1
|
Obaid KA, Imarah AA, Khalfa HM, Sulaiman GM, Jabir MS, Mohammed MKA, Ahmed DS, Al-Kuraishy HM, Nayef UM, Mohammed HA, Khan RA, Jawad SF. Organ-specific renal tissue damage manifested by single-walled carbon-nanotubes and single-walled carbon-nanotubes-silver-titania nanocomposite: Cellular toxicity at high doses. J Trace Elem Med Biol 2024; 86:127569. [PMID: 39603197 DOI: 10.1016/j.jtemb.2024.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/26/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) can pose risks in biological systems leading to harmful effects, such as, reactive oxygen species (ROS) formation, DNA damage, mitochondrial dysfunction, and ultimately, the cell death through apoptosis. OBJECTIVES The study assessed the nephrotoxicity of the SWCNTs and SWCNTs-Ag-TiO2 nanocomposites through in vitro and in vivo experiments, assessing oxidative stress, genotoxicity, and safety for biomedical applications. METHODOLOGY In vitro, HK-2 cell lines were utilized to evaluate the effects of nanomaterials on cellular activity, apoptosis, ROS generation, and micronuclei formations. In the in vivo study, twenty male mice were divided into five groups: the first received a control injection of phosphate-buffer saline (PBS), while the second, and third groups received daily intraperitoneal injections of SWCNTs at doses of 50 mg/kg, and 100 mg/kg, respectively, for ten days. The fourth and fifth groups received the SWCNTs-Ag-TiO2 at 50 mg/kg and 100 mg/kg, respectively, for ten days in sequence. RESULTS SWCNTs and SWCNTs-Ag-TiO2 significantly promoted the micronuclei formations in HK-2 cells, with rates of 48 % and 79 %, respectively, as compared to the 12.67 % of the control group. The analysis of renal tissues revealed increased levels of ROS, DNA-protein crosslinks (DPC), glutathione (GSH), malondialdehyde (MDA), creatinine, and 8-hydroxy-2'-deoxyguanosine, while the GSH levels decreased. These findings indicated renal tissue injury, and oxidative damages. CONCLUSIONS The study demonstrated the cellular toxicity of these nanomaterials, highlighting the need for caution regarding their widespread use, particularly the use of carbon nanotubes and their metallic composites at higher exposure doses in occupational, environmental, or therapeutic contexts.
Collapse
Affiliation(s)
| | - Ameer A Imarah
- Department of Biology, Faculty of Science, University of Kufa, Iraq
| | - Hydar M Khalfa
- Department of Biology, Faculty of Science, University of Kufa, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq.
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq.
| | - Mustafa K A Mohammed
- College of Remote Sensing and Geophysics, Al-Karkh University of Science, Al-Karkh Side, Haifa St. Hamada Palace, Baghdad 10011, Iraq
| | - Duha S Ahmed
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P. O. BOX 14132, Baghdad, Iraq
| | - Uday M Nayef
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University, Hillah, Babylon 51001, Iraq
| |
Collapse
|
2
|
Zhang Y, Liu Y, Yong VW, Xue M. Omarigliptin inhibits brain cell ferroptosis after intracerebral hemorrhage. Sci Rep 2023; 13:14339. [PMID: 37658227 PMCID: PMC10474264 DOI: 10.1038/s41598-023-41635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a disastrous disease without effective treatment. An extensive body of evidence indicate that neuronal ferroptosis is a key contributor to neurological disfunctions after ICH. Omarigliptin, also known as MK3102, is an anti-diabetic drug that inhibits dipeptidyl peptidase (DPP4). Recently, MK3102 is reported to exhibit anti-ferroptosis and anti-oxidative effects in different pathological conditions. However, the anti-ferroptosis ability of MK3102 in ICH injury is unknown. Hemin was administrated to model ICH injury in cultured primary cortical neurons, and collagenase VII was used to induce ICH in C57BL/6 mice. MK3102 was administered after ICH. Cell Counting Kit-8 (CCK-8) was applied to detect cell