1
|
Lepsenyi M, Valdimarsson V, Algethami N, Thorlacius H, Ghanipour L, Cashin P, Asplund D, Lindskog EB, Palmer GJ, Nilsson PJ, Syk I. Postoperative leukopenia after cytoreductive surgery and hypertherm intraperitoneal chemotherapy for colorectal carcinomatosis- causes and implication on outcomes in a population-based study. World J Surg Oncol 2025; 23:173. [PMID: 40301901 DOI: 10.1186/s12957-025-03821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Leukocytes have been reported to have tumor stimulating effects in colorectal cancer, among other malignancies. In line with this, earlier research has shown improved disease-free survival in patients with postoperative neutropenia compared to non-neutropenic patients following cytoreductive surgery (CRS) and hypertherm intraperitoneal chemotherapy (HIPEC). AIM To evaluate the impact of postoperative leukopenia after CRS and HIPEC on recurrence rate, survival, and risk of complications. METHODS All CRS and HIPEC-procedures for colorectal adenocarcinoma in the national Swedish HIPEC-registry since 2015 and local registries in Uppsala and Malmö since 2003 until December 31st, 2021, were included (n = 921). Patients who did not complete a full CRS and HIPEC procedure (n = 99), had incomplete macroscopic cytoreduction (n = 25) or a lack of information on leukocyte count (n = 213) were excluded, resulting in 584 analyzed cases. Primary outcome was overall recurrence rate. Secondary outcomes were overall survival, recurrence-free survival, and perioperative complications. RESULTS Postoperative leukopenia was observed in 54 (9.2%) cases of which 32 (5.5%) developed severe leukopenia. No differences in patient characteristics were noted between those with or without leukopenia. There were no differences in 3-year recurrence rate, overall survival or 3-year recurrence-free survival, between the groups. Neoadjuvant chemotherapy treatment, HR 1.32 (95% CI: 1.02-1.71), higher PCI-score, HR 1.50 (95% CI: 1.09-2.05) and higher pN-stage HR 2.52 (95% CI: 1.74-3.65) were associated with higher 3-year recurrence rate. 3-year mortality was associated with neoadjuvant chemotherapy treatment, HR 1.82 (95% CI: 1.06-3.11), severe postoperative complication, HR 2.39 (95% CI: 1.39-4.13) and high PCI-score, HR 2.60 (95% CI: 1.31-5.14). Treatment with combined oxaliplatin/irinotecan, HR 12.34 (95% CI: 4.51-33.74) was associated with developing postoperative leukopenia. Longer operation time, HR 2.30 (95% CI: 1.55-3.42), and severe leukopenia, HR 3.50 (95% CI: 1.25-9.77) were associated with postoperative complication. CONCLUSIONS Postoperative leukopenia did not impact recurrence rate or long-term survival in a statistically significant manner. Neoadjuvant chemotherapy and high PCI-score were associated with both recurrent disease and mortality within 3 years.
Collapse
Affiliation(s)
- Mattias Lepsenyi
- Department of Clinical Sciences Malmö, Section of Surgery, Lund University, Skåne University Hospital, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.
| | - Valentinus Valdimarsson
- Department of Clinical Sciences Malmö, Section of Surgery, Lund University, Skåne University Hospital, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden
| | - Nader Algethami
- Department of Clinical Sciences Malmö, Section of Surgery, Lund University, Skåne University Hospital, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences Malmö, Section of Surgery, Lund University, Skåne University Hospital, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden
| | - Lana Ghanipour
- Department of Surgical Sciences, Section of Surgery, Uppsala University, Uppsala, Akademiska sjukhuset, Sweden
| | - Peter Cashin
- Department of Surgical Sciences, Section of Surgery, Uppsala University, Uppsala, Akademiska sjukhuset, Sweden
| | - Dan Asplund
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, dept of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elinor Bexe Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, dept of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gabriella Jansson Palmer
- Department of Pelvic cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per J Nilsson
- Department of Pelvic cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ingvar Syk
- Department of Clinical Sciences Malmö, Section of Surgery, Lund University, Skåne University Hospital, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden
| |
Collapse
|
2
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Jia R, Wan L, Jin L, Tian Q, Chen Y, Zhu X, Zhang M, Zhang Y, Zong L, Wu X, Miao C, Cai Y, Ma J, Hu L, Liu WT. Fucoidan reduces NET accumulation and alleviates chemotherapy-induced peripheral neuropathy via the gut-blood-DRG axis. J Neuroinflammation 2025; 22:100. [PMID: 40186245 PMCID: PMC11969723 DOI: 10.1186/s12974-025-03431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse reaction to chemotherapy with limited treatment options. Research has indicated that neutrophil extracellular traps (NETs) are critical for the pathogenesis of CIPN. LPS/HMGB1 serve as important inducers of NETs. Here, we aimed to target the inhibition of NET formation (NETosis) to alleviate CIPN. METHODS Oxaliplatin (L-OHP) was used to establish a CIPN model. The mice were pretreated with fucoidan to investigate the therapeutic effect. SR-A1-/- mice were used to examine the role of scavenger receptor A1 (SR-A1) in CIPN. Bone marrow-derived macrophages (BMDMs) isolated from SR-A1-/- mice and WT mice were used to investigate the mechanism by which macrophage phagocytosis of NETs alleviates CIPN. RESULTS Clinically, we found that the contents of LPS, HMGB1 and NETs in the plasma of CIPN patients were significantly increased and positively correlated with the VAS score. Fucoidan decreased the LPS/HMGB1/NET contents and relieved CIPN in mice. Mechanistically, fucoidan upregulated SR-A1 expression and promoted the phagocytosis of LPS/HMGB1 by BMDMs. Fucoidan also facilitated the engulfment of NETs by BMDMs via the recognition and localization of SR-A1 and HMGB1. The therapeutic effects of fucoidan were abolished by SR-A1 knockout. RNA-seq analysis revealed that fucoidan increased sqstm1 (p62) gene expression. Fucoidan promoted the competitive binding of sqstm1 and Nrf2 to Keap1, increasing Nrf2 nuclear translocation and SR-A1 transcription. Additionally, the sequencing analysis (16 S) of microbial diversity revealed that fucoidan increased the gut microbiota diversity and abundance and increased the Bacteroides/Firmicutes ratio. CONCLUSIONS Altogether, fucoidan promotes the SR-A1-mediated phagocytosis of LPS/HMGB1/NETs and maintains gut microbial homeostasis, which may provide a potential therapeutic strategy for CIPN.
