1
|
Qian J, Guo Y, Khan B, Shi J, Hou Y. GW501516 facilitated tumor immune escape by inhibiting phagocytosis. Eur J Pharmacol 2025; 995:177418. [PMID: 39993702 DOI: 10.1016/j.ejphar.2025.177418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
The CD47/SIRPα innate immune checkpoint plays a critical role in regulating tumor immune escape. GW501516, a peroxisome proliferator-activated receptor delta (PPARδ) agonist, is known to promote cancer cell metabolism, proliferation, and inflammation; however, its regulatory mechanism in colon tumor immune escape remains unclear. In this study, qPCR analysis revealed that GW501516 treatment upregulated CD47 gene expression in colon cancer cells. Additionally, GW501516 increased membrane-associated CD47 protein levels in these cells. Mechanistically, luciferase reporter assays demonstrated that GW501516 enhanced CD47 gene transcription activity in colon cancer cells. Co-culture experiments with macrophages further showed that GW501516 treatment suppressed macrophage phagocytic capacity. Crucially, PPARδ knockout abolished GW501516-induced CD47 expression, indicating PPARδ dependency. In vivo implanted tumor models demonstrated that GW501516 facilitated tumor immune escape, whereas PPARδ loss reversed this effect. Collectively, these findings suggest that GW501516 activates PPARδ to promote colon tumor immune escape via CD47 upregulation.
Collapse
Affiliation(s)
- Jing Qian
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Yilei Guo
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Bibimaryam Khan
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Yongzhong Hou
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013.
| |
Collapse
|
2
|
Liu Y, Peng J, Zhao Y, Wang W. Emerging pathological diagnostic strategies for solid pseudopapillary neoplasm of the pancreas: insights from omics and innovative techniques. J Pathol Clin Res 2025; 11:e70029. [PMID: 40312910 PMCID: PMC12046068 DOI: 10.1002/2056-4538.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare, low-grade malignant tumor, representing 0.9-2.7% of all exocrine pancreatic tumors. SPN patients generally have a favorable prognosis with a 5-year survival rate exceeding 95% following complete surgical resection. Accurate diagnosis is crucial to avoid unnecessary treatments. Currently, SPN diagnosis relies on imaging techniques such as CT and MRI, along with immunohistochemical analysis of biopsy and resection samples. The main challenge in diagnosis is the potential inability to accurately identify recurrent or metastatic SPN, as well as 'malignant' SPN, due to the lack of specific biomarkers. Advances in high-throughput omics technologies, including genomics, transcriptomics, proteomics and metabolomics, have opened new avenues for identifying novel biomarkers for SPN. Additional, liquid biopsy techniques have enabled more comprehensive analysis of biosamples such as pancreatic cyst fluid, offering promising prospects for preoperative diagnosis. This review highlights recent research on SPN diagnosis, focusing on immunohistochemical markers, tissue sampling methods and the potential of omics approaches. It also discusses the challenges and opportunities in improving diagnostic accuracy, particularly for high-grade and metastatic SPNs.
Collapse
Affiliation(s)
- Yuanhao Liu
- Department of PathologyPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingPR China
| | - Junya Peng
- Institute of Clinical MedicinePeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingPR China
- State Key Laboratory of Complex, Severe, and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingPR China
| | - Yupei Zhao
- State Key Laboratory of Complex, Severe, and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingPR China
- Department of General SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingPR China
- Department of Basic Medical SciencesSchool of Medicine, Tsinghua UniversityBeijingPR China
- Peking University‐Tsinghua Center for Life SciencesBeijingPR China
| | - Wenze Wang
- Department of PathologyPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingPR China
- Molecular Pathology Research Center, Department of PathologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| |
Collapse
|
3
|
Denzer L, Muranyi W, Herold R, Stump-Guthier C, Ishikawa H, Sticht C, Schroten H, Schwerk C, Weichert S. Transcriptome and Functional Comparison of Primary and Immortalized Endothelial Cells of the Human Choroid Plexus at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2025; 26:1779. [PMID: 40004242 PMCID: PMC11856769 DOI: 10.3390/ijms26041779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human choroid plexus (CP) is the location of the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the epithelial cells of the CP mainly contribute to the formation of the BCSFB, the vessels of the CP are built by fenestrated endothelial cells. Still, the CP endothelium can contribute to barrier function. By ectopic expression of human telomerase reverse transcriptase (hTERT) in primary human CP endothelial cells (HCPEnCs), we recently generated and characterized immortalized HCPEnCs (iHCPEnCs). Here, we compared primary cells of the sixth passage (HCPEnCs p6) with a lower (p20) and a higher passage (p50) of iHCPEnCs by transcriptome analysis. A high concordance of HCPEnCs and both passages of iHCPEnCs was observed, as only small proportions of the transcripts examined were significantly altered. Differentially expressed genes (DEGs) were identified and assigned to potentially affected biological processes by gene set enrichment analysis (GSEA). Various components of the endothelial barrier-relevant Wnt signaling were detected in HCPEnCs and iHCPEnCs. Functional analysis of HCPEnCs and iHCPEnCs showed equal marginal activation of Wnt signaling, supporting the downregulation of β-catenin (CTNNB) signaling in CP endothelial cells, and a contribution to the barrier function by the CP endothelium was retained until passage 100 (p100) of iHCPEnCs. Overall, our data support the suitability of iHCPEnCs as an in vitro model of the CP endothelium over extended passages.
Collapse
Affiliation(s)
- Lea Denzer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Weichert
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Wang X, Faraz M, Chen A, Nazeer T, Huang X. Diagnostic utility of lymphocyte enhancer factor 1 in aggressive B-cell lymphoma with MYC rearrangement. Am J Clin Pathol 2025:aqae189. [PMID: 39912808 DOI: 10.1093/ajcp/aqae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVES We sought to investigate the diagnostic value of lymphocyte enhancer factor 1 (LEF1) expression in aggressive B-cell lymphomas (BCL) with MYC gene rearrangement (MYC-R). METHODS Sixty-seven cases of BCL were studied and included Burkitt lymphoma (BL) (23 cases); diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) with MYC-R (13 cases); and DLBCL/high-grade B-cell lymphoma with MYC, BCL2, and/or BCL6 rearrangements (double-hit [DH] or triple-hit [TH], 17 cases). Random DLBCL-NOS (14 cases) without MYC-R was recruited as a control group. By immunohistochemical stains, 3 patterns of LEF1 staining were recorded as pattern 0 (negative), pattern 1 (weak and heterogeneous staining, <80%), and pattern 2 (moderate/strong and uniform staining, ≥80%). RESULTS Pattern 1 can be seen in all BCLs with MYC-R included in this study and more commonly seen in DLBCL without MYC-R (8/14 cases). Pattern 2 is characteristic (positive predictive value = 86%) for Epstein-Barr virus (EBV)-negative BL, while pattern 0 was seen in 22 (76%) of 29 cases of DLBCL-MYC-R/DH/TH (P < .001). Seven of 8 EBV-positive BL cases showed pattern 0, which was completely opposite to the common pattern 2 in EBV-negative BL (12/15 cases). Pattern 2 was not detected in all DH/TH cases. CONCLUSIONS Weak and heterogeneous staining of LEF1 can be seen in all the BCLs with and without MYC-R. Strong and uniform staining of LEF1 is highly characteristic of EBV-negative BL among all aggressive BCLs with MYC-R, while the negative staining of LEF1 is mostly suggestive of DLBCL-MYC-R/DH/TH. Lymphocyte enhancer factor 1 provides additional diagnostic value in the differentiation of BL from other aggressive BCLs with MYC-R, especially in a limited specimen.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Maria Faraz
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Anne Chen
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Tipu Nazeer
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Xiaoyan Huang
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| |
Collapse
|
5
|
Gu J, Cao Z, Niu G, Ying J, Wang H, Jiang H, Ke C. Clinical Significance of Acyl-CoA Dehydrogenase Short Chain and Its Anti-tumor Role in Hepatocellular Carcinoma by Inhibiting Canonical Wnt/β-Catenin Pathway. Dig Dis Sci 2025; 70:622-637. [PMID: 39746891 DOI: 10.1007/s10620-024-08813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The pathogenesis of hepatocellular carcinoma (HCC) emphasizes metabolic disorders. HCC patients showed abnormally low expression of Acyl-CoA dehydrogenase short chain (ACADS). OBJECTIVES This study aimed to elucidate the clinical significance and mechanistic role of ACADS in HCC. METHODS We investigated the expression patterns and significance of ACADS in HCC by analyzing multiple public databases and clinical samples (Chip data). Immunohistochemistry was employed to observe the expression levels of ACADS in HCC tissues. In vitro experiments involved silencing or overexpressing ACADS in HCC cell lines, with protein expression levels determined by Western blotting. Functional validation included CCK-8, Transwell, and scratch wound healing assays. TOPFlash and FOPFlash reporter gene assays, co-immunoprecipitation, and immunofluorescence were used to explore the interaction between ACADS and β-catenin. RESULTS ACADS was low expressed in HCC and was clinically associated with vascular invasion, TNM stage, and AFP levels. The low ACADS expression in HCC patients was negatively correlated with their survival. Overexpression of ACADS significantly suppressed the viability, migration, and invasive capacity of HCC cells, whereas silencing ACADS had the opposite effect. Mechanistically, co-immunoprecipitation experiments indicated that there was an interaction between ACADS and β-catenin. Overexpression of ACADS inhibited β-catenin activity and resulted in decreased nuclear β-catenin translocation and increased its cytoplasmic level. Immunofluorescence results also showed a decrease in β-catenin nuclear import following ACADS overexpression, whereas silencing ACADS led to an enhancement of its nuclear translocation. CONCLUSION ACADS emerges as a potentially valuable biomarker for HCC prognosis, exhibiting tumor-suppressive functions in HCC by participating in the regulation of β-catenin activity.