viability. Neurological functions were assessed through the Focal deficits neurological scores and corner test. HE and TUNEL staining was applied to evaluate brain damage areas and cell death, respectively. Ferroptosis was evaluated in cultured neurons by fluorescent probe DCFH-DA, FerroOrange, Liperfluo and immunofluorescence of GPX4, AIFM2 and FACL4. Perls staining was performed to visualize Fe3+ deposition. Ferroptosis-related proteins in mouse brain were measured by immunohistochemistry and western blotting. MK3102 reduced the neurotoxicity of hemin in cultured primary cortical neurons. It improved neurological functions associated with a decrease in the number of dead neurons and the area of brain damage after ICH in mice. Moreover, MK3102 prominently upregulated glucagon-like peptide-1 receptor (GLP-1R) levels after ICH. In addition, the elevation of iron content, lipid peroxidation and FACL4 after ICH; and reduction of GPX4 and AIFM2; were mitigated by MK3102 in vitro and in vivo. The neuroprotective effect of MK3102 may be related to anti-ferroptosis by regulating GLP-1R after ICH injury.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Combined therapy with dapagliflozin and entresto offers an additional benefit on improving the heart function in rat after ischemia-reperfusion injury. Biomed J 2022; 46:100546. [PMID: 35718305 DOI: 10.1016/j.bj.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study tested whether combined dapagliflozin and entresto treatment would be superior to either one alone for preserving the left-ventricular ejection-fraction (LVEF) in rat after ischemia-reperfusion (IR) injury. METHODS AND RESULTS In vitro flow-cytometric result showed that the intracellular and mitochondrial reactive oxygen species and mitochondrial permeability transition pore, and protein levels of oxidative-stress/DNA-damaged markers [NADPH-oxidase-1 (NOX-1)/NOX-2/oxidized-protein/γ-H2A-histone-family member X (γ-H2AX)] were significantly higher in hydrogen peroxide (H2O2) (300μM)-treated H9C2 cells as compared with the controls that were significantly reversed in sacubitril/valsartan and dapagliflozin therapy in the same H2O2-treated condition, whereas the protein expressions of antioxidants [Sirtuin-1 (SIRT1)/SIRT3/superoxide dismutase/catalase/glutathione peroxidase) exhibited an opposite pattern among the groups (all p<0.001). Adult-male-Sprague-Dawley rat (n=40) were equally categorized into group 1 (sham-operated control), group 2 (IR), group 3 (IR+dapagliflozin/20mg/kg/orally at 3h and post-days 1/2/3 after IR), group 4 (IR+entresto/100mg/kg/orally at 3h and post-days 1/2/3 after IR) and group 5 (IR+dapagliflozin+entresto) and the hearts were harvested by day 3 after IR. The 3rd day's LVEF was highest in group 1, lowest in group 2 and significantly higher in group 5 than in groups 3/4, but it was similar between the latter two groups (p<0.001). The protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), fibrotic (transforming-growth factor-ß/phosphorylated-Smad3), apoptotic [mitochondrial-Bax/cleaved-caspase-3/cleaved-poly (ADP-ribose) polymerase], mitochondria/DNA damaged (cytosolic-cytochrome-C/γ-H2AX), pressure-overload/heart-failure [brain natriuretic peptide (BNP)/ß-myosin heavy chain] and autophagic (ratio of meiotic cyclins CLB3-II/CLB3-I) biomarkers, and the upstream (high-mobility group box 1/Toll-like receptor-4/MyD88/phosphorylated-nuclear factor-κB and downstream [interleukin (IL)-1ß/IL-6/tumor necrosis factor-α] inflammatory signalings revealed an antithetical features of LVEF among the groups (all p<0.0001). The cellular levels of inflammatory (myeloperoxidase+/CD68+), pressure-overload/heart-failure (BNP+) and DNA-damage (γ-H2AX+) biomarkers as well as infarct area demonstrated an opposite pattern of LVEF among the groups (all p<0.0001). CONCLUSION Incorporated entresto-dapagliflozin treatment was superior to either one alone on protecting the heart against IR injury.
