considered statistically significant. Results: The results showed that the fraction of 3 immune cells increased in tumor tissues compared with normal tissues in both the GEO and TCGA cohort. Univariate cox regression analysis showed four cells significantly correlated with survival rate in GC (P<0.05). The immune risk score model was constructed based on the four cells through multivariate cox regression and further validated. The KM survival curve suggested that patients with high risk had poor prognosis than patients with low risk (P<0.05). ROC curve indicated the model was reliable (AUC= 0.67 in the GEO cohort, AUC = 0.65 in the TCGA cohort). Furthermore, multivariate Cox regression showed the model was an independent factor for overall survival predicting in GC (hazard ratio (HR) = 2.35, 95% confidence interval (CI) = 1.63~3.40 in the GEO cohort, HR = 2.87, 95% CI = 1.94~4.25 in the TCGA cohort). Finally, we validated the model in patient subgroups by the KM survival curve. Conclusion: In summary, tumor-infiltrating immune cells play an essential role in GC progression and affect the outcome of GC patients. The immune risk score can predict overall survival for GC independently, and high immune risk score is associated with poor prognosis.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shouquan Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
10
|
Ma J, Zhang JK, Yang D, Ma XX. Identification of novel prognosis-related genes in the endometrial cancer immune microenvironment. Aging (Albany NY) 2020; 12:22152-22173. [PMID: 33159014 PMCID: PMC7695382 DOI: 10.18632/aging.104083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
The incidence of endometrial cancer is increasing each year, and treatment effects are poor for patients with advanced and specific subtypes. Exploring immune infiltration-related factors in endometrial cancer can aid in the prognosis of patients and provide new immunotherapy targets. We downloaded immune metagene and functional data of patients with different subtypes of endometrial cancer from The Cancer Genome Atlas database and selected the lymphocyte-specific kinase (LCK) metagene as a representative genetic marker of the immune microenvironment in endometrial cancer. The results showed that LCK metagene expression is related to the prognosis of patients with endometrioid endometrial adenocarcinoma subtypes and highly correlated with the PTEN and PIK3CA mutational status. A search for LCK-related modules returned seven independent genetic predictors of survival in patients with endometrial cancer. The TIMER algorithm showed that the expression of these seven genes was positively correlated with the infiltration levels of six types of immune cells. The diagnostic value of these markers was validated using real-time quantitative PCR and immunohistochemical methods. Our results identified CD74, HLA-DRB5, CD52, HLA-DPB1 and HLA-DRB1 as possible valuable genetic markers for the diagnosis and prognosis of endometrial cancer and provided a theoretical basis for immunotherapy targets for its clinical treatment.
Collapse
Affiliation(s)
- Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jing-Kai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
11
|
Grund-Gröschke S, Ortner D, Szenes-Nagy AB, Zaborsky N, Weiss R, Neureiter D, Wipplinger M, Risch A, Hammerl P, Greil R, Sibilia M, Gratz IK, Stoitzner P, Aberger F. Epidermal activation of Hedgehog signaling establishes an immunosuppressive microenvironment in basal cell carcinoma by modulating skin immunity. Mol Oncol 2020; 14:1930-1946. [PMID: 32615027 PMCID: PMC7463314 DOI: 10.1002/1878-0261.12758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/27/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic activation of hedgehog/glioma‐associated oncogene homolog (HH/GLI) signaling causes basal cell carcinoma (BCC), a very frequent nonmelanoma skin cancer. Small molecule targeting of the essential HH effector Smoothened (SMO) has proven an effective therapy of BCC, though the frequent development of drug resistance poses major challenges to anti‐HH treatments. In light of recent breakthroughs in cancer immunotherapy, we analyzed the possible immunosuppressive mechanisms in HH/GLI‐induced BCC in detail. Using a genetic mouse model of BCC, we identified profound differences in the infiltration of BCC lesions with cells of the adaptive and innate immune system. Epidermal activation of Hh/Gli signaling led to an accumulation of immunosuppressive regulatory T cells, and to an increased expression of immune checkpoint molecules including programmed death (PD)‐1/PD‐ligand 1. Anti‐PD‐1 monotherapy, however, did not reduce tumor growth, presumably due to the lack of immunogenic mutations in common BCC mouse models, as shown by whole‐exome sequencing. BCC lesions also displayed a marked infiltration with neutrophils, the depletion of which unexpectedly promoted BCC growth. The study provides a comprehensive survey of and novel insights into the immune status of murine BCC and serves as a basis for the design of efficacious rational combination treatments. This study also underlines the need for predictive immunogenic mouse models of BCC to evaluate the efficacy of immunotherapeutic strategies in vivo.
