1
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Singh G, Rohit, Kumar P, Aran KR. Targeting EGFR and PI3K/mTOR pathways in glioblastoma: innovative therapeutic approaches. Med Oncol 2025; 42:97. [PMID: 40064710 DOI: 10.1007/s12032-025-02652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma (GBM) stands as the most aggressive form of primary brain cancer in adults, characterized by its rapid growth, invasive nature, and a robust propensity to induce angiogenesis, forming new blood vessels to sustain its expansion. GBM arises from astrocytes, star-shaped glial cells, and despite significant progress in understanding its molecular mechanisms, its prognosis remains grim. It is frequently associated with mutations or overexpression of the epidermal growth factor receptor (EGFR), which initiates several downstream signaling pathways. Dysregulation of key signaling pathways, such as EGFR/PTEN/AKT/mTOR, drives tumorigenesis, promotes metastasis and leads to treatment resistance. The modest survival benefits of the conventional treatment of surgical resection followed by radiation and chemotherapy underscore the pressing need for innovative therapeutic approaches. In most the tumor, overexpression of EGFR is found associated with GBM and mutations in its several variants are important for promoting ongoing mitogenic signaling and tumor growth. This receptor inhibits apoptosis and promotes cell survival and proliferation by activating downstream PI3K/AKT/mTOR pathways. This route is typically blocked by PTEN, a crucial tumor suppressor, however, GBM frequently results in abnormalities in this protein. The aim of this review is to explore the molecular foundations of GBM, with a focus on the EGFR and PI3K/mTOR pathways and their impact on tumor behavior. Additionally, this review highlights EGFR and PI3K/AKT/mTOR inhibitors currently in clinical and preclinical trials, addressing treatment resistance, challenges, and future directions.
Collapse
Affiliation(s)
- Gursimran Singh
- Department of Pharmacy Practice, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India
| | - Rohit
- Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144603, India
| | - Pankaj Kumar
- Department of Pharmacology, Himachal Institute of Pharmaceutical Education and Research (HIPER), Tehsil-Nadaun, Hamirpur, Himachal Pradesh, 177033, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Agnihotri TG, Dahifale A, Gomte SS, Rout B, Peddinti V, Jain A. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment. Mol Pharm 2025; 22:599-619. [PMID: 39746097 DOI: 10.1021/acs.molpharmaceut.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akanksha Dahifale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
4
|
Mohammadi M, Razmara J, Hadizadeh M, Parvizpour S, Shahir Shamsir M. Peptide vaccine design against glioblastoma by applying immunoinformatics approach. Int Immunopharmacol 2024; 142:113219. [PMID: 39340993 DOI: 10.1016/j.intimp.2024.113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Brain tumors are considered to be one of the most fatal forms of cancer owing to their highly aggressive attributes, diverse characteristics, and notably low rate of survival. Among these tumors, glioblastoma stands out as the prevalent and perilous variant Despite the present advancements in surgical procedures, pharmacological treatment, and radiation therapy, the overall prognosis remains notably unfavorable, as merely 4.3 % of individuals manage to attain a five-year survival rate; For this reason, it has emerged as a challenge for cancer researchers. Therefore, among several immunotherapy methods, using peptide-based vaccines for cancer treatment is considered promising due to their ability to generate a focused immune response with minimal damage. This study endeavors to devise a multi-epitope vaccine utilizing an immunoinformatics methodology to address the challenge posed by glioblastoma disease. Through this approach, it is anticipated that the duration and expenses associated with vaccine manufacturing can be diminished, while simultaneously enhancing the characteristics of the vaccine. The target gene in this research is ITGA5, which was achieved through TCGA analysis by targeting the PI3K-Akt pathway as a significant association with patient survival. Subsequently, the suitable epitopes of T and B cells were selected through various immunoinformatics tools by analyzing their sequence. Then, nine epitopes were merged with GM-CSF as an adjuvant to enhance immunogenicity. The outcomes encompass molecular docking, molecular dynamics (MD) simulation, simulation of the immune response, prognosis and confirmation of the secondary and tertiary structure, Chemical and physical characteristics, toxicity, as well as antigenicity and allergenicity of the potential vaccine candidate against glioblastoma.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran.