Collapse
Affiliation(s)
- Rumeng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Li Wan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qingyan Tian
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yongyi Chen
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Xia Zhu
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China
| | - Mengyao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yajie Zhang
- Central Laboratory, Department of Biobank, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Lijuan Zong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Cai
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianxin Ma
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China.
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
4
|
Yang J, Lu H, Li L. Chemokines: Orchestration of the Tumor Microenvironment and Control of Hepatocellular Carcinoma Progression. Cancer Med 2025; 14:e70789. [PMID: 40145607 PMCID: PMC11948061 DOI: 10.1002/cam4.70789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Chemokines, a family of chemotactic cytokines, play a central role in shaping the tumor microenvironment (TME) and in influencing the progression of hepatocellular carcinoma (HCC), a well-known inflammation-related cancer. This review addresses the intricate interplay between chemokines and HCC and highlights their multifaceted role. We discuss how altered expression of chemokines within the TME contributes to the development of HCC by orchestrating the recruitment of immune cells, ultimately leading to immunosuppression. In addition, we are investigating the contribution of chemokines to important features of HCC progression, including angiogenesis and epithelial-mesenchymal transition (EMT). The potential of chemokines as serum biomarkers for HCC diagnosis and their potential as novel therapeutic targets are also explored. This comprehensive review emphasizes the importance of chemokines in the pathogenesis of HCC and their potential for a better understanding and treatment of this difficult disease.
Collapse
Affiliation(s)
- Jiezuan Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesHangzhouChina
| | - Haifeng Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesHangzhouChina
| | - Lanjuan Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesHangzhouChina
| |
Collapse
|
5
|
Mirchandani AS, Sanchez-Garcia MA, Walmsley SR. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat Rev Immunol 2025; 25:161-177. [PMID: 39349943 DOI: 10.1038/s41577-024-01087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 03/04/2025]
Abstract
Most eukaryotes require oxygen for their survival and, with increasing multicellular complexity, oxygen availability and delivery rates vary across the tissues of complex organisms. In humans, healthy tissues have markedly different oxygen gradients, ranging from the hypoxic environment of the bone marrow (where our haematopoietic stem cells reside) to the lungs and their alveoli, which are among the most oxygenated areas of the body. Immune cells are therefore required to adapt to varying oxygen availability as they move from the bone marrow to peripheral organs to mediate their effector functions. These changing oxygen gradients are exaggerated during inflammation, where oxygenation is often depleted owing to alterations in tissue perfusion and increased cellular activity. As such, it is important to consider the effects of oxygenation on shaping the immune response during tissue homeostasis and disease conditions. In this Review, we address the relevance of both physiological oxygenation (physioxia) and disease-associated hypoxia (where cellular oxygen demand outstrips supply) for immune cell functions, discussing the relevance of hypoxia for immune responses in the settings of tissue homeostasis, inflammation, infection, cancer and disease immunotherapy.
Collapse
Affiliation(s)
- Ananda Shanti Mirchandani
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | | | - Sarah Ruth Walmsley
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Liu Z, Dou Y, Lu C, Han R, He Y. Neutrophil extracellular traps in tumor metabolism and microenvironment. Biomark Res 2025; 13:12. [PMID: 39849606 PMCID: PMC11756210 DOI: 10.1186/s40364-025-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention. Within the tumor microenvironment and metabolism, NETs exhibit multifaceted roles, such as promoting the proliferation and migration of tumor cells, influencing redox balance, triggering angiogenesis, and driving metabolic reprogramming. This review offers a comprehensive analysis of the link between NETs and tumor metabolism, emphasizing areas that remain underexplored. These include the interaction of NETs with tumor mitochondria, their effect on redox states within tumors, their involvement in metabolic reprogramming, and their contribution to angiogenesis in tumors. Such insights lay a theoretical foundation for a deeper understanding of the role of NETs in cancer development. Moreover, the review also delves into potential therapeutic strategies that target NETs and suggests future research directions, offering new perspectives on the treatment of cancer and other related diseases.