Collapse
Affiliation(s)
- Sandra Grund-Gröschke
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Daniela Ortner
- Department of Dermatology, Venereology & Allergology, Medical University Innsbruck, Austria
| | - Antal B Szenes-Nagy
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Nadja Zaborsky
- IIIrd Medical Department, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University Salzburg, Cancer Cluster Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University Salzburg, Cancer Cluster Salzburg, Austria
| | - Martin Wipplinger
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Angela Risch
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Peter Hammerl
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Richard Greil
- IIIrd Medical Department, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University Salzburg, Cancer Cluster Salzburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Iris K Gratz
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University Innsbruck, Austria
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, Austria
| |
Collapse
|
12
|
Leisch M, Greil R, Pleyer L. IDO in MDS/AML disease progression and its role in resistance to azacitidine: a potential new drug target? Br J Haematol 2020; 190:314-317. [PMID: 32419137 PMCID: PMC7496607 DOI: 10.1111/bjh.16710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory of Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.,Paracelsus Medical University, Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory of Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.,Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Lisa Pleyer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory of Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.,Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
13
|
Nyiramana MM, Cho SB, Kim EJ, Kim MJ, Ryu JH, Nam HJ, Kim NG, Park SH, Choi YJ, Kang SS, Jung M, Shin MK, Han J, Jang IS, Kang D. Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways. Cancers (Basel) 2020; 12:E726. [PMID: 32204484 PMCID: PMC7140097 DOI: 10.3390/cancers12030726] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Sea hare-derived compounds induce macrophage activation and reduce asthmatic parameters in mouse models of allergic asthma. These findings led us to study the role of sea hare hydrolysates (SHH) in cancer pathophysiology. SHH treatment-induced M1 macrophage activation in RAW264.7 cells, peritoneal macrophages, and THP-1 cells, as did lipopolysaccharide (LPS) (+ INF-γ), whereas SHH reduced interleukin (IL)-4 (+IL-13)-induced M2 macrophage polarization. In addition, SHH treatment inhibited the actions of M1 and M2 macrophages, which have anticancer and pro-cancer effects, respectively, in non-small cell lung cancer cells (A549 and HCC-366) and tumor-associated macrophages (TAMs). Furthermore, SHH induced G2/M phase arrest and cell death in A549 cells. SHH also downregulated STAT3 activation in macrophages and A549 cells, and the down-regulation was recovered by colivelin, a STAT3 activator. SHH-induced reduction of M2 polarization and tumor growth was blocked by colivelin treatment. SHH-induced cell death did not occur in the manner of apoptotic signaling pathways, while the death pattern was mediated through pyroptosis/necroptosis, which causes membrane rupture, formation of vacuoles and bleb, activation of caspase-1, and secretion of IL-1β in SHH-treated A549 cells. However, a combination of SHH and colivelin blocked caspase-1 activation. Z-YVAD-FMK and necrostatin-1, pyrotosis and necroptosis inhibitors, attenuated SHH's effect on the cell viability of A549 cells. Taken together, SHH showed anticancer effects through a cytotoxic effect on A549 cells and a regulatory effect on macrophages in A549 cells. In addition, the SHH-induced anticancer effects were mediated by non-apoptotic regulated cell death pathways under STAT3 inhibition. These results suggest that SHH may be offered as a potential remedy for cancer immunotherapy.