Collapse
|
4
|
Yin and Yang of NADPH Oxidases in Myocardial Ischemia-Reperfusion. Antioxidants (Basel) 2022; 11:antiox11061069. [PMID: 35739967 PMCID: PMC9220061 DOI: 10.3390/antiox11061069] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is critically involved in the pathophysiology of myocardial ischemic-reperfusion (I/R) injury. NADPH oxidase (Nox) 2 and 4, major sources of reactive oxygen species (ROS) in cardiomyocytes, are upregulated in response to I/R. Suppression of Nox-derived ROS prevents mitochondrial dysfunction and endoplasmic reticulum (ER) stress, leading to attenuation of myocardial I/R injury. However, minimal levels of ROS by either Nox2 or Nox4 are required for energy metabolism during I/R in the heart, preserving hypoxia-inducible factor-1α (HIF-1α) and peroxisome proliferator-activated receptor-α (PPARα) levels. Furthermore, extreme suppression of Nox activity induces reductive stress, leading to paradoxical increases in ROS levels. Nox4 has distinct roles in organelles such as mitochondria, ER, and ER-mitochondria contact sites (MAMs). Mitochondrial Nox4 exerts a detrimental effect, causing ROS-induced mitochondrial dysfunction during I/R, whereas Nox4 in the ER and MAMs is potentially protective against I/R injury through regulation of autophagy and MAM function, respectively. Although Nox isoforms are potential therapeutic targets for I/R injury, to maximize the effect of intervention, it is likely important to optimize the ROS level and selectively inhibit Nox4 in mitochondria. Here, we discuss the ‘Yin and Yang’ functions of Nox isoforms during myocardial I/R.
Collapse
|
5
|
Wu LD, Zhou N, Sun JY, Yu H, Wang RX. Effects of sitagliptin on serum lipid levels in patients with type 2 diabetes: a systematic review and meta-analysis. J Cardiovasc Med (Hagerstown) 2022; 23:308-317. [PMID: 35486682 DOI: 10.2459/jcm.0000000000001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIM Lipid abnormalities often occur in patients with diabetes mellitus and the coexistence of diabetes mellitus and dyslipidaemia will increase the risk of cardiovascular diseases. However, the specific effects of sitagliptin on lipid control remain elusive in diabetic patients. The aim of this meta-analysis is to investigate the effects of sitagliptin alone or with other antidiabetic agents on serum lipid control. METHODS PubMed, Cochrane Library, Embase and the ClinicalTrials.gov website were systematically searched from 2006 (the first year that sitagliptin entered market) to 16 January 2021. Eligible studies were randomized clinical trials (RCTs) of sitagliptin including outcomes of serum total cholesterol (TC), triglycerides, high-density lipoprotein cholesterol (HDL-C) or low-density lipoprotein cholesterol (LDL-C). RESULTS A total of 14 RCTs with 2654 patients were identified. Treatment with sitagliptin alone or in combination with other antidiabetic agents significantly reduced serum TC [mean difference (MD) = -5.52 95% confidence interval (95% CI), -7.88 to -3.15; P < 0.00001] and LDL-C (MD = -0.07; 95% CI, -0.14 to 0.00; P < 0.00001) in patients with type 2 diabetes. No statistical significances were found in serum triglycerides (MD = 1.53; 95% CI, -8.22 to 11.28; P = 0.76) or HDL-C (MD = 0.65; 95% CI, -1.59 to 0.29; P = 0.18). Subgroup analyses suggest that sitagliptin can significantly decrease serum LDL-C, TC and triglyceride levels compared with placebo alone, and no statistical significance was found in comparison with the serum HDLC levels. CONCLUSION Sitagliptin alone or in combination with other antidiabetic agents significantly reduces serum TC and LDL-C in patients with type 2 diabetes mellitus, while no significant difference was observed in serum triglycerides or HDL-C.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Nan Zhou
- Department of Nursing, Huadong Sanatorium, Wuxi
| | - Jin-Yu Sun
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| | - Hao Yu
- Department of Orthopedics, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University
| |
Collapse
|
6
|
Sung PH, Chai HT, Yang CC, Chiang JY, Chen CH, Chen YL, Yip HK. Combined levosimendan and Sacubitril/Valsartan markedly protected the heart and kidney against cardiorenal syndrome in rat. Biomed Pharmacother 2022; 148:112745. [DOI: 10.1016/j.biopha.2022.112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
|
7
|
An J, Du Y, Li X, Bao Q, Guo Y, Song Y, Jia Y. Myocardial protective effect of sacubitril-valsartan on rats with acute myocardial infarction. Perfusion 2021; 37:208-215. [PMID: 33522428 DOI: 10.1177/0267659121990572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the effect of sacubitril-valsartan on rats with acute myocardial infarction. METHODS Sprague-dawley rats were randomly divided into six groups. Rats in Group A and B were threaded without deligation and treated with valsartan (34 mg/kg) or sacubitril-valsartan (68 mg/kg) after operation. Rats in Group C and D were given the two drugs (34 mg/kg, 68 mg/kg) after ligation of the left anterior descending branch for 40 minutes. Rats in Group E and F were restored the blood of the coronary artery after ligation, and given the two drugs (34 mg/kg, 68 mg/kg) at the same time. N-terminal pro-brain natriuretic peptide, high sensitivity troponin T, aldosterone and Cyclic guanosine monophosphate were measured and Color Doppler echocardiography was performed. Six weeks later, the rats were killed, the hearts were weighed and stained with Masson staining. RESULTS Compared with Group A and B, the levels of N-terminal pro-brain natriuretic peptide, high sensitivity troponin T, aldosterone and Cyclic guanosine monophosphate in other groups were significantly increased (p < 0.05). Before treatment, the left ventricular end diastolic diameter and left ventricular end systolic diameter were similar in each group. After treatment, the levels of left ventricular end diastolic diameter and left ventricular end systolic diameter, and collagen fiber range stained with blue in other groups were significantly increased in comparison with Group A and B (p < 0.05). In addition, the left ventricular volume and collagen fiber range stained with blue were notably decreased, the levels of ejection fraction (EF) were increased in sacubitril-valsartan groups in comparison with valsartan groups (p < 0.05). CONCLUSION Early application of sacubitril-valsartan has a protective effect on rats with acute myocardial infarction.