Collapse
Affiliation(s)
- Jiawei Gu
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Zhipeng Cao
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Jianghui Ying
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hua Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
6
|
Wang C, Lv T, Jin B, Li Y, Fan Z. Regulatory role of PPAR in colorectal cancer. Cell Death Discov 2025; 11:28. [PMID: 39875357 PMCID: PMC11775197 DOI: 10.1038/s41420-025-02313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors in the digestive system, and the majority of patients are found to be in advanced stages, which is a burden to human health all over the world. Moreover, in recent years, CRC has been progressively becoming younger, with an increasing incidence mainly among patients <50 years old. Despite the increase in awareness of CRC and the continuous improvement of medical treatment nowadays, the challenge of CRC still needs to be conquered. By now, the pathogenesis of CRC is complex and not fully understood. With the deepening of research, it has been revealed that PPARs, as a transcription factor, are inextricably linked to CRC. This article outlines the mechanisms by which PPARs are involved in CRC development. An in-depth understanding of the pathways related to PPARs may provide new ways of developing effective therapies for CRC with PPARs as potential targets.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Tingcong Lv
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China.
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
7
|
Wu Y, Yuan X, Zhang Y, Ma F, Zhao W, Sun X, Ma X, Chen Y. Sialidase NEU3 silencing inhibits angiogenesis of EA.hy926 cells by regulating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2025; 742:151098. [PMID: 39672004 DOI: 10.1016/j.bbrc.2024.151098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Angiogenesis significantly drives tumor progression, and the functions of vascular endothelial cells are influenced by various factors. Tumor cells are characterized by abnormal sialylation, and their dynamic balance depends on sialyltransferases and sialidases. NEU3 is a plasma membrane-associated sialidase, vital for the regulation of cell surface sialylation. Our study revealed that, NEU3 is the most abundantly expressed among the four sialidase subtypes in EA.hy926 cells. Silencing NEU3 expression resulted in cell apoptosis and reduced proliferation, highlighting its crucial function in the regulation of cell activity. Subsequent experiments using transwell and tube formation assays demonstrated that the inhibition of NEU3 expression suppressed cell migration and angiogenesis. RNA sequencing analysis further elucidated that altering NEU3 expression in EA.hy926 cells impacts the Wnt/β-Catenin signaling pathway and c-Myc levels, thereby modulating cellular survival and migration capacity and exerting a regulatory effect on angiogenesis. These findings suggest that targeting NEU3 in the vascular endothelium may represent a promising strategy for anti-angiogenic therapy in tumors.
Collapse
Affiliation(s)
- Yilun Wu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Yuan
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Zhao
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 637000, China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xue Ma
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yingjiao Chen
- Office for West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610021, China.
| |
Collapse
|
8
|
Zhou W, Cao W, Wang M, Yang K, Zhang X, Liu Y, Zhang P, Zhang Z, Cao G, Chen B, Xiong M. Validation of quercetin in the treatment of colon cancer with diabetes via network pharmacology, molecular dynamics simulations, and in vitro experiments. Mol Divers 2024; 28:2947-2965. [PMID: 37747647 DOI: 10.1007/s11030-023-10725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
This study built a prognostic model for CRC-diabetes and analyzed whether quercetin could be used for CRC-diabetes treatment through a network of pharmacology, molecular dynamics simulation, bioinformatics, and in vitro experiments. First, multivariate Cox proportional hazards regression was used to construct the prognosis modelof CRC-diabetes. Then, the intersection of quercetin target genes with CRC-diabetes genes was used to find the potential target for quercetin in the treatment of CRC-diabetes. Molecular docking and molecular dynamics simulations were used to screen the potential targets for quercetin in the treatment of CRC-diabetes. Finally, we verified the target and pathway of quercetin in the treatment of CRC-diabetes through in vitro experiments. Through molecular docking, seven proteins (HMOX1, ACE, MYC, MMP9, PLAU, MMP3, and MMP1) were selected as potential targets of quercetin. We conducted molecular dynamics simulations of quercetin and the above proteins, respectively, and found that the binding structure of quercetin with MMP9 and PLAU was relatively stable. Finally, according to the results of Western blot results, it was confirmed that quercetin could interact with MMP9. The experimental results show that quercetin may affect the JNK pathway, glycolysis, and epithelial-mesenchymal transition (EMT) to treat CRC-diabetes. Based on the TCGA, TTD, DrugBank, and other databases, a prediction model that can effectively predict the prognosis of colon cancer patients with diabetes was constructed. According to experiment results, quercetin can regulate the expression of MMP9. By acting on the JNK pathway, glycolysis, and EMT, it can treat colon cancer patients with diabetes.
Collapse
Affiliation(s)
- Weiguo Zhou
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wei Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Mingqing Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Kang Yang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xun Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yan Liu
- School of Public Health, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Peng Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zehua Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Guodong Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Department of Surgery, The People's Hospital of Hanshan County, Ma'anshan City, Anhui Province, China.
| | - Maoming Xiong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
9
|
Skubic C, Trček H, Nassib P, Kreft T, Walakira A, Pohar K, Petek S, Režen T, Ihan A, Rozman D. Knockouts of CYP51A1, DHCR24, or SC5D from cholesterol synthesis reveal pathways modulated by sterol intermediates. iScience 2024; 27:110651. [PMID: 39262789 PMCID: PMC11387598 DOI: 10.1016/j.isci.2024.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Sterols from cholesterol synthesis are crucial for cholesterol production, but also have individual roles difficult to assess in vivo due to essentiality of cholesterol. We developed HepG2 cell models with knockouts (KOs) for three enzymes of cholesterol synthesis, each accumulating specific sterols. Surprisingly, KOs of CYP51, DHCR24, and SC5D shared only 9% of differentially expressed genes. The most striking was the phenotype of CYP51 KO with highly elevated lanosterol and 24,25-dihydrolanosterol, significant increase in G2+M phase and enhanced cancer and cell cycle pathways. Comparisons with mouse liver Cyp51 KO data suggest 24,25-dihydrolanosterol activates similar cell proliferation pathways, possibly via elevated LEF1 and WNT/NFKB signaling. In contrast, SC5D and DHCR24 KO cells with elevated lathosterol or desmosterol proliferated slowly, with downregulated E2F, mitosis, and enriched HNF1A. These findings demonstrate that increase of lanosterol and 24,25-dihydrolanosterol, but not other sterols, promotes cell proliferation in hepatocytes.