Collapse
Affiliation(s)
- Marie Merci Nyiramana
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.M.N.); (E.-J.K.); (J.H.R.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Soo Buem Cho
- Department of Radiology, Ewha Womans University Medical Center, Seoul 07804, Korea;
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.M.N.); (E.-J.K.); (J.H.R.); (J.H.)
| | - Min Jun Kim
- Department of Anatomy, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.J.K.); (S.S.K.)
| | - Ji Hyeon Ryu
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.M.N.); (E.-J.K.); (J.H.R.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun Jae Nam
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Nam-Gil Kim
- Department of Marine Biology and Aquaculture and Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea;
| | | | - Yeung Joon Choi
- Department of Seafood Science and Technology and Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea;
| | - Sang Soo Kang
- Department of Anatomy, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.J.K.); (S.S.K.)
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.J.); (M.-K.S.)
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.J.); (M.-K.S.)
| | - Jaehee Han
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.M.N.); (E.-J.K.); (J.H.R.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - In-Seok Jang
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Gyeongsang National University and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (M.M.N.); (E.-J.K.); (J.H.R.); (J.H.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Department of Radiology, Ewha Womans University Medical Center, Seoul 07804, Korea;
| |
Collapse
|
14
|
Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L. Mechanisms of Leukemia Immune Evasion and Their Role in Relapse After Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:147. [PMID: 32158444 PMCID: PMC7052328 DOI: 10.3389/fimmu.2020.00147] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Over the last decade, the development of multiple strategies to allow the safe transfer from the donor to the patient of high numbers of partially HLA-incompatible T cells has dramatically reduced the toxicities of haploidentical hematopoietic cell transplantation (haplo-HCT), but this was not accompanied by a similar positive impact on the incidence of post-transplantation relapse. In the present review, we will elaborate on how the unique interplay between HLA-mismatched immune system and malignancy that characterizes haplo-HCT may impact relapse biology, shaping the selection of disease variants that are resistant to the “graft-vs.-leukemia” effect. In particular, we will present current knowledge on genomic loss of HLA, a relapse modality first described in haplo-HCT and accounting for a significant proportion of relapses in this setting, and discuss other more recently identified mechanisms of post-transplantation immune evasion and relapse, including the transcriptional downregulation of HLA class II molecules and the enforcement of inhibitory checkpoints between T cells and leukemia. Ultimately, we will review the available treatment options for patients who relapse after haplo-HCT and discuss on how a deeper insight into relapse immunobiology might inform the rational and personalized selection of therapies to improve the largely unsatisfactory clinical outcome of relapsing patients.
Collapse
Affiliation(s)
- Pier Edoardo Rovatti
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Gambacorta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Eugenin EA. Role of cell-to-cell communication in cancer: New features, insights, and directions. Cancer Rep (Hoboken) 2019; 2:e1228. [PMID: 32729188 DOI: 10.1002/cnr2.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
The current special issue entitled "Role of tunneling nanotubes (TNTs) in carcinogenesis" was designed to discuss the role of cell-to-cell communication, especially TNTs, in cancer pathogenesis. In addition, we discuss the exploitation of TNTs as a potential therapeutic target to prevent and reduce cancer incidence. It is accepted that cell-to-cell communication is essential for the development of multicellular systems, and it is coordinated by soluble factors, associated membrane proteins, exosomes, gap junction channels, and TNTs. An old belief in the cancer field is that cancer cells are "disconnected" from healthy cells, resulting in loss of cell-to-cell communication and neighbor control. However, recent data obtained from different kind of tumors indicate that TNTs and others forms of communication (exosomes and localized cell-to-cell communication) are highly expressed and functional during tumor development . In physiological conditions, TNTs are expressed by few cells, and their main function is to coordinate long-distance signaling. However, upon carcinogenesis, TNTs proliferate and provide an alternative route of communication to enable the transfer of several signaling molecules and organelles to spread disease and toxicity. We propose that TNTs and their cargo are an attractive therapeutic target to reduce or prevent cancer development. All these unique aspects of cell-to-cell diffusion and organelle sharing will be discussed in this special issue.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas
| |
Collapse
|
16
|
Sasikumar PG, Ramachandra RK, Adurthi S, Dhudashiya AA, Vadlamani S, Vemula K, Vunnum S, Satyam LK, Samiulla DS, Subbarao K, Nair R, Shrimali R, Gowda N, Ramachandra M. A Rationally Designed Peptide Antagonist of the PD-1 Signaling Pathway as an Immunomodulatory Agent for Cancer Therapy. Mol Cancer Ther 2019; 18:1081-1091. [PMID: 31015307 DOI: 10.1158/1535-7163.mct-18-0737] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/26/2018] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
Abstract
Pioneering success of antibodies targeting immune checkpoints such as PD-1 and CTLA4 has opened novel avenues for cancer immunotherapy. Along with impressive clinical activity, severe immune-related adverse events (irAE) due to the breaking of immune self-tolerance are becoming increasingly evident in antibody-based approaches. As a strategy to better manage severe adverse effects, we set out to discover an antagonist targeting PD-1 signaling pathway with a shorter pharmacokinetic profile. Herein, we describe a peptide antagonist NP-12 that displays equipotent antagonism toward PD-L1 and PD-L2 in rescue of lymphocyte proliferation and effector functions. In preclinical models of melanoma, colon cancer, and kidney cancers, NP-12 showed significant efficacy comparable with commercially available PD-1-targeting antibodies in inhibiting primary tumor growth and metastasis. Interestingly, antitumor activity of NP-12 in a preestablished CT26 model correlated well with pharmacodynamic effects as indicated by intratumoral recruitment of CD4 and CD8 T cells, and a reduction in PD-1+ T cells (both CD4 and CD8) in tumor and blood. In addition, NP-12 also showed additive antitumor activity in preestablished tumor models when combined with tumor vaccination or a chemotherapeutic agent such as cyclophosphamide known to induce "immunologic cell death." In summary, NP-12 is the first rationally designed peptide therapeutic targeting PD-1 signaling pathways exhibiting immune activation, excellent antitumor activity, and potential for better management of irAEs.
Collapse
Affiliation(s)
| | | | - Srinivas Adurthi
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | - Amit A Dhudashiya
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | | | | | | | - Leena K Satyam
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | | | | | - Rashmi Nair
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | - Rajeev Shrimali
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | - Nagaraj Gowda
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | | |
Collapse
|
17
|
Abstract
Recent reports describe how genome-wide transcriptional analysis of cancer tissues can be exploited to identify molecular signatures of immune infiltration in cancer. We hypothesize that immune infiltration in cancer may also be defined by changes in certain epigenetic signatures. In this context, a primary objective is to identify site-specific CpG markers whose levels of methylation may be highly indicative of known transcriptional markers of immune infiltration such as GZMA, PRF1, T cell receptor genes, PDCD1, and CTLA4. This has been accomplished by integrating genome-wide transcriptional expression and methylation data for different types of cancer (melanoma, kidney cancers, lung cancers, gliomas, head and neck cancer). Our findings establish that cancers of related histology also have a high degree of similarity in immune-infiltration CpG markers. For example, the epigenetic immune infiltration signatures in lung adenocarcinoma (LUAD), mesothelioma (MESO), lung squamous cell carcinoma (LUSC), and head and neck squamous cell carcinoma (HNSC) are distinctly similar. So are glioblastoma multiforme (GBM) and brain lower grade glioma (LGG); and kidney renal papillary cell carcinoma (KIRP) and kidney renal clear cell carcinoma (KIRC). Kidney chromophobe (KICH), on the other hand has markers that are unique to this cohort. The strong relationships between immune infiltration and CpG methylation (for certain sites) in cancer tissues were not observed upon integrated analysis of publicly available cancer cell line datasets. Results from comparative pathways analyses offer further justification to methylation at certain CpG sites as being indicators of cancer immune infiltration, and possibly of predicting patient response to immunotherapeutic drugs. Achieving this target objective would significantly enhance therapeutic outcomes employing immunotherapy through focused patient-centric personalized medicine.