Collapse
Affiliation(s)
- Zhanrui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Bishan hospital of Chongqing medical university, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
7
|
Li J, Liu J, Yang S, Xia Y, Meng Q, Sun B, Liu Y, Zhao B, Jin J, Xu H, Wang L, Zhang P, Cheng Z. PD-L1 positive platelets mediate resistance to immune checkpoint inhibitors in patients with colorectal cancer. Cell Commun Signal 2025; 23:29. [PMID: 39815258 PMCID: PMC11737274 DOI: 10.1186/s12964-025-02034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) expression on immune cells is correlated with the efficacy of immune checkpoint inhibitor (ICI) therapy in various types of cancer. Platelets are important components of the tumour microenvironment (TME) and are widely involved in the development of many types of cancer including colorectal cancer (CRC). However, the role of PD-L1 positive platelets in ICI therapy for CRC remains unknown. We hypothesized that PD-L1 positive platelets trigger and sustain CRC immunosuppression. METHODS The functional depletion effects of PD-L1 positive platelets on TME and immune cells were measured via western blotting, immunofluorescence staining, qRT-PCR, ELISpot and flow cytometry. In vivo, CD274 knockout (KO), CD8a KO, platelet-specific KO (PF4-Cre-Hsp90b1flox/flox) mouse models and a subcutaneous tumour model treated with aspirin and PD-L1 mAb were established in C57BL/6 N mice. RESULTS We found that PD-L1 positive platelets are correlated with a poor prognosis, CD8 + T cell exhaustion and serve as a novel noninvasive biomarker for predicting immunotherapy efficacy in patients with CRC. The transfer of PD-L1 from tumour cells to platelets in the TME depends on direct cell contact via the fibronectin-1/GPIbα/integrin α5β1 pathway. In turn, platelets can also induce PD-L1 expression on cancer cells. Animal experiments revealed that antiplatelet pharmacological agents and genetic knockout of platelets potentiated the antitumour effect of the PD-L1 mAb treatment in a CD8 + T cell dependent manner. CONCLUSIONS Our data suggest that PD-L1 positive platelets suppress CD8 + T cell immunity. Clinical combination treatment with ICIs and antiplatelet agents may be an effective therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Jiacheng Li
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Jia Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Shifeng Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yu Xia
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Qingzhe Meng
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Biying Sun
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Yansong Liu
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Bin Zhao
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China
| | - Jiaqi Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
| | - Pengxia Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
| | - Zhuoxin Cheng
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
| |
Collapse
|
8
|
Zeng F, Shao Y, Wu J, Luo J, Yue Y, Shen Y, Wang Y, Shi Y, Wu D, Cata JP, Yang S, Zhang H, Miao C. Tumor metastasis and recurrence: The role of perioperative NETosis. Cancer Lett 2024; 611:217413. [PMID: 39725150 DOI: 10.1016/j.canlet.2024.217413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jingwen Luo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Pujian Road 160, Shanghai, 200127, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
9
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
Jing Y, Ren M, Li X, Sun X, Xiao Y, Xue J, Liu Z. The Effect of Systemic Immune-Inflammatory Index (SII) and Prognostic Nutritional Index (PNI) in Early Gastric Cancer. J Inflamm Res 2024; 17:10273-10287. [PMID: 39654858 PMCID: PMC11625636 DOI: 10.2147/jir.s499094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Background In recent years, the systemic immune-inflammatory index (SII) and prognostic nutritional index (PNI) have been considered potential predictors of survival outcomes in various solid tumors, including gastric cancer. However, there is a notable lack of research focusing on their prognostic implications specifically in the early stage of gastric cancer. This study aims to investigate the prognostic indicators of early gastric cancer (EGC), including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), SII, PNI, and lymph node metastasis (LNM). Methods In this retrospective analysis, we examined 490 patients diagnosed with EGC (pT1Nx). The peripheral blood indices of interest were SII, PNI, PLR, and NLR. The receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to determine optimal cutoff values and prognostic efficacy for each parameter. Additionally, Kaplan-Meier survival curves and multivariate Cox regression models were utilized to delineate independent prognostic factors. Results The optimal cutoff values for SII and PNI were determined as 613.05 and 42.21, respectively. Patients in the low SII (SII-L) group demonstrated significantly higher 5-year Disease-Free Survival (DFS) and Overall Survival (OS) rates of 94.7% and 96.2%, compared to the high SII (SII-H) group (DFS: 78.7%; OS: 81.9%), with both differences proving statistically significant (P < 0.001, P < 0.001). Similarly, patients in the high PNI (PNI-H) group showed superior 5-year DFS (93.3%) and OS rates (95.1%) versus the low PNI (PNI-L) group (DFS: 71.4%; OS: 74.3%), also demonstrating statistical significance (P < 0.001, P < 0.001). Multivariate analysis identified SII, PNI, and LNM as independent prognostic factors for EGC. A combined analysis of SII, PNI, and LNM yielded a C-index of 0.723 (P = 0.008). Conclusion SII, PNI, and LNM are effective markers for predicting the survival outcomes of patients undergoing radical gastrectomy for EGC.
Collapse
Affiliation(s)
- Yaoyao Jing
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Minghan Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xiaoxiao Li
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xiaoyuan Sun
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Yan Xiao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Juan Xue
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Zimin Liu
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Wang Q, Chen X, Huang K, Deng G, Tian Y, Jiang K. S100A9 promotes renal calcium oxalate stone formation via activating the TLR4-p38/MAPK-LCN2 signaling pathway. Int J Biol Macromol 2024; 281:136178. [PMID: 39357728 DOI: 10.1016/j.ijbiomac.2024.136178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES To explore the role of S100A9 protein in renal calcium oxalate (CaOx) stone formation. METHODS CaOx nephrocalcinosis mice were established via intraperitoneal injection of glyoxylate. They were treated with S100A9 deficiency, Paquinimod, or p38 MAPK-IN-1. Vonkossa staining was conducted to observe the deposition of CaOx crystals. Renal expression of inflammation, macrophage polarization, and injury markers was detected using immunohistochemistry and qPCR. Effects of S100A9 on renal tubular epithelial cells (HK-2) were explored by transcriptome sequencing. The mechanism of how S100A9 regulated lipocalin 2 (LCN2) was studied through Western Blot. Flow cytometry was performed to detect the influence of LCN2 on macrophages polarization. RESULTS S100A9 deficiency inhibited the renal deposition of CaOx crystals in nephrocalcinosis mice. S100A9 upregulated the expression of LCN2 in HK-2 cells via activating the TLR4-p38/MAPK pathway. LCN2 promoted the migration and M1 polarization of macrophages. S100A9 deficiency downregulated the renal expression of LCN2, IL1-β, Kim-1, F4/80, and CD80 in nephrocalcinosis mice. Paquinimod and p38 MAPK-IN-1 both inhibited the renal deposition of CaOx crystals and downregulated the expression of LCN2, IL1-β, Kim-1, F4/80, iNOS, and CD68 in nephrocalcinosis mice. CONCLUSIONS S100A9 promotes renal inflammatory injury by activating the TLR4-p38/MAPK-LCN2 pathway and then contributes to CaOx stone formation.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Kunyuan Huang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Guanyun Deng
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yuan Tian
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, China.