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
5
|
Ijaz M, Ullah Z, Aslam B, Khurshid M, Chen P, Guo B. From promise to progress: the dynamic landscape of glioblastoma immunotherapy. Drug Discov Today 2024; 29:104188. [PMID: 39307298 DOI: 10.1016/j.drudis.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common CNS cancer, it has dismal survival rates despite several effective mediators: intensified cytotoxic therapy, chimeric antigen receptor (CAR)-T cell therapy, viral therapy, adoptive cell therapy, immune checkpoint blockade therapy, radiation therapy and vaccine therapy. This review examines the basic concepts underlying immune targeting and examines products such as checkpoint blockade drugs, CAR-T cells, oncolytic viruses, combinatory multimodal immunotherapy and cancer vaccines. New approaches to overcoming current constraints and challenges in GBM therapy are discussed, based on recent studies into these tactics, findings from ongoing clinical trials, as well as previous trial results.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Xing Y, Yasinjan F, Geng H, He M, Yang M, Gao Y, Zhang J, Zhang L, Guo B. A scientometric analysis of immunotherapies for gliomas: Focus on GBM. Asian J Surg 2024; 47:4271-4280. [PMID: 38448290 DOI: 10.1016/j.asjsur.2024.02.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Gliomas are the most prevalent primary malignant brain tumors worldwide, with glioblastoma (GBM) being the most common and aggressive type. The standard therapy for GBM has remained unchanged for nearly two decades, with no significant improvement in survival outcomes. Despite several barriers such as the tumor microenvironment (TME) and blood-brain barrier, immunotherapies bring new hope for the treatment of GBM. To better understand the development and progress of immunotherapies in GBM, we made this scientometric analysis of this field. A total of 3753 documents were obtained from the Web of Science Core Collection, with publication years ranging from 1999 to 2022. The Web of Science platform, CiteSpace, and VOS viewer were used to conduct the scientometric analysis. The results of scientometric analysis showed that this field has recently become a popular topic of interest. The United States had the most publications among 89 countries or regions. Keyword analysis indicated significant areas in the field of immunotherapies for GBM, especially TME, immune checkpoint blockades (ICBs), chimeric antigen receptor T (CAR-T) cells, vaccines, and oncolytic viruses (OVs). Overall, we hope that this scientometric analysis can provide insights for researchers and promote the development of this field.
Collapse
Affiliation(s)
- Yang Xing
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Feroza Yasinjan
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Huayue Geng
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Minghua He
- College of Computer Science and Technology, Jilin University, ChangChun, China
| | - Mei Yang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Ling Zhang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Zhan Z, Cheng J, Liu F, Tao S, Wang L, Lin X, Ye Y. Combination of microparticles vaccine with MSI-1436 exerts a strong immune response for hepatocellular carcinoma. J Leukoc Biol 2024; 116:565-578. [PMID: 39012079 DOI: 10.1093/jleuko/qiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Although tumor cell-derived microparticles (MPs) vaccines have reportedly induced antitumor immune reactions for various cancers, the mechanism by which MPs derived from Hepa1-6 cells are taken up by dendritic cells (DCs) and provide the MPs antigens message to CD8+ T cells to exert their anti-hepatocellular carcinoma (HCC) effects remain unclear. Furthermore, the role of MPs in combination with the small-molecule drug MSI-1436, an inhibitor of protein tyrosine phosphatase 1B (PTP1B), in HCC has not yet been reported. In this study, protein mass spectrometry combined with cytology revealed that MPs are mainly taken up by DCs via the clathrin-mediated endocytosis and phagocytosis pathway and localized mainly in lysosomes. High concentration of tumor necrosis factor-α and interferon-γ was detected in CD8+ T cells stimulated with MPs-loaded DCs. Moreover, MPs combined with MSI-1436 further suppressed the proliferation of HCC cells in C57BL/6 tumor-bearing mice, which was closely correlated with CD4+/CD8+ T cells counts in peripheral blood, spleen, and the tumor microenvironment. Mechanistically, the combination of MPs and MSI-1436 exerts a more powerful anti-HCC effect, which may be related to the further inhibition of the expression of PTP1B. Overall, MPs combined with MSI-1436 exerted stronger antitumor effects than MPs or MSI-1436 alone. Therefore, the combination of MPs and MSI-1436 may be a promising means of treating HCC.