Collapse
|
18
|
Rapoport BL, Anderson R. Realizing the Clinical Potential of Immunogenic Cell Death in Cancer Chemotherapy and Radiotherapy. Int J Mol Sci 2019; 20:ijms20040959. [PMID: 30813267 PMCID: PMC6412296 DOI: 10.3390/ijms20040959] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Immunogenic cell death (ICD), which is triggered by exposure of tumor cells to a limited range of anticancer drugs, radiotherapy, and photodynamic therapy, represents a recent innovation in the revitalized and burgeoning field of oncoimmunnotherapy. ICD results in the cellular redistribution and extracellular release of damage-associated molecular patterns (DAMPs), which have the potential to activate and restore tumor-targeted immune responses. Although a convincing body of evidence exists with respect to the antitumor efficacy of ICD in various experimental systems, especially murine models of experimental anticancer immunotherapy, evidence for the existence of ICD in the clinical setting is less compelling. Following overviews of hallmark developments, which have sparked the revival of interest in the field of oncoimmunotherapy, types of tumor cell death and the various DAMPs most prominently involved in the activation of antitumor immune responses, the remainder of this review is focused on strategies which may potentiate ICD in the clinical setting. These include identification of tumor- and host-related factors predictive of the efficacy of ICD, the clinical utility of combinatorial immunotherapeutic strategies, novel small molecule inducers of ICD, novel and repurposed small molecule immunostimulants, as well as the critical requirement for validated biomarkers in predicting the efficacy of ICD.
Collapse
Affiliation(s)
- Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa.
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| |
Collapse
|
19
|
Richter MD, Crowson C, Kottschade LA, Finnes HD, Markovic SN, Thanarajasingam U. Rheumatic Syndromes Associated With Immune Checkpoint Inhibitors: A Single‐Center Cohort of Sixty‐One Patients. Arthritis Rheumatol 2019; 71:468-475. [DOI: 10.1002/art.40745] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
|
20
|
Bacolod MD, Barany F, Pilones K, Fisher PB, de Castro RJ. Pathways- and epigenetic-based assessment of relative immune infiltration in various types of solid tumors. Adv Cancer Res 2019; 142:107-143. [PMID: 30885360 DOI: 10.1016/bs.acr.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent clinical studies document the power of immunotherapy in treating subsets of patients with advanced cancers. In this context and with multiple cancer immunotherapeutics already evaluated in the clinic and a large number in various stages of clinical trials, it is imperative to comprehensively examine genomics data to better comprehend the role of immunity in different cancers in predicting response to therapy and in directing appropriate therapies. The approach we chose is to scrutinize the pathways and epigenetic factors predicted to drive immune infiltration in different cancer types using publicly available TCGA transcriptional and methylation datasets, along with accompanying clinico-pathological data. We observed that the relative activation of T cells and other immune signaling pathways differs across cancer types. For example, pathways related to activation and proliferation of helper and cytotoxic T cells appear to be more highly enriched in kidney, skin, head and neck, and esophageal cancers compared to those of lung, colorectal, and liver or bile duct cancers. The activation of these immune-related pathways positively associated with prognosis in certain cancer types, most notably melanoma, head and neck, and cervical cancers. Integrated methylation and expression data (along with publicly available, ENCODE-generated histone ChIP Seq and DNAse hypersensitivity data) predict that epigenetic regulation is a primary factor driving transcriptional activation of a number of genes crucial to immunity in cancer, including T cell receptor genes (e.g., CD3D, CD3E), CTLA4, and GZMA. However, the extent to which epigenetic factors (primarily methylation at promoter regions) affect transcription of immune-related genes may vary across cancer types. For example, there is a high negative correlation between promoter CpG methylation and CD3D expression in renal and thyroid cancers, but not in brain tumors. The types of analyses we have undertaken provide insights into the relationships between immune modulation and cancer etiology and progression, offering clues into ways of therapeutically manipulating the immune system to promote immune recognition and immunotherapy.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Karsten Pilones
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | | |
Collapse
|
21
|
Gayden T, Sepulveda FE, Khuong-Quang DA, Pratt J, Valera ET, Garrigue A, Kelso S, Sicheri F, Mikael LG, Hamel N, Bajic A, Dali R, Deshmukh S, Dervovic D, Schramek D, Guerin F, Taipale M, Nikbakht H, Majewski J, Moshous D, Charlebois J, Abish S, Bole-Feysot C, Nitschke P, Bader-Meunier B, Mitchell D, Thieblemont C, Battistella M, Gravel S, Nguyen VH, Conyers R, Diana JS, McCormack C, Prince HM, Besnard M, Blanche S, Ekert PG, Fraitag S, Foulkes WD, Fischer A, Neven B, Michonneau D, de Saint Basile G, Jabado N. Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome. Nat Genet 2018; 50:1650-1657. [DOI: 10.1038/s41588-018-0251-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