Collapse
Affiliation(s)
- Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Hana Trček
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Petra Nassib
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tinkara Kreft
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Andrew Walakira
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Katka Pohar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Petek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
D’Antonio DL, Fantini F, Moscatello C, Ferrone A, Scaringi S, Valanzano R, Ficari F, Efthymakis K, Neri M, Aceto GM, Curia MC. The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines 2024; 12:1730. [PMID: 39200196 PMCID: PMC11352173 DOI: 10.3390/biomedicines12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND The colorectal adenoma undergoes neoplastic progression via the normal epithelium-adenoma-adenocarcinoma sequence as reported in the Vogelgram. The hazard of developing a tumor is deeply associated with the number and size of adenomas and their subtype. Adenomatous polyps are histologically categorized as follows: approximately 80-90% are tubular, 5-15% are villous, and 5-10% are tubular/villous. Given the higher risk of a malignant transformation observed in tubular/villous adenomas, patients diagnosed with adenomatous polyposis are at an improved risk of developing CRC. The Wnt/β-catenin pathway plays a key role in the onset of colorectal adenoma; in particular, intestinal cells first acquire loss-of-function mutations in the APC gene that induce the formation of adenomas. METHODS Wnt/β-catenin pathway APC, Wnt3a, Wnt5a, LEF1, and BCL9 genes and protein expression analyses were conducted by qRT-PCR and western blot in 68 colonic samples (polyps and adjacent mucosa) from 41 patients, of which 17 were affected by FAP. Ten normal colonic mucosal samples were collected from 10 healthy donors. RESULTS In this study, both the APC gene and protein were less expressed in the colon tumor compared to the adjacent colonic mucosa. Conversely, the activated β-catenin was more expressed in polyps than in the adjacent mucosa. All results confirmed the literature data on carcinomas. A statistically significant correlation between Wnt3a and BCL9 both in polyps and in the adjacent mucosa underlines that the canonical Wnt pathway is activated in early colon carcinogenesis and that the adjacent mucosa is already altered. CONCLUSION This is the first study analyzing the difference in expression of the Wnt/β-catenin pathway in human colorectal adenomas. Understanding the progression from adenomas to colorectal carcinomas is essential for the development of new therapeutic strategies and improving clinical outcomes with the use of APC and β-catenin as biomarkers.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Fabiana Fantini
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Alessio Ferrone
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Stefano Scaringi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Rosa Valanzano
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Ferdinando Ficari
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Konstantinos Efthymakis
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Matteo Neri
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| |
Collapse
|
11
|
Han X, Ren C, Lu C, Jiang A, Wang X, Liu L, Yu Z. Phosphorylation of USP27X by PIM2 promotes glycolysis and breast cancer progression via deubiquitylation of MYC. Oncogene 2024; 43:2493-2503. [PMID: 38969771 DOI: 10.1038/s41388-024-03097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Aberrant cell proliferation is a hallmark of cancer, including breast cancer. Here, we show that USP27X is required for cell proliferation and tumorigenesis in breast cancer. We identify a PIM2-USP27X regulator of MYC signaling axis whose activity is an important contributor to the tumor biology of breast cancer. PIM2 phosphorylates USP27X, and promotes its deubiquitylation activity for MYC, which promotes its protein stability and leads to increase HK2-mediated aerobic glycolysis in breast cancer. Moreover, the PIM2-USP27X-MYC axis is also validated in PIM2-knockout mice. Taken together, these findings show a PIM2-USP27X-MYC signaling axis as a new potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Xiaoyun Wang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
12
|
Boamah GA, Huang Z, Ke C, You W, Ayisi CL, Amenyogbe E, Droepenu E. Preliminary analysis of pathways and their implications during salinity stress in abalone. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101224. [PMID: 38430709 DOI: 10.1016/j.cbd.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana.
| | - Zekun Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Christian Larbi Ayisi
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| |
Collapse
|
13
|
Williams JS, Higgins AT, Stott KJ, Thomas C, Farrell L, Bonnet CS, Peneva S, Derrick AV, Hay T, Wang T, Morgan C, Dwyer S, D'Ambrogio J, Hogan C, Smalley MJ, Parry L, Dyson P. Enhanced bacterial cancer therapy delivering therapeutic RNA interference of c-Myc. Cell Biosci 2024; 14:38. [PMID: 38521952 PMCID: PMC10961001 DOI: 10.1186/s13578-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/06/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Bacterial cancer therapy was first trialled in patients at the end of the nineteenth century. More recently, tumour-targeting bacteria have been harnessed to deliver plasmid-expressed therapeutic interfering RNA to a range of solid tumours. A major limitation to clinical translation of this is the short-term nature of RNA interference in vivo due to plasmid instability. To overcome this, we sought to develop tumour-targeting attenuated bacteria that stably express shRNA by virtue of integration of an expression cassette within the bacterial chromosome and demonstrate therapeutic efficacy in vitro and in vivo. RESULTS The attenuated tumour targeting Salmonella typhimurium SL7207 strain was modified to carry chromosomally integrated shRNA expression cassettes at the xylA locus. The colorectal cancer cell lines SW480, HCT116 and breast cancer cell line MCF7 were used to demonstrate the ability of these modified strains to perform intracellular infection and deliver effective RNA and protein knockdown of the target gene c-Myc. In vivo therapeutic efficacy was demonstrated using the Lgr5creERT2Apcflx/flx and BlgCreBrca2flx/flp53flx/flx orthotopic immunocompetent mouse models of colorectal and breast cancer, respectively. In vitro co-cultures of breast and colorectal cancer cell lines with modified SL7207 demonstrated a significant 50-95% (P < 0.01) reduction in RNA and protein expression with SL7207/c-Myc targeted strains. In vivo, following establishment of tumour tissue, a single intra-peritoneal administration of 1 × 106 CFU of SL7207/c-Myc was sufficient to permit tumour colonisation and significantly extend survival with no overt toxicity in control animals. CONCLUSIONS In summary we have demonstrated that tumour tropic bacteria can be modified to safely deliver therapeutic levels of gene knockdown. This technology has the potential to specifically target primary and secondary solid tumours with personalised therapeutic payloads, providing new multi-cancer detection and treatment options with minimal off-target effects. Further understanding of the tropism mechanisms and impact on host immunity and microbiome is required to progress to clinical translation.
Collapse
Affiliation(s)
- Jason S Williams
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Adam T Higgins
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Katie J Stott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Carly Thomas
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lydia Farrell
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Cleo S Bonnet
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Severina Peneva
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Anna V Derrick
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Tianqi Wang
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Claire Morgan
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Sarah Dwyer
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Joshua D'Ambrogio
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| | - Paul Dyson
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
14
|
Thakur D, Sengupta D, Mahapatra E, Das S, Sarkar R, Mukherjee S. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer-directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 2024; 43:481-499. [PMID: 38170347 DOI: 10.1007/s10555-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Collapse
Affiliation(s)
- Debanjan Thakur
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
15
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 PMCID: PMC10930381 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| |
Collapse
|
16
|
Lv L, Huang Y, Li Q, Wu Y, Zheng L. A Comprehensive Prognostic Model for Colon Adenocarcinoma Depending on Nuclear-Mitochondrial-Related Genes. Technol Cancer Res Treat 2024; 23:15330338241258570. [PMID: 38832431 PMCID: PMC11149454 DOI: 10.1177/15330338241258570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Background: Colon adenocarcinoma (COAD) has increasing incidence and is one of the most common malignant tumors. The mitochondria involved in cell energy metabolism, oxygen free radical generation, and cell apoptosis play important roles in tumorigenesis and progression. The relationship between mitochondrial genes and COAD remains largely unknown. Methods: COAD data including 512 samples were set out from the UCSC Xena database. The nuclear mitochondrial-related genes (NMRGs)-related risk prognostic model and prognostic nomogram were constructed, and NMRGs-related gene mutation and the immune environment were analyzed using bioinformatics methods. Then, a liver metastasis model of colorectal cancer was constructed and protein expression was detected using Western blot assay. Results: A prognostic model for COAD was constructed. Comparing the prognostic model dataset and the validation dataset showed considerable correlation in both risk grouping and prognosis. Based on the risk score (RS) model, the samples of the prognostic dataset were divided into high risk group and low risk group. Moreover, pathologic N and T stage and tumor recurrence in the two risk groups were significantly different. The four prognostic factors, including age and pathologic T stage in the nomogram survival model also showed excellent predictive performance. An optimal combination of nine differentially expressed NMRGs was finally obtained, including LARS2, PARS2, ETHE1, LRPPRC, TMEM70, AARS2, ACAD9, VARS2, and ATP8A2. The high-RS group had more inflamed immune features, including T and CD4+ memory cell activation. Besides, mitochondria-associated LRPPRC and LARS2 expression levels were increased in vivo xenograft construction and liver metastases assays. Conclusion: This study established a comprehensive prognostic model for COAD, incorporating nine genes associated with nuclear-mitochondrial functions. This model demonstrates superior predictive performance across four prognostic factors: age, pathological T stage, tumor recurrence, and overall prognosis. It is anticipated to be an effective model for enhancing the prognosis and treatment of COAD.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuqing Huang
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Wu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
18
|
Zhou L, He L, Liu CH, Qiu H, Zheng L, Sample KM, Wu Q, Li J, Xie K, Ampuero J, Li Z, Lv D, Liu M, Romero-Gómez M, Hu Y, Tang H. Liver cancer stem cell dissemination and metastasis: uncovering the role of NRCAM in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:311. [PMID: 37993901 PMCID: PMC10664624 DOI: 10.1186/s13046-023-02893-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) play an important role in hepatocellular carcinoma (HCC), but the mechanisms that link LCSCs to HCC metastasis remain largely unknown. This study aims to reveal the contributions of NRCAM to LCSC function and HCC metastasis, and further explore its mechanism in detail. METHODS 117 HCC and 29 non-HCC patients with focal liver lesions were collected and analyzed to assess the association between NRCAM and HCC metastasis. Single-cell RNA sequencing (scRNA-seq) was used to explore the biological characteristics of cells with high NRCAM expression in metastatic HCC. The role and mechanism of NRCAM in LCSC dissemination and metastasis was explored in vitro and in vivo using MYC-driven LCSC organoids from murine liver cells. RESULTS Serum NRCAM is associated with HCC metastasis and poor prognosis. A scRNA-seq analysis identified that NRCAM was highly expressed in LCSCs with MYC activation in metastatic HCC. Moreover, NRCAM facilitated LCSC migration and invasion, which was confirmed in MYC-driven LCSC organoids. The in vivo tumor allografts demonstrated that NRCAM mediated intra-hepatic/lung HCC metastasis by enhancing the ability of LCSCs to escape from tumors into the bloodstream. Nrcam expression inhibition in LCSCs blocked HCC metastasis. Mechanistically, NRCAM activated epithelial-mesenchymal transition (EMT) and metastasis-related matrix metalloproteinases (MMPs) through the MACF1 mediated β-catenin signaling pathway in LCSCs. CONCLUSIONS LCSCs typified by high NRCAM expression have a strong ability to invade and migrate, which is an important factor leading to HCC metastasis.