Collapse
Affiliation(s)
- Jian An
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ye Du
- Internal Medicine Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohong Li
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingbo Bao
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqing Guo
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Song
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongping Jia
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Yip HK, Lee MS, Li YC, Shao PL, Chiang JY, Sung PH, Yang CH, Chen KH. Dipeptidyl Peptidase-4 deficiency effectively protects the brain and neurological function in rodent after acute Hemorrhagic Stroke. Int J Biol Sci 2020; 16:3116-3132. [PMID: 33162819 PMCID: PMC7645992 DOI: 10.7150/ijbs.42677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 11/05/2022] Open
Abstract
This study tested the hypothesis that abrogated dipeptidyl peptidase-4 (DPP4) activity played a crucial role on reducing stroke volume and preserving neurological function in rodent after acute hemorrhagic stroke (AHS). Animals (n=6/each group) were categorized into group 1 (sham-control of F344 rat), group 2 (sham-control of DPP4-deficiency rat), group 3 [AHS by right cerebral injection of autologous blood (100 µL) in F344 rat], group 4 (AHS + sitagliptin/600 mg/kg 3 h prior to and at 3 h then once per day after AHS) and group 5 (AHS in DPP4-deficiency rat). The results of corner test showed the neurological function was significantly improved from days 3, 7, and 14 in groups 4 and 5 than in group 3 (all p<0.001). By days 1 and 14 after AHS procedure, the circulating levels of SDF-1α and GLP-1 were significantly increased from groups 1/2 to group 5 (all p<0.001), whereas circulating DPP4 activity was significantly increased in group 3 than other groups (all p<0.001). The brain ischemic area (BIA) was highest in group 3, lowest in groups 1/2 and significantly lower in group 5 than in group 4 (all p<0.0001). The protein expressions of oxidative-stress/inflammatory/apoptotic/cell-proliferation signaling, and the cellular expressions of inflammatory/DNA-damaged biomarkers exhibited a similar pattern to BIA among the groups (all p<0.01). In conclusion, deprivation of DPP4 activity protected the brain from AHS damage and preserved neurological function.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Department of Nursing, Asia University, Taichung, 41354, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, Fujian, China
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chien-Hui Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
9
|
Du J, Fu L, Ji F, Wang C, Liu S, Qiu X. FosB recruits KAT5 to potentiate the growth and metastasis of papillary thyroid cancer in a DPP4-dependent manner. Life Sci 2020; 259:118374. [PMID: 32891613 DOI: 10.1016/j.lfs.2020.118374] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dipeptidyl peptidase IV (DPP4) has been indicated as a possible prognostic biomarker in papillary thyroid cancer (PTC). However, the mechanism of DPP4 during metastasis of PTC remains unclear. In this study, we investigated whether lysine acetyltransferase 5 (KAT5) and FBJ murine osteosarcoma viral oncogene homolog B (FosB) synergistically regulate high DPP4 expression in PTC. METHODS PTC tissues and matched paracancerous tissues were harvested, followed by the establishment of IHH-4 and TPC-1 cells with downregulation of DPP4. The relevance of DPP4 on the metastasis of PTC cells was assessed. Subsequently, the effect of KAT5 on the transcription of DPP4 was verified. The binding relationship between FosB and DPP4 was predicted by a bioinformatics website. Functional rescue experiments were performed to evaluate cell activities after overexpression of KAT5 or FosB in cells with DPP4 knockdown. RESULTS DPP4 was overexpressed in PTC tissues and cell lines, which was correlated with higher risks for metastases and poorer survival. DPP4 downregulation curtailed cell growth and metastasis. Moreover, KAT5 acetylated DPP4 promoter histone, which promoted transcription activation of DPP4. Subsequently, FosB recruited KAT5 at the DPP4 promoter, thereby enhancing DPP4 transcriptional activation. Further overexpression of KAT5 or FosB in cells with low expression of DPP4 promoted cell activity. Finally, DPP4 expedited p62 nuclear translocation to elevate Keap1/Nrf2 expression, thus facilitating the growth and metastasis of PTC cells. CONCLUSION FosB enhanced the growth and metastasis of PTC cells by recruiting histone acetyltransferases KAT5 to increase DPP4 transcription and activate the p62/Keap1/Nrf2 signaling.