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China.
| |
Collapse
|
12
|
Zeng X, Li J, Pei L, Yang Y, Chen Y, Wang X, Zhang T, Zhou T. Didang decoction attenuates cancer-associated thrombosis by inhibiting PAD4-dependent NET formation in lung cancer. Pulm Circ 2024; 14:e12454. [PMID: 39386377 PMCID: PMC11462072 DOI: 10.1002/pul2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
This research aims to investigate the impact of Didang decoction (DD) on the formation of neutrophil extracellular traps (NETs) and cancer-associated thrombosis in lung cancer. BALB/c nude mice were used to establish xenograft models for inducing deep vein thrombosis. Tumor growth and thrombus length were assessed. The impact of DD on NET generation was analyzed using enzyme-linked immunosorbent assay, immunofluorescence staining, quantitative real-time PCR, and western blot analysis, both in vivo and in vitro. CI-amidine, a PAD4 inhibitor, was employed to evaluate the role of PAD4 in the generation of NETs. In vivo studies demonstrated that treatment with DD reduced tumor growth, inhibited thrombus formation, and decreased the levels of NET markers in the serum, tumor tissues, neutrophils, and thrombus tissues of mice. Additional data indicated that DD could suppress neutrophil counts, the release of tissue factor (TF), and the activation of thrombin-activated platelets, all of which contributed to increased formation of NETs in mouse models. In vitro, following incubation with conditioned medium (CM) derived from Lewis lung carcinoma cells, the expression of NET markers in neutrophils was significantly elevated, and an extracellular fibrous network structure was observed. Nevertheless, these NET-associated changes were partially counteracted by DD. Additionally, CI-amidine reduced the expression of NET markers in CM-treated neutrophils, consistent with the effects of DD. Collectively, DD inhibits cancer-associated thrombosis in lung cancer by decreasing PAD4-dependent NET formation through the regulation of TF-mediated thrombin-platelet activation. This presents a promising therapeutic strategy for preventing and treating venous thromboembolism in lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Jiuxi Li
- College of Acupuncture, Massage and RehabilitationHunan University of Chinese MedicineChangshaHunanChina
| | - Liyuan Pei
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Yaping Yang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ya Chen
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Xuejing Wang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ting Zhang
- Cardiovascular DepartmentHunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Ting Zhou
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
13
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Tao L, Zhang Z, Li C, Huang M, Chang P. The therapeutic targets and signaling mechanisms of ondansetron in the treatment of critical illness in the ICU. Front Pharmacol 2024; 15:1443169. [PMID: 39234104 PMCID: PMC11372243 DOI: 10.3389/fphar.2024.1443169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Background There is accumulating evidence regarding the benefits of the 5-HT3 receptor antagonist ondansetron for the treatment of critical illness due to its potential anti-inflammatory effect. This study attempted to determine the potential targets and molecular mechanisms of ondansetron's action against critical illnesses. Methods A bioinformatics analysis of network pharmacology was conducted to demonstrate screening targets and the signaling pathways of ondansetron action against the most common critical illnesses such as acute kidney injury (AKI), sepsis, and acute respiratory distress syndrome (ARDS). Experiments of LPS-stimulated rat neutrophils with ondansetron treatment were conducted to further validate the relevant hypothesis. Results A total of 198, 111, and 26 primary causal targets were identified from the data for the action of ondansetron against AKI, sepsis, and ARDS respectively. We found that the pathway of neutrophil extracellular traps (NETs) formation is statistically significantly involved in the action of ondansetron against these three critical illnesses. In the pathway of NETs formation, the common drug-disease intersection targets in these three critical illnesses were toll-like receptor 8 (TLR8), mitogen-activated protein kinase-14 (MAPK14), nuclear factor kappa-B1 (NFKB1), neutrophil elastase (NE), and myeloperoxidase (MPO). Considering these bioinformatics findings, we concluded that ondansetron anti-critical illness effects are mechanistically and pharmacologically implicated with suppression of neutrophils-associated inflammatory processes. It was also showed that after treatment of LPS-stimulated rat neutrophils with ondansetron, the key proteins NE, MPO, and Peptide Arginine Deaminase 4 (PAD4) in the NETs formation were significantly reduced, and the inflammatory factors IL-6, IL-1β, TNF-α, and chemokine receptor (CXCR4) were also significantly decreased. Conclusion The excessive formation of NETs may have important research value in the development and progression of critical illness. Ondansetron may reduce excessive inflammatory injury in critical diseases by reducing the formation of NETs via influencing the five targets: TLR8, NFKB1, MAPK14, NE, and MPO. Ondansetron and these primary predictive biotargets may potentially be used to treat critical illness in future clinical practice.
Collapse
Affiliation(s)
- Lili Tao
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuang Li
- Department of Emergency Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minxuan Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Guan X, Guan X, Zhao Z, Yan H. NETs: Important players in cancer progression and therapeutic resistance. Exp Cell Res 2024; 441:114191. [PMID: 39094902 DOI: 10.1016/j.yexcr.2024.114191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures composed of cytoplasmic contents, DNA chromatin and various granular proteins released by neutrophils in response to viruses, bacteria, immune complexes and cytokines. Studies have shown that NETs can promote the occurrence, development and metastasis of tumors. In this paper, the mechanism underlying the formation and degradation of NETs and the malignant biological behaviors of NETs, such as the promotion of tumor cell proliferation, epithelial mesenchymal transition, extracellular matrix remodeling, angiogenesis, immune evasion and tumor-related thrombosis, are described in detail. NETs are being increasingly studied as therapeutic targets for tumors. We have summarized strategies for targeting NETs or interfering with NET-cancer cell interactions and explored the potential application value of NETs as biomarkers in cancer diagnosis and treatment, as well as the relationship between NETs and therapeutic resistance.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Zhiqiang Zhao
- Pathology Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hong Yan
- Pathology Department, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
17
|
Rayes J, Brill A. Hot under the clot: venous thrombogenesis is an inflammatory process. Blood 2024; 144:477-489. [PMID: 38728383 DOI: 10.1182/blood.2023022522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current antithrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the cross talk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
19
|
Liang Y, Wu G, Tan J, Xiao X, Yang L, Saw PE. Targeting NETosis: nature's alarm system in cancer progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:28. [PMID: 39143953 PMCID: PMC11322967 DOI: 10.20517/cdr.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Neutrophils are recognized active participants in inflammatory responses and are intricately linked to cancer progression. In response to inflammatory stimuli, neutrophils become activated, releasing neutrophils extracellular traps (NETs) for the capture and eradication of pathogens, a phenomenon termed NETosis. With a deeper understanding of NETs, there is growing evidence supporting their role in cancer progression and their involvement in conferring resistance to various cancer therapies, especially concerning tumor reactions to chemotherapy, radiation therapy (RT), and immunotherapy. This review summarizes the roles of NETs in the tumor microenvironment (TME) and their mechanisms of neutrophil involvement in the host defense. Additionally, it elucidates the mechanisms through which NETs promote tumor progression and their role in cancer treatment resistance, highlighting their potential as promising therapeutic targets in cancer treatment and their clinical applicability.