Collapse
Affiliation(s)
- Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Linye He
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Huandi Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Li Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Klarke Michael Sample
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Qin Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Jiaxin Li
- Department of Liver Surgery and Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Surgery and Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Javier Ampuero
- Digestive Diseases Unit, Virgen del Rocío University Hospital, SeLiver Group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Virgen del Rocío University Hospital, SeLiver Group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain.
- Digestive Disease Department and CIBERehd, Virgen del Rocío University Hospital, Avenida Manuel Siurot S/N, 41013, Seville, Spain.
| | - Yiguo Hu
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Pavičić I, Rokić F, Vugrek O. Effects of S-Adenosylhomocysteine Hydrolase Downregulation on Wnt Signaling Pathway in SW480 Cells. Int J Mol Sci 2023; 24:16102. [PMID: 38003292 PMCID: PMC10671441 DOI: 10.3390/ijms242216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency results mainly in hypermethioninemia, developmental delay, and is potentially fatal. In order to shed new light on molecular aspects of AHCY deficiency, in particular any changes at transcriptome level, we enabled knockdown of AHCY expression in the colon cancer cell line SW480 to simulate the environment occurring in AHCY deficient individuals. The SW480 cell line is well known for elevated AHCY expression, and thereby represents a suitable model system, in particular as AHCY expression is regulated by MYC, which, on the other hand, is involved in Wnt signaling and the regulation of Wnt-related genes, such as the β-catenin co-transcription factor LEF1 (lymphoid enhancer-binding factor 1). We selected LEF1 as a potential target to investigate its association with S-adenosylhomocysteine hydrolase deficiency. This decision was prompted by our analysis of RNA-Seq data, which revealed significant changes in the expression of genes related to the Wnt signaling pathway and genes involved in processes responsible for epithelial-mesenchymal transition (EMT) and cell proliferation. Notably, LEF1 emerged as a common factor in these processes, showing increased expression both on mRNA and protein levels. Additionally, we show alterations in interconnected signaling pathways linked to LEF1, causing gene expression changes with broad effects on cell cycle regulation, tumor microenvironment, and implications to cell invasion and metastasis. In summary, we provide a new link between AHCY deficiency and LEF1 serving as a mediator of changes to the Wnt signaling pathway, thereby indicating potential connections of AHCY expression and cancer cell phenotype, as Wnt signaling is frequently associated with cancer development, including colorectal cancer (CRC).
Collapse
Affiliation(s)
| | | | - Oliver Vugrek
- Laboratory for Advanced Genomics, Divison of Molecular Medicine, Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.P.); (F.R.)
| |
Collapse
|
20
|
Lafita-Navarro MC, Hao YH, Jiang C, Jang S, Chang TC, Brown IN, Venkateswaran N, Maurais E, Stachera W, Zhang Y, Mundy D, Han J, Tran VM, Mettlen M, Xu L, Woodruff JB, Grishin NV, Kinch L, Mendell JT, Buszczak M, Conacci-Sorrell M. ZNF692 organizes a hub specialized in 40S ribosomal subunit maturation enhancing translation in rapidly proliferating cells. Cell Rep 2023; 42:113280. [PMID: 37851577 DOI: 10.1016/j.celrep.2023.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhui Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isabella N Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Maurais
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weronika Stachera
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dorothy Mundy
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Live Cell Imaging Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsoo Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanna M Tran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey B Woodruff
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
22
|
Guo M, Xiong Y. Sex-biased genome-editing effects of CRISPR-Cas9 across cancer cells dependent on p53 status. iScience 2023; 26:107529. [PMID: 37636042 PMCID: PMC10448110 DOI: 10.1016/j.isci.2023.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The CRISPR-Cas9 system has emerged as the dominant technology for gene editing and clinical applications. One major concern is its off-target effect after the introduction of exogenous CRISPR-Cas9 into cells. Several previous studies have investigated either Cas9 alone or CRISPR-Cas9 interactions with p53. Here, we reanalyzed previously reported data of p53-associated Cas9 activities and observed large significant sex differences between p53-wildtype and p53-mutant cells. To expand the impact of this finding, we further examined all protein-coding genes for sex-specific dependencies in a large-scale CRISPR-Cas9 screening dataset from the DepMap project. We highlighted the p53-dependent sex bias of gene knockouts (including MYC, PIK3CA, KAT2B, KDM4E, SUV39H1, FANCB, TLR7, and APC2) across cancer types and potential mechanisms (mediated by transcriptional factors, including SOX9, FOXO4, LEF1, and RYBP) underlying this phenomenon. Our results suggest that the p53-dependent sex bias may need to be considered in future clinical applications of CRISPR-Cas9, especially in cancer.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
23
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549883. [PMID: 37502913 PMCID: PMC10370160 DOI: 10.1101/2023.07.20.549883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. Methods With the focus on identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Results We identified Lymphoid Enhancer Binding Factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with Idiopathic Pulmonary Fibrosis (IPF), an age-related disease with strong ties to cellular senescence, we demonstrated a stark dysregulation of LEF1. Conclusions Collectively, our results suggest that the LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
| | - Khaled Sayed
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eleanor Valenzi
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Lafyatis
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Franz C, Wuehrl M, Hartmann S, Klupp F, Schmidt T, Schneider M. Long non-coding RNAs CCAT1 and CCAT2 in colorectal liver metastases are tumor-suppressive via MYC interaction and might predict patient outcomes. PLoS One 2023; 18:e0286486. [PMID: 37347737 PMCID: PMC10287004 DOI: 10.1371/journal.pone.0286486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Liver metastases severely reduce the long term survival of colorectal cancer patients. Long non-coding RNAs (lncRNAs) CCAT1 and CCAT2 have previously been found to be associated with impaired patient outcomes in primary colorectal cancer. We aimed to elucidate the role of CCAT1 and CCAT2 in colorectal liver metastases. METHODS Total RNA was isolated from 97 human tissue samples of colorectal liver metastases and adjacent normal liver tissue. Gene expression analysis was performed by RT-qPCR and Multiplex ELISA and correlated with patient characteristics and survival. Gene expression, cancer cell migration, invasion, and proliferation were studied after siRNA-mediated knockdown of CCAT1, CCAT2, and MYC in metastatic colorectal cancer cell lines Colo205 and HROC277Met2. RESULTS Elevated expression levels of lncRNAs CCAT1 and CCAT2, and their common target MYC in colorectal liver metastases were associated with prolonged progression-free survival after liver resection. High expression of CCAT1 was likewise associated with prolonged overall survival. Knockdown of CCAT1, CCAT2, and MYC resulted in increased migratory and invasive potential in metastatic colorectal cancer cell lines. Gene expression analysis revealed alterations in constituents of Wnt signaling following knockdown. CONCLUSION Our findings demonstrate tumor-suppressive functions of lncRNAs CCAT1 and CCAT2 in colorectal liver metastases. They suppress Wnt signaling directly and indirectly through target gene MYC and might prevent further metastatic spread from colorectal liver metastases.