Collapse
Affiliation(s)
- Junwei Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Feihong Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Chenyi Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Senyuan Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
10
|
Sung PH, Luo CW, Chiang JY, Yip HK. The combination of G9a histone methyltransferase inhibitors with erythropoietin protects heart against damage from acute myocardial infarction. Am J Transl Res 2020; 12:3255-3271. [PMID: 32774698 PMCID: PMC7407701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study tested the hypothesis that combined histone methyltransferase G9a inhibitor (i.e., UNC0638) and erythropoietin (EPO) was superior to either one alone for protecting myocardium from acute myocardial infarction (AMI) damage. METHODS AND RESULTS Adult-male SD rats (n=30) were equally categorized into group 1 (sham-operated control), group 2 (AMI), group 3 (AMI-EPO/1000 IU/kg, I.M./3 h after AMI), group 4 (AMI- UNC0638/5 mg/kg I.P./3 h after AMI) and group 5 [AMI-UNC0638-EPO 3 h after AMI] treatment. Animals were euthanized at day 21 after AMI induction. By day 21, left-ventricular-ejection-fraction (LVEF) was highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but no difference between the latter two groups (all P<0.0001). The protein expressions of inflammatory (MMP-2/MM-9), fibrotic (fibronectin/Smad3/TGF-ß), apoptotic/DNA-damaged (caspas-3/PARP/γ-H2AX), cell-stress response (HIF-1α/p-Akt/p-mTOR) and autophagic (beclin-1/ratio of LC3B-II to LC3B-I) biomarkers exhibited an opposite pattern, whereas the protein expressions of endothelial integrity (CD31/vWF) and anti-oxidant (SIRT1/SIRT3) exhibited an identical pattern of LVEF among the five groups (all P<0.0001). The protein expressions (SDF-1α/VEGF/CXCR4) and cellular expressions (C-kit/CD31+//Sca-1/CD31+//KDR/CD34+) of angiogenesis biomarkers were significantly progressively increased from groups 1 to 5 (all P<0.0001). The infarction/fibrotic areas, myocyte size and number of G9a cells exhibited an opposite pattern, whereas the small-vessel density displayed an identical trend of LVEF among the groups (all P<0.0001). Flow cytometric analysis showed cellular levels of inflammation (Ly6G+/MPO+/CD11b/c+), oxidative-stress (DCFDA+) and apoptosis (early+/late+) exhibited an opposite pattern to LVEF among the groups (all P<0.0001). CONCLUSION EPO-BIX01294 effectively protected myocardium against AMI-induced damage.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung 83301, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan, ROC
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University HospitalKaohsiung 80708, Taiwan, ROC
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University HospitalKaohsiung 80708, Taiwan, ROC
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen UniversityKaohsiung 80424, Taiwan, ROC
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical UniversityKaohsiung 80708, Taiwan, ROC
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung 83301, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung, Taiwan 40402, ROC
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan, ROC
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung HospitalXiamen, Fujian, China
| |
Collapse
|
11
|
Chen Z, Zhang C, Ma H, Huang Z, Li J, Lou J, Li B, Tu Q, Gao W. Detrimental Effect of Sitagliptin Induced Autophagy on Multiterritory Perforator Flap Survival. Front Pharmacol 2020; 11:951. [PMID: 32670067 PMCID: PMC7332881 DOI: 10.3389/fphar.2020.00951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Multiterritory perforator flap survival is commonly applied in surgical tissue reconstructions and covering of large skin defects. However, multiple risk factors such as ischemia, reperfusion injury, and apoptosis after reconstructive surgeries cause necrosis in distal parts with outcomes ranging from poor aesthetic appearance to reconstructive failure. A few studies have reported that sitagliptin (Sit) promotes angiogenesis and inhibits apoptosis. However, little is known about Sit-induced autophagy especially on the flap model. Therefore, our study investigated the effect of Sit and its induced autophagy on the perforator flap survival. Ninety male Sprague-Dawley rats were randomly separated into control, Sit, and Sit+3-methyladenine group. Results revealed that Sit significantly promoted flap survival by enhancing angiogenesis, reducing oxidative stress, and attenuating apoptosis. In addition, flap survival was further improved after co-administration with 3-methyladenine to inhibit autophagy. Overall, our results established that Sit has positive effects in promoting survival of multiterritory perforator flap. Sit-induced autophagy was detrimental for flap survival and its inhibition may further improve flap survival.