|
22
|
Xu L, Zhang Y, Tian K, Chen X, Zhang R, Mu X, Wu Y, Wang D, Wang S, Liu F, Wang T, Zhang J, Liu S, Zhang Y, Tu C, Liu H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:261. [PMID: 30373602 PMCID: PMC6206930 DOI: 10.1186/s13046-018-0929-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The PD-L1/PD-1 pathway blockade-mediated immune therapy has shown promising efficacy in the treatment of multiple cancers including melanoma. The present study investigated the effects of the flavonoid apigenin on the PD-L1 expression and the tumorigenesis of melanoma. METHODS The influence of flavonoids on melanoma cell growth and apoptosis was investigated using cell proliferation and flow cytometric analyses. The differential IFN-γ-induced PD-L1 expression and STAT1 activation were examined in curcumin and apigenin-treated melanoma cells using immunoblotting or immunofluorescence assays. The effects of flavonoid treatment on melanoma sensitivity towards T cells were investigated using Jurkat cell killing, cytotoxicity, cell viability, and IL-2 secretion assays. Melanoma xenograft mouse model was used to assess the impact of flavonoids on tumorigenesis in vivo. Human peripheral blood mononuclear cells were used to examine the influence of flavonoids on PD-L1 expression in dendritic cells and cytotoxicity of cocultured cytokine-induced killer cells by cell killing assays. RESULTS Curcumin and apigenin showed growth-suppressive and pro-apoptotic effects on melanoma cells. The IFN-γ-induced PD-L1 upregulation was significantly inhibited by flavonoids, especially apigenin, with correlated reductions in STAT1 phosphorylation. Apigenin-treated A375 cells exhibited increased sensitivity towards T cell-mediated killing. Apigenin also strongly inhibited A375 melanoma xenograft growth in vivo, with enhanced T cell infiltration into tumor tissues. PD-L1 expression in dendritic cells was reduced by apigenin, which potentiated the cytotoxicity of cocultured cytokine-induced killer cells against melanoma cells. CONCLUSIONS Apigenin restricted melanoma growth through multiple mechanisms, among which its suppression of PD-L1 expression exerted a dual effect via regulating both tumor and antigen presenting cells. Our findings provide novel insights into the anticancer effects of apigenin and might have potential clinical implications.
Collapse
Affiliation(s)
- Lu Xu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China
| | - Kang Tian
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xi Chen
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rongxin Zhang
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xindi Mu
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yueguang Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Duchuang Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shanshan Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuyan Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Caixia Tu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Han Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|
23
|
Borzooee F, Asgharpour M, Quinlan E, Grant MD, Larijani M. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy. Int Rev Immunol 2018; 37:151-164. [PMID: 29211501 DOI: 10.1080/08830185.2017.1403596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.
Collapse
Affiliation(s)
- Faezeh Borzooee
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mahdi Asgharpour
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Emma Quinlan
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Michael D Grant
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mani Larijani
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| |
Collapse
|
24
|
Sequential immunotherapy in a patient with primary refractory Hodgkin lymphoma and novel mutations. Oncotarget 2018; 9:20928-20940. [PMID: 29755699 PMCID: PMC5945535 DOI: 10.18632/oncotarget.25037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Primary resistant Hodgkin lymphoma is an aggressive disease with few treatment options and short survival. Neoplastic cells of classical Hodgkin lymphoma are heavily dependent on microenvironmental stimuli, regularly express PD-L1, and a relevant proportion of relapsed patients is sensitive to blocking of the PD1/PD-L1 axis. However, response duration is limited and further treatment options are unknown but urgently needed. We report a case of a patient without relevant response to five subsequent chemotherapy regimens who immediately and dramatically responded to an anti-PD1 mab. During the following two years she responded to the anti-CTLA-4 mab ipilimumab, the Jak2 inhibitor ruxolitinib, and a combination of lenalidomide plus cyclophosphamide given in subsequent relapses. A thorough genomic analysis demonstrated seven genomic alterations with six of them not previously described in this disease (i.e. BRIP1 G212fs*62, KRAS L19F, KDM5A R1239W, MYC A59T, ARIDA1A E1683fs*15 and TP53 277Y). Three alterations were considered actionable and one of them drugable. The number of mutations increased over time and the BRIP1 mutation was found to be a germline mutation.