Collapse
Affiliation(s)
- Clemens Franz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Michael Wuehrl
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sibylle Hartmann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Wei H, Tang L, Wang J, Ni M, Liao X, Guo E. Comprehensive investigation of the prognostic values and molecular mechanisms of syntaxin binding protein 5 antisense RNA 1 in patients with colon adenocarcinoma based on RNA sequencing dataset. J Cancer 2023; 14:1607-1622. [PMID: 37325053 PMCID: PMC10266242 DOI: 10.7150/jca.83423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/10/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: The main purpose of this study is to perform a comprehensive investigation of the prognostic value and molecular mechanism of syntaxin binding protein 5 antisense RNA 1 (STXBP5-AS1) through the whole genome RNA sequencing data of the The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) cohort. Methods: There were 438 COAD patients were fit into current study for survival analysis. Gene expression profiling interactive analysis 2.0, Database for Annotation, Visualization and Integrated Discovery v6.8, gene set enrichment analysis (GSEA) and connectivity map (CMap) are used to investigate the molecular mechanisms and targeted drugs of STXBP5-AS1 in COAD. Results: By comparing the expression level of tumor and non-tumor tissues, we found that STXBP5-AS1 was notablely down-regulated in COAD tumor tissues. Survival analysis suggested that low STXBP5-AS1 expression was significantly related to poor overall survival (OS) of COAD (log-rank P=0.035, adjusted P=0.005, HR=0.545, 95%CI=0.356-0.836). The enrichment analysis of STXBP5-AS1 co-expressed genes, GSEA and differentially expressed genes suggests that STXBP5-AS1 may play a part in COAD by regulating the following biological processes or pathways: cell junction, DNA replication, apoptosis, cell cycle, metastasis, tumor protein 53, Wnt, mTORC1, MCM, notch receptor 4, transforming growth factor beta receptor, and cGMP-PKG signaling pathway. CMap analysis was screened out four small molecule drugs (anisomycin, cephaeline, NU-1025 and quipazine) that may be used as STXBP5-AS1 targeted therapy drugs in COAD. The co-expression analysis of STXBP5-AS1 and immune cell gene signature indicated that STXBP5-AS1 was significantly related to immune cell gene set in normal intestinal tissues, but not in COAD tumor tissues. Conclusion: Our results revealed that STXBP5-AS1 is notablely down-regulated in COAD tumor tissues, and may act as a novel prognostic biomarker for COAD.
Collapse
Affiliation(s)
- Haotang Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li Tang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jialei Wang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Min Ni
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Erna Guo
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Institute of International Education, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
26
|
Subasri V, Light N, Kanwar N, Brzezinski J, Luo P, Hansford JR, Cairney E, Portwine C, Elser C, Finlay JL, Nichols KE, Alon N, Brunga L, Anson J, Kohlmann W, de Andrade KC, Khincha PP, Savage SA, Schiffman JD, Weksberg R, Pugh TJ, Villani A, Shlien A, Goldenberg A, Malkin D. Multiple Germline Events Contribute to Cancer Development in Patients with Li-Fraumeni Syndrome. CANCER RESEARCH COMMUNICATIONS 2023; 3:738-754. [PMID: 37377903 PMCID: PMC10150777 DOI: 10.1158/2767-9764.crc-22-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.
Collapse
Affiliation(s)
- Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nisha Kanwar
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack Brzezinski
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jordan R. Hansford
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Michael Rice Cancer Centre, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Elizabeth Cairney
- Department of Paediatrics, London Health Sciences Centre and Western University, London, Ontario, Canada
| | - Carol Portwine
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Christine Elser
- Department of Medical Oncology, Princess Margaret Hospital and Mount Sinai Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan L. Finlay
- Neuro-Oncology Program, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Kim E. Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Noa Alon
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jo Anson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kelvin C. de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Joshua D. Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
- PEEL Therapeutics, Inc., Salt Lake City, Utah
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trevor J. Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anita Villani
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- CIFAR: Child and Brain Development, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Gu S, Liu F, Xie X, Ding M, Wang Z, Xing X, Xiao T, Sun X. β-Sitosterol blocks the LEF-1-mediated Wnt/β-catenin pathway to inhibit proliferation of human colon cancer cells. Cell Signal 2023; 104:110585. [PMID: 36603684 DOI: 10.1016/j.cellsig.2022.110585] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to investigate the LEF-1-mediated Wnt/β-catenin pathway for its biological functions and prognostic value in colon cancer (CC). Furthermore, the potential molecular mechanism of β-sitosterol in CC was investigated in vitro. METHODS Clinical information and gene expression profiles from CC patients were obtained based on Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, we applied R software "Limma" package for the differential analysis of LEF-1 between cancer and para-carcinoma tissue samples. Kaplan-Meier (KM) survival analysis was adopted for analyzing whether LEF-1 was of prognostic significance. Moreover, gene set enrichment analysis (GSEA) was adopted for pathway enrichment analysis and visualization. In addition, CCK8, plate cloning, scratch and high-content screening (HCS) imaging assays were performed to examine the therapeutic efficacy of β-sitosterol in human CC HCT116 cells. siRNA technology was employed to knock down LEF1 expression in HCT116 cells. qRT-PCR and Western-blot (WB) analysis were carried out to analyze the HCT-116 mRNA and protein expression levels, respectively. RESULTS LEF-1 was up-regulated within CC and acted as an oncogenic gene. LEF-1 up-regulation predicted the dismal prognostic outcome and activated the Wnt/β-catenin pathway. β-sitosterol effectively suppressed HCT116 cells proliferation and invasion. For the mechanism underlying β-sitosterol, β-sitosterol was found to significantly down-regulate LEF-1 gene and protein expression and disrupt Wnt/β-catenin pathway transmission in HCT116 cells. After suppressing LEF-1 expression, its downstream targets including C-myc, Survivin and CCND1 were also down-regulated. CONCLUSION According to our results, LEF-1 down-regulation can effectively block Wnt/β-catenin pathway, inhibit CC cell growth and migration. Collectively, β-sitosterol can be used to treat CC, which can provide anti-tumor activity by targeting LEF-1.
Collapse
Affiliation(s)
- Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Fahui Liu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Tianbao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
28
|
Fetisov TI, Borunova AA, Antipova AS, Antoshina EE, Trukhanova LS, Gorkova TG, Zuevskaya SN, Maslov A, Gurova K, Gudkov A, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Targeting Features of Curaxin CBL0137 on Hematological Malignancies In Vitro and In Vivo. Biomedicines 2023; 11:biomedicines11010230. [PMID: 36672738 PMCID: PMC9856019 DOI: 10.3390/biomedicines11010230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.
Collapse
Affiliation(s)
- Timur I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Anna A. Borunova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Alina S. Antipova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Tatyana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Andrei Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ekaterina A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Kirill I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
29
|
Vitamin A- and D-Deficient Diets Disrupt Intestinal Antimicrobial Peptide Defense Involving Wnt and STAT5 Signaling Pathways in Mice. Nutrients 2023; 15:nu15020376. [PMID: 36678247 PMCID: PMC9863741 DOI: 10.3390/nu15020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.