Collapse
Affiliation(s)
- Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
- Authors contributed equally
| | - Guo Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
- Authors contributed equally
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Linbin Yang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
| |
Collapse
|
20
|
Kong J, Deng Y, Xu Y, Zhang P, Li L, Huang Y. A Two-Pronged Delivery Strategy Disrupting Positive Feedback Loop of Neutrophil Extracellular Traps for Metastasis Suppression. ACS NANO 2024; 18:15432-15451. [PMID: 38842256 DOI: 10.1021/acsnano.3c09165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Neutrophil extracellular traps (NETs) severely affect tumor metastasis through a self-perpetuating feedback loop involving two key steps: (1) mitochondrial aerobic respiration-induced hypoxia promotes NET formation and (2) NETs enhance mitochondrial metabolism to exacerbate hypoxia. Herein, we propose a two-pronged approach with the activity of NET-degrading and mitochondrion-damaging by simultaneously targeting drugs to NETs and tumor mitochondria of this loop. In addition to specifically recognizing and eliminating extant NETs, the NET-targeting nanoparticle also reduces NET-induced mitochondrial biogenesis, thus inhibiting the initial step of the feedback loop and mitigating extant NETs' impact on tumor metastasis. Simultaneously, the mitochondrion-targeting system intercepts mitochondrial metabolism and alleviates tumor hypoxia, inhibiting neutrophil infiltration and subsequent NET formation, which reduces the source of NETs and disrupts another step of the self-amplifying feedback loop. Together, the combination significantly reduces the formation of NET-tumor cell clusters by disrupting the interaction between NETs and tumor mitochondria, thereby impeding the metastatic cascade including tumor invasion, hematogenous spread, and distant colonization. This work represents an innovative attempt to disrupt the feedback loop in tumor metastasis, offering a promising therapeutic approach restraining NET-assisted metastasis.
Collapse
Affiliation(s)
- Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yudi Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiwen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Li W, Chi D, Ju S, Zhao X, Li X, Zhao J, Xie H, Li Y, Jin J, Mang G, Dong Z. Platelet factor 4 promotes deep venous thrombosis by regulating the formation of neutrophil extracellular traps. Thromb Res 2024; 237:52-63. [PMID: 38547695 DOI: 10.1016/j.thromres.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/29/2024]
Abstract
The presence of neutrophil extracellular traps (NETs) in thrombotic diseases has been extensively studied. The exact mechanism of NET formation in deep venous thrombosis (DVT) has not been largely studied. This study is aimed to explore the role of NETs and their interaction with platelet factor 4 (PF4) in DVT. In plasma samples from 51 healthy volunteers and 52 DVT patients, NET markers and PF4 were measured using enzyme-linked immunosorbent assays (ELISA). NET generation in blood samples from healthy subjects and DVT patients was analyzed by confocal microscopy and flow cytometry. The plasma levels of NETs were significantly elevated in DVT patients, and neutrophils from patients showed a stronger ability to generate NETs after treatment. PF4 was upregulated in plasma samples from DVT patients and mediated NET formation. NETs enhanced procoagulant (PCA) via tissue factor and activating platelets to induce procoagulant activity. In addition, we established an inferior vena cava ligation (IVC) model to examine the role of NETs in thrombogenicity in DVT. In conclusion, NET formation was mediated by PF4 and enhance the procoagulant activity in DVT.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China.
| | - Decai Chi
- Department of Vascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Ju
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xinyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Li
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, The Fourth Hospital of Changsha City, Changsha, China
| | - Huiqi Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Li
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhihui Dong
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China; Department of Vascular Surgery, Zhongshan hospital of Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Zhao J, Li X, Li L, Chen B, Xu W, He Y, Chen X. Identification of neutrophil extracellular trap-driven gastric cancer heterogeneity and C5AR1 as a therapeutic target. Acta Biochim Biophys Sin (Shanghai) 2024; 56:538-550. [PMID: 38425243 DOI: 10.3724/abbs.2023290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in gastric cancer (GC) growth, metastatic dissemination, cancer-associated thrombosis, etc. This work is conducted to elucidate the heterogeneity of NETs in GC. The transcriptome heterogeneity of NETs is investigated in TCGA-STAD via a consensus clustering algorithm, with subsequent external verification in the GSE88433 and GSE88437 cohorts. Clinical and molecular traits, the immune microenvironment, and drug response are characterized in the identified NET-based clusters. Based upon the feature genes of NETs, a classifier is built for estimating NET-based clusters via machine learning. Multiple experiments are utilized to verify the expressions and implications of the feature genes in GC. A novel NET-based classification system is proposed for reflecting the heterogeneity of NETs in GC. Two NET-based clusters have unique and heterogeneous clinical and molecular features, immune microenvironments, and responses to targeted therapy and immunotherapy. A logistic regression model reliably differentiates the NET-based clusters. The feature genes C5AR1, CSF1R, CSF2RB, CYBB, HCK, ITGB2, LILRB2, MNDA, MPEG1, PLEK, SRGN, and STAB1 are proven to be aberrantly expressed in GC cells. Specific knockdown of C5AR1 effectively hinders GC cell growth and elicits intracellular ROS accumulation. In addition, its suppression suppresses the aggressiveness and EMT phenotype of GC cells. In all, NETs are the main contributors to intratumoral heterogeneity and differential drug sensitivity in GC, and C5AR1 has been shown to trigger GC growth and metastatic spread. These findings collectively provide a theoretical basis for the use of anti-NETs in GC treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xiangyu Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Liming Li
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
23
|
Liu D, Yang X, Wang X. Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2. Cell Signal 2024; 116:111014. [PMID: 38110168 DOI: 10.1016/j.cellsig.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
It has been reported that the formation of neutrophil extracellular traps (NETs) is associated with cancer metastasis. The current study aimed to explore the effects of NETs on gastric cancer (GC) cell metastasis and uncover their underlying mechanism. NETs were measured in the plasma of patients with GC. Then, GC cells were treated with NETs to assess cell viability, migration, and invasion using cell counting kit 8 and Transwell assay, The liver metastasis and xenograft tumor mouse models were established to assess tumor growth and metastasis. The N4-acetylcytidine (ac4C) modification of SET and MYND domain containing 2 (SMYD2) mediated by NAT10 was evaluated using acetylated RNA immunoprecipitation. The results showed that the level of NETs was increased in the plasma of patients with GC, particularly in those with metastatic GC. In addition, GC cell co-treatment with NETs promoted cell viability, migration and invasion, while NAT10 or SMYD2 knockdown abrogated this effect. NAT10 also promoted the ac4C modification of SMYD2, thus increasing SMYD2 stability. Furthermore, NETs promoted the metastasis of GC cells in the liver in vivo. Overall, the results of the present study demonstrated that NETs promoted GC cell metastasis via the NAT10-mediated ac4C modification of SMYD2. These findings suggested that inhibiting the formation of NETs could be an effective approach for attenuating GC progression.