Collapse
|
25
|
Anderson R, Rapoport BL. Immune Dysregulation in Cancer Patients Undergoing Immune Checkpoint Inhibitor Treatment and Potential Predictive Strategies for Future Clinical Practice. Front Oncol 2018; 8:80. [PMID: 29623257 PMCID: PMC5874299 DOI: 10.3389/fonc.2018.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Realization of the full potential of immune checkpoint inhibitor-targeted onco-immunotherapy is largely dependent on overcoming the obstacles presented by the resistance of some cancers, as well as on reducing the high frequency of immune-related adverse events (IRAEs) associated with this type of immunotherapy. With the exception of combining therapeutic monoclonal antibodies, which target different types of immune checkpoint inhibitory molecules, progress in respect of improving therapeutic efficacy has been somewhat limited to date. Likewise, the identification of strategies to predict and monitor the development of IRAEs has also met with limited success due, at least in part, to lack of insight into mechanisms of immunopathogenesis. Accordingly, considerable effort is currently being devoted to the identification and evaluation of strategies which address both of these concerns and it is these issues which represent the major focus of the current review, particularly those which may be predictive of development of IRAEs. Following an introductory section, this review briefly covers those immune checkpoint inhibitors currently approved for clinical application, as well as more recently identified immune checkpoint inhibitory molecules, which may serve as future therapeutic targets. The remaining and more extensive sections represent overviews of: (i) putative strategies which may improve the therapeutic efficacy of immune checkpoint inhibitors; (ii) recent insights into the immunopathogenesis of IRAEs, most prominently enterocolitis; and (iii) strategies, mostly unexplored, which may be predictive of development of IRAEs.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, University of Pretoria, Pretoria, South Africa
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bernardo L. Rapoport
- Department of Immunology, University of Pretoria, Pretoria, South Africa
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| |
Collapse
|
26
|
Kuczynski EA, Krueger J, Chow A, Xu P, Man S, Sundaravadanam Y, Miller JK, Krzyzanowski PM, Kerbel RS. Impact of Chemical-Induced Mutational Load Increase on Immune Checkpoint Therapy in Poorly Responsive Murine Tumors. Mol Cancer Ther 2018; 17:869-882. [PMID: 29483207 DOI: 10.1158/1535-7163.mct-17-1091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/04/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
A recurring historic finding in cancer drug development is encouraging antitumor effects observed in tumor-bearing mice that fail to translate into the clinic. An intriguing exception to this pattern is immune checkpoint therapy, as the sustained tumor regressions observed in subsets of cancer patients are rare in mice. Reasoning that this may be due in part to relatively low mutational loads of mouse tumors, we mutagenized transplantable mouse tumor cell lines EMT-6/P, B16F1, RENCA, CT26, and MC38 in vitro with methylnitro-nitrosoguanidine (MNNG) or ethylmethane sulfonate (EMS) and tested their responsiveness to PD-L1 blockade. Exome sequencing confirmed an increase in somatic mutations by mutagen treatment, an effect mimicked in EMT-6 variants chronically exposed in vivo to cisplatin or cyclophosphamide. Certain mutagenized variants of B16F1, EMT-6/P, CT26, and MC38 (but not RENCA) were more immunogenic than their parents, yet anti-PD-L1 sensitization developed only in some EMT-6/P and B16F1 variants. Treatment response patterns corresponded with changes in immune cell infiltration and especially increases in CD8+ T cells. Chronically cisplatin-exposed EMT-6 variants were also more responsive to anti-PD-L1 therapy. Although tumor PD-L1 expression was upregulated in in vivo chemotherapy-exposed variants, PD-L1 expression levels were not consistently associated with anti-PD-L1 treatment activity across mutagenized or chemotherapy-exposed variants. In summary, mutagenized and more immunogenic mouse tumors were not universally sensitized to PD-L1 blockade. Chemically mutagenized variants may be useful to evaluate the impact of immunologically "hot" or "cold" tumors with a high mutational load, to which certain chemotherapy agents may contribute, on immunotherapy outcomes. Mol Cancer Ther; 17(4); 869-82. ©2018 AACR.