Collapse
|
30
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Wada H, Sato Y, Fujimoto S, Okamoto K, Bando M, Kawaguchi T, Miyamoto H, Muguruma N, Horimoto K, Matsuzawa Y, Mutoh M, Takayama T. Resveratrol inhibits development of colorectal adenoma via suppression of LEF1; comprehensive analysis with connectivity map. Cancer Sci 2022; 113:4374-4384. [PMID: 36082704 PMCID: PMC9746064 DOI: 10.1111/cas.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Although many chemopreventive studies on colorectal tumors have been reported, no effective and safe preventive agent is currently available. We searched for candidate preventive compounds against colorectal tumor comprehensively from United States Food and Drug Administration (FDA)-approved compounds by using connectivity map (CMAP) analysis coupled with in vitro screening with colorectal adenoma (CRA) patient-derived organoids (PDOs). We generated CRA-specific gene signatures based on the DNA microarray analysis of CRA and normal epithelial specimens, applied them to CMAP analysis with 1309 FDA-approved compounds, and identified 121 candidate compounds that should cancel the gene signatures. We narrowed them down to 15 compounds, and evaluated their inhibitory effects on the growth of CRA-PDOs in vitro. We finally identified resveratrol, one of the polyphenolic phytochemicals, as a compound showing the strongest inhibitory effect on the growth of CRA-PDOs compared with normal epithelial PDOs. When resveratrol was administered to ApcMin/+ mice at 15 or 30 mg/kg, the number of polyps (adenomas) was significantly reduced in both groups compared with control mice. Similarly, the number of polyps (adenomas) was significantly reduced in azoxymethane-injected rats treated with 10 or 100 mg/resveratrol compared with control rats. Microarray analysis of adenomas from resveratrol-treated rats revealed the highest change (downregulation) in expression of LEF1, a key molecule in the Wnt signaling pathway. Treatment with resveratrol significantly downregulated the Wnt-target gene (MYC) in CRA-PDOs. Our data demonstrated that resveratrol can be the most effective compound for chemoprevention of colorectal tumors, the efficacy of which is mediated through suppression of LEF1 expression in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Hironori Wada
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and OncologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
- SOCIUM IncTokyoJapan
| | - Yui Matsuzawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and ScreeningNational Cancer CenterTokyoJapan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and ScreeningNational Cancer CenterTokyoJapan
- Department of Molecular‐Targeting Cancer Prevention, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| |
Collapse
|
32
|
Perez-Castro L, Venkateswaran N, Garcia R, Hao YH, Lafita-Navarro MC, Kim J, Segal D, Saponzik E, Chang BJ, Fiolka R, Danuser G, Xu L, Brabletz T, Conacci-Sorrell M. The AHR target gene scinderin activates the WNT pathway by facilitating the nuclear translocation of β-catenin. J Cell Sci 2022; 135:jcs260028. [PMID: 36148682 PMCID: PMC10658791 DOI: 10.1242/jcs.260028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated β-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of β-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of β-catenin. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Roy Garcia
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M. C. Lafita-Navarro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dagan Segal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Saponzik
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger Center for Molecular Medicine, University Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Jeensuk S, Ortega MS, Saleem M, Hawryluk B, Scheffler TL, Hansen PJ. Actions of WNT family member 5A to regulate characteristics of development of the bovine preimplantation embryo†. Biol Reprod 2022; 107:928-944. [PMID: 35765196 PMCID: PMC9562107 DOI: 10.1093/biolre/ioac127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
WNT signaling is important for regulation of embryonic development. The most abundant WNT gene expressed in the bovine endometrium during the preimplantation period is WNT5A. One objective was to determine whether WNT5A regulates competence of the bovine preimplantation embryo to become a blastocyst and alters the number of cells in the inner cell mass and trophectoderm. A second objective was to delineate features of the cell-signaling mechanisms involved in WNT5A actions. WNT5A caused a concentration-dependent increase in the proportion of embryos developing to the blastocyst stage and in the number of inner cell mass cells in the resultant blastocysts. A concentration of 200 ng/mL was most effective, and a higher concentration of 400 ng/mL was not stimulatory. Bovine serum albumin in culture reduced the magnitude of effects of WNT5A on development to the blastocyst stage. WNT5A affected expression of 173 genes at the morula stage; all were upregulated by WNT5A. Many of the upregulated genes were associated with cell signaling. Actions of WNT5A on development to the blastocyst stage were suppressed by a Rho-associated coiled-coil kinase (ROCK) signaling inhibitor, suggesting that WNT5A acts through Ras homology gene family member A (RhoA)/ROCK signaling. Other experiments indicated that actions of WNT5A are independent of the canonical β-catenin signaling pathway and RAC1/c-Jun N-terminal kinase (JNK) signaling. This is the first report outlining the actions of WNT5A to alter the development of the mammalian embryo. These findings provide insights into how embryokines regulate maternal-embryonic communication.
Collapse
Affiliation(s)
- Surawich Jeensuk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - M Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Muhammad Saleem
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Briana Hawryluk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Chen X, Tu J, Liu C, Wang L, Yuan X. MicroRNA-621 functions as a metastasis suppressor in colorectal cancer by directly targeting LEF1 and suppressing Wnt/β-catenin signaling. Life Sci 2022; 308:120941. [PMID: 36087740 DOI: 10.1016/j.lfs.2022.120941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
AIMS Colorectal liver metastasis (CRLM) is the leading death-causing among colorectal cancer (CRC) patients. Recently, a novel tumor-related microRNA, miR-621, has been identified as a tumor suppressor in diverse tumor types, but its role in CRLM remains unclear and requires further investigation. MAIN METHODS To elucidate novel regulators of CRLM progression, we used a well-established CRLM animal model. After serially transplanting human colon carcinoma cell lines Caco-2 into the liver, we obtained liver metastatic variants that exhibited a strong ability for invasion and metastasis. High-throughput sequencing was conducted on these newly established cell lines. After comparison and prediction between the two cell lines: parental Caco-2 (hereafter referred to as F0) and F3, miR-621 was identified as a candidate regulator for lymphoid enhancer-binding factor 1 (LEF1) expression. Further validation was achieved with dual-luciferase reporter assay. KEY FINDINGS The gain- and loss-of-function validation showed that miR-621 inhibits cell viability, cell cycle progression, colony formation, and proliferation in vitro. Meanwhile, miR-621 could reverse EMT malignant phenotype. LEF1, an important downstream mediator of activated Wnt/β-catenin signaling pathway, was validated as the direct functional target of miR-621. miR-621 interacts directly with the LEF1 3'-UTR and post-transcriptionally suppresses LEF1 expression. Moreover, LEF1 overexpression reversed the effect of miR-621. LEF1 silencing counteracted miR-621 down-regulation-induced effects. Further in vivo experiments revealed that miR-621 over-expression suppressed CRLM, but LEF1 abrogated the inhibitory effect of miR-621. SIGNIFICANCE MiR-621 is a vital tumor suppressor in CRC and could be a promising anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang road 1095, Wuhan, Hubei Province, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
35
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
36
|
Zhang M, Jin M, Gao Z, Yu W, Zhang W. High COL10A1 expression potentially contributes to poor outcomes in gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal 2022; 36:e24612. [PMID: 35929139 PMCID: PMC9459277 DOI: 10.1002/jcla.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background COL10A1 is a secreted, short‐chain collagen found in several types of cancer. Studies have shown that COL10A1 aberrant expression is considered an oncogenic factor. However, its underlying mechanisms and regulation of gastric cancer remain undefined. Methods The data on the expression of COL10A1, clinicopathological characteristics, and outcome of patients with GC were obtained from The Cancer Genome Atlas. The ALGGEN‐PROMO database defined the related transcription factors. Quantitative real‐time reverse transcription‐polymerase chain reaction and western blotting analysis were used to identify the differential expression levels of COL10A1 and related transcription factors. Results We found that high COL10A1 expression is an independent risk factor for gastric cancer. Upregulation of LEF1 and Wnt2 was also observed in gastric cancer, suggesting a potential correlation between LEF1/COL10A1 regulation in the Wnt2 signaling pathway. Conclusion High COL10A1 expression may contribute to poor outcomes via upregulation of LEF1 and Wnt2 in gastric cancer.
Collapse
Affiliation(s)
- Miaozun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhiqiang Gao
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Zhang
- Department of Gastroenterology, The HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
37
|
Liu Y, Wu K, Cui X, Mao Y. Compressive force regulates GSK-3β in osteoclasts contributing to alveolar bone resorption during orthodontic tooth movement in vivo. Heliyon 2022; 8:e10379. [PMID: 36061014 PMCID: PMC9433691 DOI: 10.1016/j.heliyon.2022.e10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 08/15/2022] [Indexed: 10/27/2022] Open
|
38
|
Gao X, Shi X, Zhou S, Chen C, Hu C, Xia Q, Li X, Gao W, Ding Y, Zuo Q, Zhang Y, Li B. DNA hypomethylation activation Wnt/TCF7L2/TDRD1 pathway promotes spermatogonial stem cell formation. J Cell Physiol 2022; 237:3640-3650. [DOI: 10.1002/jcp.30822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomin Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shujian Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Chen Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cai Hu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Qian Xia
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Xinlin Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Wen Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
39
|
Quaresma MC, Botelho HM, Pankonien I, Rodrigues CS, Pinto MC, Costa PR, Duarte A, Amaral MD. Exploring YAP1-centered networks linking dysfunctional CFTR to epithelial-mesenchymal transition. Life Sci Alliance 2022; 5:5/9/e202101326. [PMID: 35500936 PMCID: PMC9060002 DOI: 10.26508/lsa.202101326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
In this work, a systems biology approach identifies potentially dysregulated EMT signaling in CF (including the Hippo, Wnt, TGF-β, p53, and MYC pathways), integrated by YAP1 and TEAD4. Mutations in the CFTR anion channel cause cystic fibrosis (CF) and have also been related to higher cancer incidence. Previously we proposed that this is linked to an emerging role of functional CFTR in protecting against epithelial–mesenchymal transition (EMT). However, the pathways bridging dysfunctional CFTR to EMT remain elusive. Here, we applied systems biology to address this question. Our data show that YAP1 is aberrantly active in the presence of mutant CFTR, interacting with F508del, but not with wt-CFTR, and that YAP1 knockdown rescues F508del-CFTR processing and function. Subsequent analysis of YAP1 interactors and roles in cells expressing either wt- or F508del-CFTR reveal that YAP1 is an important mediator of the fibrotic/EMT processes in CF. Alongside, five main pathways emerge here as key in linking mutant CFTR to EMT, namely, (1) the Hippo pathway; (2) the Wnt pathway; (3) the TGFβ pathway; (4) the p53 pathway; and (5) MYC signaling. Several potential hub proteins which mediate the crosstalk among these pathways were also identified, appearing as potential therapeutic targets for both CF and cancer.