Collapse
Affiliation(s)
- Donghui Liu
- School of Life Science and Technology, Harbin Institute of Technology, Building 2E, phase II, Science Park, Xiangfang District, Harbin 150000, Heilongjiang, China; Department of Oncology, Heilongjiang Provincial Hospital, No. 82, Zhongshan Road, Xiangfang District, Harbin 150000, Heilongjiang, China
| | - Xiaoyao Yang
- Department of Science and Education, Heilongjiang Provincial Hospital, Harbin 150000, Heilongjiang, China
| | - Xuyao Wang
- Department of Pharmacy, Harbin Second Hospital, No. 38, Weixing Road, Daowai District, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
24
|
Chen X, Bao S, Liu M, Han Z, Tan J, Zhu Q, Huang X, Tian X. Inhibition of HMGB1 improves experimental mice colitis by mediating NETs and macrophage polarization. Cytokine 2024; 176:156537. [PMID: 38325140 DOI: 10.1016/j.cyto.2024.156537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is listed by the World Health Organization as one of the modern intractable diseases. High mobility histone box 1 (HMGB1), originally described as a non-histone nucleoprotein involved in transcriptional regulation, was later identified as a pro-inflammatory cytokine that may contribute to the pathogenesis of inflammatory diseases such as IBD. Neutrophil extracellular traps (NETs) play an important role in the pathophysiology of IBD The aim of this study was to investigate the role of HMGB1 in experimental colitis mice and its potential mechanisms of action. METHODS We first constructed the experimental colitis mouse model. Intervention of mice by rhHMGB1 supplementation or HMGB1 inhibition. The pathological morphology of the colon was observed using HE staining. Apoptosis of colonic tissue intestinal epithelial cells was evaluated using Tunel assay. The expression of HMGB1, ZO-1 and occludin in colon tissue was detected by immunohistochemistry, ELISA and western-blot. We also assessed the effects of HMGB1 on colonic injury, NETs content, macrophage polarization and inflammatory cells in mice. The regulatory effect of HMGB1 inhibition on NETs was assessed by combining DNase I. RESULTS Inhibition of HMGB1 significantly reduced the inflammatory model in experimental colitis mice, as evidenced by reduced body weight, increased colonic length, reduced DAI scores and apoptosis, reduced inflammatory response, and improved colonic histopathological morphology and intestinal mucosal barrier function. Meanwhile, inhibition of HMGB1 was able to reduce the expression of CD86, citH3 and MPO and increase the expression of CD206 in the colonic tissue of mice. In addition, DNase I intervention was also able to improve colonic inflammation in mice. And the best effect was observed when DNase I and inhibition of HMGB1 were intervened together. CONCLUSION Inhibition of HMGB1 ameliorates IBD by mediating NETs and macrophage polarization.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China
| | - SaChuLa Bao
- School of Medicine, Wuhan University of Science and Technology, China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China
| | - Qingxi Zhu
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), China.
| |
Collapse
|
25
|
Xia J, Zhang Z, Huang Y, Wang Y, Liu G. Regulation of neutrophil extracellular traps in cancer. Int J Cancer 2024; 154:773-785. [PMID: 37815294 DOI: 10.1002/ijc.34750] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Neutrophil extracellular trap (NET) is one of the defense functions of neutrophils, which has a rapid ability to kill infections and is also crucial in a variety of immune-associated diseases including infections, tumors and autoimmune diseases. Recent studies have shown that NETs are closely related to the development of tumors. The regulatory role of NETs in tumors has been of interest to researchers. In addition to awakening latent tumor cells, NETs can also promote the proliferation and development of tumor cells and their metastasis to other sites. At the same time, NETs also have the effect of inhibiting tumors. At present, there are some new advances in the impact of NETs on tumor development, which will provide a more theoretical basis for developing NET-targeted drugs. Therefore, this review just summarized the formation process of NETs, the regulation of tumor development and the treatment methods based on NETs.