Collapse
Affiliation(s)
- Zhao Zhan
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Jiaqing Cheng
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Fang Liu
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Shili Tao
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Xiandong Lin
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| |
Collapse
|
8
|
Li X, Gou W, Zhang X. Neuroinflammation in Glioblastoma: Progress and Perspectives. Brain Sci 2024; 14:687. [PMID: 39061427 PMCID: PMC11274945 DOI: 10.3390/brainsci14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, with high morbidity and mortality. Despite an aggressive, multimodal treatment regimen, including surgical resection followed by chemotherapy and radiotherapy, the prognosis of glioblastoma patients remains poor. One formidable challenge to advancing glioblastoma therapy is the complexity of the tumor microenvironment. The tumor microenvironment of glioblastoma is a highly dynamic and heterogeneous system that consists of not only cancerous cells but also various resident or infiltrating inflammatory cells. These inflammatory cells not only provide a unique tumor environment for glioblastoma cells to develop and grow but also play important roles in regulating tumor aggressiveness and treatment resistance. Targeting the tumor microenvironment, especially neuroinflammation, has increasingly been recognized as a novel therapeutic approach in glioblastoma. In this review, we discuss the components of the tumor microenvironment in glioblastoma, focusing on neuroinflammation. We discuss the interactions between different tumor microenvironment components as well as their functions in regulating glioblastoma pathogenesis and progression. We will also discuss the anti-tumor microenvironment interventions that can be employed as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Tang C, He X, Jia L, Zhang X. Circular RNAs in glioma: Molecular functions and pathological implications. Noncoding RNA Res 2024; 9:105-115. [PMID: 38075205 PMCID: PMC10700123 DOI: 10.1016/j.ncrna.2023.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2025] Open
Abstract
Circular RNAs (circRNAs) are a special class of non-coding RNAs with the ring structure. They are stable, abundant and conservative across mammals. The biogenesis and molecular properties of circRNAs are being elucidated, which exert regulatory functions not only through miRNA and protein sponge, but also via translation and exosomal interaction. Accumulating studies have demonstrated that circRNAs are aberrantly expressed in various diseases, especially in cancer. Glioma is one of the most common malignant cerebral neoplasms with poor prognosis. The accurate diagnosis and effective therapies of glioma have always been challenged, there is an urgent need for developing promising therapeutic intervention. Therefore, exploring novel biomarkers is crucial for diagnosis, treatment and prognosis of the glioma which can provide better assistance in guiding treatment. Recent findings found that circRNAs are systematically altered in glioma and may play critical roles in glioma tumorigenesis, proliferation, invasion and metastasis. Due to their distinct functional properties, they are considered as the potential therapeutic targets, diagnostic and prognostic biomarkers. This review elaborates on current advances towards the biogenesis, translation and interaction of circRNAs in many diseases and focused on the role of their involvement in glioma progression, highlighting the potential value of circRNAs in glioma.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Al-Hawary SIS, Alhajlah S, Olegovich BD, Hjazi A, Rajput P, Ali SHJ, Abosoda M, Ihsan A, Oudah SK, Mustafa YF. Effective extracellular vesicles in glioma: Focusing on effective ncRNA exosomes and immunotherapy methods for treatment. Cell Biochem Funct 2024; 42:e3921. [PMID: 38269511 DOI: 10.1002/cbf.3921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
This comprehensive article explores the complex field of glioma treatment, with a focus on the important roles of non-coding RNAsRNAs (ncRNAs) and exosomes, as well as the potential synergies of immunotherapy. The investigation begins by examining the various functions of ncRNAs and their involvement in glioma pathogenesis, progression, and as potential diagnostic biomarkers. Special attention is given to exosomes as carriers of ncRNAs and their intricate dynamics within the tumor microenvironment. The exploration extends to immunotherapy methods, analyzing their mechanisms and clinical implications in the treatment of glioma. By synthesizing these components, the article aims to provide a comprehensive understanding of how ncRNAs, exosomes, and immunotherapy interact, offering valuable insights into the evolving landscape of glioma research and therapeutic strategies.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqraa, Saudi Arabia
| | - Bokov Dmitry Olegovich
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pranchal Rajput
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Munther Abosoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Ihsan
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
11
|
Andrews CE, Zilberberg J, Perez-Olle R, Exley MA, Andrews DW. Targeted immunotherapy for glioblastoma involving whole tumor-derived autologous cells in the upfront setting after craniotomy. J Neurooncol 2023; 165:389-398. [PMID: 38017340 PMCID: PMC10942892 DOI: 10.1007/s11060-023-04491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE To date, immunotherapeutic approaches in glioblastoma (GBM) have had limited clinical efficacy as compared to other solid tumors. Here we explore autologous cell treatments that have the potential to circumvent treatment resistance to immunotherapy for GBM. METHODS We performed literature review and assessed clinical outcomes in phase 1 safety trials as well as phase 2 and 3 autologously-derived vaccines for the treatment of newly-diagnosed GBM. In one recent review of over 3,000 neuro-oncology phase 2 and phase 3 clinical trials, most trials were nonblinded (92%), single group (65%), nonrandomized (51%) and almost half were GBM trials. Only 10% involved a biologic and only 2.2% involved a double-blind randomized trial design. RESULTS With this comparative literature review we conclude that our autologous cell product is uniquely antigen-inclusive and antigen-agnostic with a promising safety profile as well as unexpected clinical efficacy in our published phase 1b trial. We have since designed a rigorous double-blinded add-on placebo-controlled trial involving our implantable biologic drug device. We conclude that IGV-001 provides a novel immunotherapy platform for historically intransigent ndGBM in this ongoing phase 2b trial (NCT04485949).