Collapse
Affiliation(s)
- Margarida C Quaresma
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Hugo M Botelho
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Ines Pankonien
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Cláudia S Rodrigues
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Madalena C Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Pau R Costa
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Aires Duarte
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
40
|
Hair growth-promoting effects of Sargassum glaucescens oligosaccharides extracts. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
42
|
NR4A1 promotes LEF1 expression in the pathogenesis of papillary thyroid cancer. Cell Death Dis 2022; 8:46. [PMID: 35110542 PMCID: PMC8810957 DOI: 10.1038/s41420-022-00843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
The morbidity of papillary thyroid cancer (PTC) is on the rise, but its pathogenesis is still poorly understood. NR4A1 is a transcription factor primarily involving a wide range of pathophysiological responses, but its relationship with PTC malignancy remains unclear. This study demonstrates that high NR4A1 expression is strongly associated with poor survival outcomes in PTC patients. The depletion of NR4A1 significantly inhibited the proliferation of PTC cells by negating the LEF1-mediated oncogenic alteration. Mechanistically, NR4A1 directly binds to the promoter region of LEF1 and leads to crosstalk with histone acetylation and DNA demethylation to transcriptionally upregulate LEF1 expression, subsequently promoting downstream growth-related genes expressions in PTC. In the light of our findings, NR4A1 may be an emerging driving factor in PTC pathogenesis and progression.
Collapse
|
43
|
Sehgal P, Lanauze C, Wang X, Hayer KE, Torres-Diz M, Leu NA, Sela Y, Stanger BZ, Lengner CJ, Thomas-Tikhonenko A. MYC Hyperactivates Wnt Signaling in APC/ CTNNB1-Mutated Colorectal Cancer Cells through miR-92a-Dependent Repression of DKK3. Mol Cancer Res 2021; 19:2003-2014. [PMID: 34593610 PMCID: PMC8642317 DOI: 10.1158/1541-7786.mcr-21-0666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Activation of Wnt signaling is among the earliest events in colon cancer development. It is achieved either via activating mutations in the CTNNB1 gene encoding β-catenin, the key transcription factor in the Wnt pathway, or most commonly by inactivating mutations affecting APC, a major β-catenin binding partner and negative regulator. However, our analysis of recent Pan Cancer Atlas data revealed that CTNNB1 mutations significantly co-occur with those affecting Wnt receptor complex components (e.g., Frizzled and LRP6), underscoring the importance of additional regulatory events even in the presence of common APC/CTNNB1 mutations. In our effort to identify non-mutational hyperactivating events, we determined that KRAS-transformed murine colonocytes overexpressing direct β-catenin target MYC show significant upregulation of the Wnt signaling pathway and reduced expression of Dickkopf 3 (DKK3), a reported ligand for Wnt co-receptors. We demonstrate that MYC suppresses DKK3 transcription through one of miR-17-92 cluster miRNAs, miR-92a. We further examined the role of DKK3 by overexpression and knockdown and discovered that DKK3 suppresses Wnt signaling in Apc-null murine colonic organoids and human colon cancer cells despite the presence of downstream activating mutations in the Wnt pathway. Conversely, MYC overexpression in the same cell lines resulted in hyperactive Wnt signaling, acquisition of epithelial-to-mesenchymal transition markers, and enhanced migration/invasion in vitro and metastasis in a syngeneic orthotopic mouse colon cancer model. IMPLICATIONS: Our results suggest that the MYC→miR-92a-|DKK3 axis hyperactivates Wnt signaling, forming a feed-forward oncogenic loop.
Collapse
Affiliation(s)
- Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claudia Lanauze
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xin Wang
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katharina E Hayer
- The Bioinformatics Group, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yogev Sela
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Xiao L, Zhang C, Li X, Jia C, Chen L, Yuan Y, Gao Q, Lu Z, Feng Y, Zhao R, Zhao X, Cheng S, Shu Z, Xu J, Duan W, Nie G, Hou Y. LEF1 Enhances the Progression of Colonic Adenocarcinoma via Remodeling the Cell Motility Associated Structures. Int J Mol Sci 2021; 22:ijms221910870. [PMID: 34639214 PMCID: PMC8509209 DOI: 10.3390/ijms221910870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023] Open
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) is a key transcription factor mediating the Wnt signaling pathway. LEF1 is a regulator that is closely associated with tumor malignancy and is usually upregulated in cancers, including colonic adenocarcinoma. The underlying molecular mechanisms of LEF1 regulation for colonic adenocarcinoma progression remain unknown. To explore it, the LEF1 expression in caco2 cells was inhibited using an shRNA approach. The results showed that downregulation of LEF1 inhibited the malignancy and motility associated microstructures, such as polymerization of F-actin, β-tubulin, and Lamin B1 in caco2 cells. LEF1 inhibition suppressed the expression of epithelial/endothelial-mesenchymal transition (EMT) relevant genes. Overall, the current results demonstrated that LEF1 plays a pivotal role in maintaining the malignancy of colonic adenocarcinoma by remodeling motility correlated microstructures and suppressing the expression of EMT-relevant genes. Our study provided evidence of the roles LEF1 played in colonic adenocarcinoma progression, and suggest LEF1 as a potential target for colonic adenocarcinoma therapy.
Collapse
Affiliation(s)
- Li Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Caixia Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Xinyao Li
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Chenshuang Jia
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Lirong Chen
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Yue Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Qian Gao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Zheng Lu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Yang Feng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Ruixia Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Xuewei Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Sinan Cheng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Zhan Shu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Jie Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia;
| | - Guochao Nie
- Ukraine Joint Research Center for Nano Carbon Black, Yulin 537000, China
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resource Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (G.N.); (Y.H.)
| | - Yingchun Hou
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
- Correspondence: (G.N.); (Y.H.)
| |
Collapse
|
45
|
Rong H, Li Y, Hu S, Gao L, Yi T, Xie Y, Cai P, Li J, Dai X, Ye M, Liao Q. Prognostic signatures and potential pathogenesis of eRNAs-related genes in colon adenocarcinoma. Mol Carcinog 2021; 61:59-72. [PMID: 34622496 DOI: 10.1002/mc.23359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Enhancer RNAs (eRNAs) are a subclass of long noncoding RNAs (lncRNAs) that have a wide effect in human tumors. However, the systematic analysis of potential functions of eRNAs-related genes (eRGs) in colon cancer (CC) remains unexplored. In this study, a total of 8231 eRGs including 6236 protein-coding genes and 1995 lncRNAs were identified in CC based on the multiple resources. These eRGs showed higher expression level and stability compared to other genes. What's more, the functions of these eRGs were closely related to cancer. Then a prognostic prediction model with 12 eRGs signatures were obtained for colon adenocarcinoma (COAD) patients. ROC curves showed the AUCs were 0.81, 0.77, and 0.78 for 1-, 3-, and 5-year survival prediction, respectively. And the prognostic model also manifested good performance in the validation datasets. Besides, the expression levels of two prognostic signatures, TMEM220 and LRRN2, were verified to be significantly lower in CC tissues than in adjacent noncancerous tissues (p < .05). Finally, the distinct molecular features were characterized between the high- and low-risk group through multiomics analysis including DNA mutation and methylation. Our results show eRGs signatures based prognostic model has high accuracy and may provide innovative biomarkers in COAD.