Collapse
Affiliation(s)
- Jingxuan Xia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
26
|
Lee A, Lim J, Lim JS. Emerging roles of MITF as a crucial regulator of immunity. Exp Mol Med 2024; 56:311-318. [PMID: 38351314 PMCID: PMC10907664 DOI: 10.1038/s12276-024-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 02/19/2024] Open
Abstract
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor (bHLH-Zip), has been identified as a melanocyte-specific transcription factor and plays a critical role in melanocyte survival, differentiation, function, proliferation and pigmentation. Although numerous studies have explained the roles of MITF in melanocytes and in melanoma development, the function of MITF in the hematopoietic or immune system-beyond its function in melanin-producing cells-is not yet fully understood. However, there is convincing and increasing evidence suggesting that MITF may play multiple important roles in immune-related cells. Therefore, this review is focused on recent advances in elucidating novel functions of MITF in cancer progression and immune responses to cancer. In particular, we highlight the role of MITF as a central modulator in the regulation of immune responses, as elucidated in recent studies.
Collapse
Affiliation(s)
- Aram Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
27
|
Hu Y, Wang H, Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev 2024; 321:263-279. [PMID: 37712361 DOI: 10.1111/imr.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
28
|
Martins-Cardoso K, Maçao A, Souza JL, Silva AG, König S, Martins-Gonçalves R, Hottz ED, Rondon AMR, Versteeg HH, Bozza PT, Almeida VH, Monteiro RQ. TF/PAR2 Signaling Axis Supports the Protumor Effect of Neutrophil Extracellular Traps (NETs) on Human Breast Cancer Cells. Cancers (Basel) 2023; 16:5. [PMID: 38201433 PMCID: PMC10778307 DOI: 10.3390/cancers16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have been implicated in several hallmarks of cancer. Among the protumor effects, NETs promote epithelial-mesenchymal transition (EMT) in different cancer models. EMT has been linked to an enhanced expression of the clotting-initiating protein, tissue factor (TF), thus favoring the metastatic potential. TF may also exert protumor effects by facilitating the activation of protease-activated receptor 2 (PAR2). Herein, we evaluated whether NETs could induce TF expression in breast cancer cells and further promote procoagulant and intracellular signaling effects via the TF/PAR2 axis. T-47D and MCF7 cell lines were treated with isolated NETs, and samples were obtained for real-time PCR, flow cytometry, Western blotting, and plasma coagulation assays. In silico analyses were performed employing RNA-seq data from breast cancer patients deposited in The Cancer Genome Atlas (TCGA) database. A positive correlation was observed between neutrophil/NETs gene signatures and TF gene expression. Neutrophils/NETs gene signatures and PAR2 gene expression also showed a significant positive correlation in the bioinformatics model. In vitro analysis showed that treatment with NETs upregulated TF gene and protein expression in breast cancer cell lines. The inhibition of ERK/JNK reduced the TF gene expression induced by NETs. Remarkably, the pharmacological or genetic inhibition of the TF/PAR2 signaling axis attenuated the NETs-induced expression of several protumor genes. Also, treatment of NETs with a neutrophil elastase inhibitor reduced the expression of metastasis-related genes. Our results suggest that the TF/PAR2 signaling axis contributes to the pro-cancer effects of NETs in human breast cancer cells.
Collapse
Affiliation(s)
- Karina Martins-Cardoso
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Aquiles Maçao
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Juliana L. Souza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Alexander G. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Sandra König
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (R.M.-G.); (P.T.B.)
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Rio de Janeiro 23890-000, Brazil;
| | - Araci M. R. Rondon
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (R.M.-G.); (P.T.B.)
| | - Vitor H. Almeida
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| |
Collapse
|
29
|
Terry AQ, Kojima H, Sosa RA, Kaldas FM, Chin JL, Zheng Y, Naini BV, Noguchi D, Nevarez-Mejia J, Jin YP, Busuttil RW, Meyer AS, Gjertson DW, Kupiec-Weglinski JW, Reed EF. Disulfide-HMGB1 signals through TLR4 and TLR9 to induce inflammatory macrophages capable of innate-adaptive crosstalk in human liver transplantation. Am J Transplant 2023; 23:1858-1871. [PMID: 37567451 PMCID: PMC11095628 DOI: 10.1016/j.ajt.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Ischemia-reperfusion injury (IRI) during orthotopic liver transplantation (OLT) contributes to graft rejection and poor clinical outcomes. The disulfide form of high mobility group box 1 (diS-HMGB1), an intracellular protein released during OLT-IRI, induces pro-inflammatory macrophages. How diS-HMGB1 differentiates human monocytes into macrophages capable of activating adaptive immunity remains unknown. We investigated if diS-HMGB1 binds toll-like receptor (TLR) 4 and TLR9 to differentiate monocytes into pro-inflammatory macrophages that activate adaptive immunity and promote graft injury and dysfunction. Assessment of 106 clinical liver tissue and longitudinal blood samples revealed that OLT recipients were more likely to experience IRI and graft dysfunction with increased diS-HMGB1 released during reperfusion. Increased diS-HMGB1 concentration also correlated with TLR4/TLR9 activation, polarization of monocytes into pro-inflammatory macrophages, and production of anti-donor antibodies. In vitro, healthy volunteer monocytes stimulated with purified diS-HMGB1 had increased inflammatory cytokine secretion, antigen presentation machinery, and reactive oxygen species production. TLR4 inhibition primarily impeded cytokine/chemokine and costimulatory molecule programs, whereas TLR9 inhibition decreased HLA-DR and reactive oxygen species production. diS-HMGB1-polarized macrophages also showed increased capacity to present antigens and activate T memory cells. In murine OLT, diS-HMGB1 treatment potentiated ischemia-reperfusion-mediated hepatocellular injury, accompanied by increased serum alanine transaminase levels. This translational study identifies the diS-HMGB1/TLR4/TLR9 axis as potential therapeutic targets in OLT-IRI recipients.