Collapse
Affiliation(s)
- Carrie E Andrews
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | | | | | | | - David W Andrews
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Imvax, Inc., Philadelphia, PA, 19602, USA.
| |
Collapse
|
12
|
Yasinjan F, Xing Y, Geng H, Guo R, Yang L, Liu Z, Wang H. Immunotherapy: a promising approach for glioma treatment. Front Immunol 2023; 14:1255611. [PMID: 37744349 PMCID: PMC10512462 DOI: 10.3389/fimmu.2023.1255611] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Gliomas are the most prevalent primary malignant brain tumors worldwide, with glioblastoma (GBM) being the most common and aggressive type. Despite two decades of relentless pursuit in exploring novel therapeutic approaches for GBM, there is limited progress in improving patients' survival outcomes. Numerous obstacles impede the effective treatment of GBM, including the immunosuppressive tumor microenvironment (TME), the blood-brain barrier, and extensive heterogeneity. Despite these challenges, immunotherapies are emerging as a promising avenue that may offer new hope for the treatment of gliomas. There are four main types of immunotherapies for gliomas, immune checkpoint blockades, chimeric antigen receptor T-cell therapies, vaccines, and oncolytic viruses. In addition, gene therapy, bispecific antibody therapy, and combine therapy are also briefly introduced in this review. The significant role of TME in the process of immunotherapies has been emphasized in many studies. Although immunotherapy is a promising treatment for gliomas, enormous effort is required to overcome the existing barriers to its success. Owing to the rapid development and increasing attention paid to immunotherapies for gliomas, this article aims to review the recent advances in immunotherapies for gliomas.
Collapse
Affiliation(s)
- Feroza Yasinjan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Huayue Geng
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Deng X, Sun X, Hu Z, Wu Y, Zhou C, Sun J, Gao X, Huang Y. Exploring the role of m6A methylation regulators in glioblastoma multiforme and their impact on the tumor immune microenvironment. FASEB J 2023; 37:e23155. [PMID: 37606566 DOI: 10.1096/fj.202301343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Although the role of N6-Methyladenosine (m6A) methylation factors has been established in multiple cancer types, its involvement in glioblastoma multiforme (GBM) remains limited. This study aims to explore the involvement of m6A regulators in GBM and examine their association with the tumor immune microenvironment (TIME). A comprehensive set of 24 candidate m6A RNA regulators was procured. Consensus clustering was performed based on these regulators to identify distinct GBM clusters. PD-L1 and PD-1 levels, immune cell infiltration, and immune scores were evaluated between two clusters. Prognostic signatures and correlation analysis with TIME were analyzed using Lasso and Spearman's analysis. GBM tissue was collected to verify the correlations. Eighteen m6A regulators (WTAP, YTHDF2, HNRNPC, CAPRIN1, YTHDF3, METTL14, GNL3, ZCCHC4, HNRNPD, YTHDF1, RBM15, PCIF1, RBM27, KIAA1429, MSI2, FTO, ALKBH5, and METTL3), PD-L1, and PD-1 were significantly upregulated in GBM tissue. These regulators were divided into two distinct molecular subtypes (clusters 1 and 2). Cluster 2 exhibited a significant increase in immune score, monocytes, M1 macrophages, activated mast cells, and eosinophils. HNRNPC, YWHAG, and ALKBH5 were significantly associated with TIME and positively correlated with PD-L1. Immune cell invasiveness profiles dynamically changed with copy number changes of these three m6A regulators. Finally, YWHAG and ALKBH5 were found to be independent prognostic indicators of GBM through risk analysis and were experimentally verified with clinical samples. YWHAG and ALKBH5 may be used as prognostic markers for patients with GBM. m6A methylation regulators may play an important role in regulating PD-L1/PD-1 expression and immune infiltration, thus having a significant impact on GBM TIME.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoke Sun
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| |
Collapse
|
14
|
Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, Ma X. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnology 2023; 21:212. [PMID: 37415161 PMCID: PMC10327386 DOI: 10.1186/s12951-023-01977-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Although cancer immunotherapy is a compelling approach against cancer, its effectiveness is hindered by the challenge of generating a robust and durable immune response against metastatic cancer cells. Nanovaccines, specifically engineered to transport cancer antigens and immune-stimulating agents to the lymph nodes, hold promise in overcoming these limitations and eliciting a potent and sustained immune response against metastatic cancer cells. This manuscript provides an in-depth exploration of the lymphatic system's background, emphasizing its role in immune surveillance and tumor metastasis. Furthermore, it delves into the design principles of nanovaccines and their unique capability to target lymph node metastasis. The primary objective of this review is to provide a comprehensive overview of the current advancements in nanovaccine design for targeting lymph node metastasis, while also discussing their potential to enhance cancer immunotherapy. By summarizing the state-of-the-art in nanovaccine development, this review aims to shed light on the promising prospects of harnessing nanotechnology to potentiate cancer immunotherapy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Shen Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Keqin Tan
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Yuanling Meng
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingyi Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|