Collapse
Affiliation(s)
- Hao Rong
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Shiyun Hu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Liuying Gao
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, China
| | - Yangyang Xie
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Ping Cai
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Jianjiong Li
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Xiaoyu Dai
- Hua Mei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Meng Ye
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Qi Liao
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo, China
| |
Collapse
|
46
|
Hosseini F, Alemi F, Malakoti F, Mahmoodpoor A, Younesi S, Yousefi B, Asemi Z. Targeting Wnt/β-catenin signaling by microRNAs as a therapeutic approach in chemoresistant osteosarcoma. Biochem Pharmacol 2021; 193:114758. [PMID: 34481813 DOI: 10.1016/j.bcp.2021.114758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is an adolescent and young adult malignancy that mostly occurs in long bones. The treatment of OS is still a big challenge for clinicians due to increasing chemoresistance, and many efforts are being made today to find more beneficial treatments. In this regard, the use of microRNAs has shown a high capacity to develop promising therapies. By targeting cancer-involved signaling pathways, microRNAs reduce the cellular level of these protein pathways; thereby reducing the growth and invasion of tumors, and even leading cancer cells to apoptosis. One of these oncogenic pathways that play an important role in OS development and can be targeted by microRNAs is the Wnt/β-catenin signaling pathway. Hence, the first goal of this review article is to explain the cross-talk of microRNAs and the Wnt/β-catenin signaling in OS and then discussing recent findings of the use of microRNAs as a therapeutic approach in OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
47
|
Napoli S, Cascione L, Rinaldi A, Spriano F, Guidetti F, Zhang F, Cacciapuoti MT, Mensah AA, Sartori G, Munz N, Forcato M, Bicciato S, Chiappella A, Ghione P, Elemento O, Cerchietti L, Inghirami G, Bertoni F. Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B-cell lymphoma. Haematologica 2021; 107:1131-1143. [PMID: 34162177 PMCID: PMC9052922 DOI: 10.3324/haematol.2020.267096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Enhancers are regulatory regions of DNA, which play a key role in cell-type specific differentiation and development. Most active enhancers are transcribed into enhancer RNA (eRNA) that can regulate transcription of target genes by means of in cis as well as in trans action. eRNA stabilize contacts between distal genomic regions and mediate the interaction of DNA with master transcription factors. Here, we characterized an enhancer eRNA, GECPAR (germinal center proliferative adapter RNA), which is specifically transcribed in normal and neoplastic germinal center B cells from the super-enhancer of POU2AF1, a key regulatory gene of the germinal center reaction. Using diffuse large B-cell lymphoma cell line models, we demonstrated the tumor suppressor activity of GECPAR, which is mediated via its transcriptional regulation of proliferation and differentiation genes, particularly MYC and the Wnt pathway.
Collapse
Affiliation(s)
- Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,SARA NAPOLI
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesca Guidetti
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Fangwen Zhang
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Nicolas Munz
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences University of Modena and Reggio, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences University of Modena and Reggio, Modena, Italy
| | - Annalisa Chiappella
- Ematologia, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Ghione
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, NY, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,FRANCESCO BERTONI
| |
Collapse
|
48
|
Ghiselli F, Rossi B, Felici M, Parigi M, Tosi G, Fiorentini L, Massi P, Piva A, Grilli E. Isolation, culture, and characterization of chicken intestinal epithelial cells. BMC Mol Cell Biol 2021; 22:12. [PMID: 33579204 PMCID: PMC7881477 DOI: 10.1186/s12860-021-00349-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Enterocytes exert an absorptive and protective function in the intestine, and they encounter many different challenging factors such as feed, bacteria, and parasites. An intestinal epithelial in vitro model can help to understand how enterocytes are affected by these factors and contribute to the development of strategies against pathogens. RESULTS The present study describes a novel method to culture and maintain primary chicken enterocytes and their characterization by immunofluorescence and biomolecular approaches. Starting from 19-day-old chicken embryos it was possible to isolate viable intestinal cell aggregates that can expand and produce a self-maintaining intestinal epithelial cell population that survives until 12 days in culture. These cells resulted positive in immunofluorescence to Cytokeratin 18, Zonula occludens 1, Villin, and Occludin that are common intestinal epithelial markers, and negative to Vimentin that is expressed by endothelial cells. Cells were cultured also on Transwell® permeable supports and trans-epithelial electrical resistance, was measured. This value gradually increased reaching 64 Ω*cm2 7 days after seeding and it remained stable until day 12. CONCLUSIONS Based on these results it was confirmed that it is possible to isolate and maintain chicken intestinal epithelial cells in culture and that they can be suitable as in vitro intestinal model for further studies.
Collapse
Affiliation(s)
- Federico Ghiselli
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy
| | - Barbara Rossi
- Vetagro S.p.A., Via Ignazio Porro, 2, 42124, Reggio Emilia, RE, Italy
| | - Martina Felici
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy
| | - Maria Parigi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Andrea Piva
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy.,Vetagro S.p.A., Via Ignazio Porro, 2, 42124, Reggio Emilia, RE, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy. .,Vetagro, Inc., 116 W. Jackson Blwd., Suite #320, Chicago, IL, 60604, USA.
| |
Collapse
|
49
|
Molina-Sánchez P, Ruiz de Galarreta M, Yao MA, Lindblad KE, Bresnahan E, Bitterman E, Martin TC, Rubenstein T, Nie K, Golas J, Choudhary S, Bárcena-Varela M, Elmas A, Miguela V, Ding Y, Kan Z, Grinspan LT, Huang KL, Parsons RE, Shields DJ, Rollins RA, Lujambio A. Cooperation Between Distinct Cancer Driver Genes Underlies Intertumor Heterogeneity in Hepatocellular Carcinoma. Gastroenterology 2020; 159:2203-2220.e14. [PMID: 32814112 PMCID: PMC7726023 DOI: 10.1053/j.gastro.2020.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The pattern of genetic alterations in cancer driver genes in patients with hepatocellular carcinoma (HCC) is highly diverse, which partially explains the low efficacy of available therapies. In spite of this, the existing mouse models only recapitulate a small portion of HCC inter-tumor heterogeneity, limiting the understanding of the disease and the nomination of personalized therapies. Here, we aimed at establishing a novel collection of HCC mouse models that captured human HCC diversity. METHODS By performing hydrodynamic tail-vein injections, we tested the impact of altering a well-established HCC oncogene (either MYC or β-catenin) in combination with an additional alteration in one of eleven other genes frequently mutated in HCC. Of the 23 unique pairs of genetic alterations that we interrogated, 9 were able to induce HCC. The established HCC mouse models were characterized at histopathological, immune, and transcriptomic level to identify the unique features of each model. Murine HCC cell lines were generated from each tumor model, characterized transcriptionally, and used to identify specific therapies that were validated in vivo. RESULTS Cooperation between pairs of driver genes produced HCCs with diverse histopathology, immune microenvironments, transcriptomes, and drug responses. Interestingly, MYC expression levels strongly influenced β-catenin activity, indicating that inter-tumor heterogeneity emerges not only from specific combinations of genetic alterations but also from the acquisition of expression-dependent phenotypes. CONCLUSIONS This novel collection of murine HCC models and corresponding cell lines establishes the role of driver genes in diverse contexts and enables mechanistic and translational studies.
Collapse
Affiliation(s)
- Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Melissa A Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elizabeth Bitterman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tiphaine C Martin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Troy Rubenstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kai Nie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Marina Bárcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Abdulkadir Elmas
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Veronica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ying Ding
- Oncology R&D, Pfizer Inc, San Diego, California
| | | | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
50
|
Lafita-Navarro MC, Perez-Castro L, Zacharias LG, Barnes S, DeBerardinis RJ, Conacci-Sorrell M. The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. J Biol Chem 2020; 295:12398-12407. [PMID: 32611766 DOI: 10.1074/jbc.ac120.014189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
The transcription factor AHR (aryl hydrocarbon receptor) drives the expression of genes involved in detoxification pathways in cells exposed to pollutants and other small molecules. Moreover, AHR supports transcriptional programs that promote ribosome biogenesis and protein synthesis in cells stimulated to proliferate by the oncoprotein MYC. Thus, AHR is necessary for the proliferation of MYC-overexpressing cells. To define metabolic pathways in which AHR cooperates with MYC in supporting cell growth, here we used LC-MS-based metabolomics to examine the metabolome of MYC-expressing cells upon AHR knockdown. We found that AHR knockdown reduced lactate, S-lactoylglutathione, N-acetyl-l-alanine, 2-hydroxyglutarate, and UMP levels. Using our previously obtained RNA sequencing data, we found that AHR mediates the expression of the UMP-generating enzymes dihydroorotate dehydrogenase (quinone) (DHODH) and uridine monophosphate synthetase (UMPS), as well as lactate dehydrogenase A (LDHA), establishing a mechanism by which AHR regulates lactate and UMP production in MYC-overexpressing cells. AHR knockdown in glioblastoma cells also reduced the expression of LDHA (and lactate), DHODH, and UMPS but did not affect UMP levels, likely because of compensatory mechanisms in these cells. Our results indicate that AHR contributes to the regulation of metabolic pathways necessary for the proliferation of transformed cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer Barnes
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, Dallas, Texas, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|