Collapse
Affiliation(s)
- Allyson Q Terry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hidenobu Kojima
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M Kaldas
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jackson L Chin
- Department of Bioengineering, Samueli School of Engineering at UCLA, Los Angeles, California, USA
| | - Ying Zheng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bita V Naini
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daisuke Noguchi
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ronald W Busuttil
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron S Meyer
- Department of Bioengineering, Samueli School of Engineering at UCLA, Los Angeles, California, USA
| | - David W Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, California, USA
| | - Jerzy W Kupiec-Weglinski
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
30
|
Fang ZX, Hou YY, Wu Z, Wu BX, Deng Y, Wu HT, Liu J. Immune responses of six-transmembrane epithelial antigen of the prostate 4 functions as a novel biomarker in gastric cancer. World J Clin Oncol 2023; 14:297-310. [PMID: 37700807 PMCID: PMC10494559 DOI: 10.5306/wjco.v14.i8.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Immune cells play an important role in regulating the behavior of tumor cells. According to emerging evidence, six-transmembrane epithelial antigen of the prostate 4 (STEAP4) performs a crucial part in tumor microenvironmental immune response and tumorigenesis, and serves as the potential target for cellular and antibody immunotherapy. However, the immunotherapeutic role of STEAP4 in gastric cancer (GC) remains unclear. AIM To investigate the expression of STEAP4 in GC and its relationship with immune infiltrating cells, and explore the potential value of STEAP4 as an immune prognostic indicator in GC. METHODS The expression level of STEAP4 was characterized by immunohistochemistry in tumors and adjacent non-cancerous samples in 96 GC patients. Tumor Immune Estimation Resource was used to study the correlation between STEAP4 and tumor immune infiltration level and immune infiltration gene signature. R package was used to analyze the relationship between STEAP4 expression and immune and stromal scores in GC (GSE62254) by the ESTIMATE algorithm, and Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis were applied to analyze the effect of STEAP4 on clinical prognosis. RESULTS Immunohistochemistry analysis showed that STEAP4 expression was higher in GC tissues than in adjacent tissues, and STEAP4 expression was positively correlated with the clinical stage of GC. In GC, the expression of STEAP4 was positively correlated with the infiltration levels of B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. The expression level of STEAP4 was strongly correlated with most of the immune markers. In addition, STEAP4 expression was inversely correlated with tumor purity, but correlated with stromal score (r = 0.43, P < 0.001), immune score (r = 0.29, P < 0.001) and estimate score (r = 0.39, P < 0.001). Moreover, stromal, immune, and estimate scores were higher in the STEAP4 high expression group, whereas tumor purity was higher in the STEAP4 Low expression group. The relationship between STEAP4 expression and prognosis of patients with GC was further investigated, and the results showed that high STEAP4 expression was associated with poor overall survival and disease-free survival. In addition, Kaplan-Meier Plotter showed that high expression of STEAP4 was significantly correlated with poor survival of patients with GC. CONCLUSION The current findings suggest an oncogenic role for STEAP4 in GC, with significantly high levels being associated with poor prognosis. Investigation of the GC tumor microenvironment suggests the potential function of STEAP4 is connected with the infiltration of diverse immune cells, which may contribute to the regulation of the tumor microenvironment. In conclusion, STEAP4 may serve as a potential therapeutic target for GC to improve the immune infiltration, as well as serve as a prognostic biomarker for judging the prognosis and immune infiltration status of GC.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
31
|
Yang S, Sun B, Li J, Li N, Zhang A, Zhang X, Yang H, Zou X. Neutrophil extracellular traps promote angiogenesis in gastric cancer. Cell Commun Signal 2023; 21:176. [PMID: 37480055 PMCID: PMC10362668 DOI: 10.1186/s12964-023-01196-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023] Open
Abstract
Although antiangiogenic therapy has been used in gastric cancer, disease progression due to drug resistance remains common. Neutrophils play an important role in the occurrence and progression of cancer via neutrophil extracellular traps (NETs). However, few studies have investigated angiogenic regulation in gastric cancer. We aimed to determine the role of NETs in promoting angiogenesis in gastric cancer. Multiple immunohistochemical staining was used to analyze the spatial distribution of NETs and microvessels in patient tissue samples. A mouse subcutaneous tumor model was established to determine the effect of NETs on tumor growth, and changes in microvessel density were observed via immunohistochemical staining. We screened differentially expressed proteins in HUVECs stimulated by NETs via proteomics. Cell Counting Kit-8, EdU labeling, and tubule formation assays were used to verify the effect of NETs on HUVEC proliferation, migration, and tubule formation. Blocking NETs, which was related to decreased microvessel density, significantly inhibited tumor growth in the murine subcutaneous tumor model. Compared with those of the control group, tumor volume and mass among mice in the inhibition group decreased by 61.3% and 77.9%, respectively. The NET-DNA receptor CCDC25 was expressed in HUVECs, providing a platform for NETs to promote HUVEC proliferation, migration, and tubulation. In an in vitro rat aortic explant model, NETs induced HUVEC proliferation, survival, and chemotaxis, which were not significantly different from those observed in the VEGF stimulation group. Our results confirm that NETs promote angiogenesis in gastric cancer, providing a theoretical basis for identifying new anti-vascular therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Shifeng Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154002, China
| | - Nana Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China
| | - Ange Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China
| | - Xinyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China.
| | - Hao Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China.
| | - Xiaoming Zou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang DistrictHeilongjiang Province, Harbin, 150001, China.
| |
Collapse
|
32
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Zhang Q, Dan J, Meng S, Li Y, Li J. TLR4 inhibited autophagy by modulating PI3K/AKT/mTOR signaling pathway in Gastric cancer cell lines. Gene 2023:147520. [PMID: 37257791 DOI: 10.1016/j.gene.2023.147520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors found on both immune and cancerous cells. Gastric cancer (GC) cells/tissues have been shown to exhibit elevated levels of TLR4. Here, we examined the role of TLR4 on autophagy and proliferation in GC cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) were used to determine TLR4 levels at different stages of GC cells/tissues as well as the levels of autophagy-related proteins (ARPs) and determine the underlying signaling mechanism. Proliferation was assessed via the CCK-8 assay. The protein and mRNA levels of ARPs were elucidated, followed by estimating the involved signaling pathways. Our results demonstrated that the modulation of the PI3K/AKT/mTOR pathway resulted from autophagy inhibition/induction, which was induced by the overexpression and knockdown of TLR4. Thus, TLR4 played a vital role in GC progression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Jun Dan
- Department of Geriatric, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Shuang Meng
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Yingjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China.
| |
Collapse
|