Collapse
Affiliation(s)
| | - Janna Krueger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | | | | | | | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Scutti JAB. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). Int J Oncol 2018; 52:1041-1056. [PMID: 29484440 PMCID: PMC5843403 DOI: 10.3892/ijo.2018.4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
On the basis of immunological results, it is not in doubt that the immune system is able to recognize and eliminate transformed cells. A plethora of studies have investigated the immune system of patients with cancer and how it is prone to immunosuppression, due in part to the decrease in lymphocyte proliferation and cytotoxic activity. The series of experiments published following the demonstration by Dr Allison's group of the potential effect of anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) paved the way for a new perception in cancer immunotherapy: Immune checkpoints. Several T cell-co-stimulatory molecules including cluster of differentiation (CD)28, inducible T cell co-stimulatory, 4-1BB, OX40, glucocorticoid-induced tumor necrosis factor receptor-related gene and CD27, and inhibitory molecules including T cell immunoglobulin and mucin domain-containing-3, programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), V-domain immunoglobulin suppressor of T cells activation, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, and B and T lymphocyte attenuator have been described in regulating T cell functions, and have been demonstrated to be essential targets in immunotherapy. In preclinical studies, glioblastoma multiforme, a high-grade glioma, the monotherapy targeting PD-1/PD-L1 and CTLA-4 resulted in increased survival times. An improved understanding of the pharmacodynamics and immune monitoring on glioma cancers, particularly in diffuse intrinsic pontine glioma (DIPG), an orphan type of cancer, is expected to have a major contribution to the development of novel therapeutic approaches. On the basis of the recent preclinical and clinical studies of glioma, but not of DIPG, the present review makes a claim for the importance of investigating the tumor microenvironment, the immune response and the use of immune checkpoints (agonists or antagonists) in preclinical/clinical DIPG samples by immune monitoring approaches and high-dimensional analysis. Evaluating the potential predictive and correlative biomarkers in preclinical and clinical studies may assist in answering certain crucial questions that may be useful to improve the clinical response in patients with DIPG.
Collapse
|
28
|
Small-molecule antagonists of the immune checkpoint pathways: concept to clinic. Future Med Chem 2017; 9:1305-1308. [PMID: 28771036 DOI: 10.4155/fmc-2017-0107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
The sound of tumor cell-microenvironment communication - composed by the Cancer Cluster Salzburg research network. Cell Commun Signal 2017; 15:20. [PMID: 28577565 PMCID: PMC5457625 DOI: 10.1186/s12964-017-0176-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/14/2022] Open
|
30
|
Pei Y, Wang C, Yan SF, Liu G. Past, Current, and Future Developments of Therapeutic Agents for Treatment of Chronic Hepatitis B Virus Infection. J Med Chem 2017; 60:6461-6479. [PMID: 28383274 DOI: 10.1021/acs.jmedchem.6b01442] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.
Collapse
Affiliation(s)
- Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - Chunting Wang
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - S Frank Yan
- Molecular Design and Chemical Biology, Roche Pharma Research and Early Development, Roche Innovation Center Shanghai , Shanghai 201203, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
31
|
Wolff F, Leisch M, Greil R, Risch A, Pleyer L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun Signal 2017; 15:13. [PMID: 28359286 PMCID: PMC5374693 DOI: 10.1186/s12964-017-0168-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements (ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way. This review will discuss AZA and DAC novel mechanisms of action resulting from the re-expression of pathologically hypermethylated promoters of gene sets that are related to interferon signaling, antigen presentation and inflammation. We also review new insights into the molecular mechanisms of action of transient, low-dose HMAs on various tumor types and discuss the potential of new treatment options and combinations.
Collapse
Affiliation(s)
- Florian Wolff
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Leisch
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria. .,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria.
| |
Collapse
|