Collapse
Affiliation(s)
- Zhengtai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haiwei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zihuai Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Junshen Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Baolong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Qi Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of First Clinical Medical, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| |
Collapse
|
12
|
Abdel-Gaber SA, Geddawy A, Moussa RA. The hepatoprotective effect of sitagliptin against hepatic ischemia reperfusion-induced injury in rats involves Nrf-2/HO-1 pathway. Pharmacol Rep 2019; 71:1044-1049. [PMID: 31600635 DOI: 10.1016/j.pharep.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidative stress and inflammation play a key role in the development of hepatic ischemia reperfusion (HIR)-induced injury. Nuclear factor-erythroid 2-related factor-2 (Nrf-2) is a main regulator of numerous genes, encoding cytoprotective molecules including heme oxygenase-1 (HO-1). Sitagliptin (Sit) is an incretin enhancer acting via inhibition of dipeptidyl peptidase-4 (DPP-4) enzyme. This study was undertaken to investigate the ability of Sit to prevent the hepatic pathological changes of HIR induced injury and to modify Nrf-2 and its target HO-1. METHODS Pringle's maneuver was used to induce total HIR in adult male rats that were randomly assigned into 4 groups. Group1 (sham-operated control), Group 2 (sham-operated + Sit-control group), Group 3 (HIR non-treated), and Group 4 (HIR + Sit). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities together with hepatic contents of malondialdhyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) and superoxide dismutase (SOD) activity were evaluated. Hepatic tissue mRNA of Nrf-2 and protein content of HO-1 along with histopathological examination and scoring of hepatic injury were performed. RESULTS Sit caused a significant reduction in ALT and AST activities together with attenuation of HIR-induced histopathological liver injury. Effect of Sit was associated with decreased hepatic level of MDA and NO with increased GSH level and SOD activity. Non-treated rats with HIR showed an increase in Nrf-2 mRNA expression and HO-1 content in hepatic tissue which was further increased by Sit treatment. CONCLUSIONS These results indicate that hepatoprotective activity of Sit against HIR is attributed at least in part to modulation of Nrf-2/ HO-1 signaling pathway.
Collapse
Affiliation(s)
- Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ayman Geddawy
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
13
|
Chai HT, Sheu JJ, Chiang JY, Shao PL, Wu SC, Chen YL, Li YC, Sung PH, Lee FY, Yip HK. Early administration of cold water and adipose derived mesenchymal stem cell derived exosome effectively protects the heart from ischemia-reperfusion injury. Am J Transl Res 2019; 11:5375-5389. [PMID: 31632517 PMCID: PMC6789220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
This study tested the hypothesis that early administration with cold water (CW)-assisted adipose-derived mesenchymal stem cell (ADMSC)-derived exosome (Exo) therapy was superior to either one on protecting the heart against ischemia-reperfusion (IR) (i.e., by ligation of 50 minutes and relieved by day 5 prior to euthanizing the animals) injury. Adult-male SD rats (n=30) were equally categorized into groups 1 (sham-operated control), 2 (IR), 3 (IR + CW), 4 (IR + Exo) and 5 (IR + CW-Exo). The left ventricular ejection fraction (LVEF) was highest in group 1, lowest in group 2, and significantly higher in group 5 than in groups 3 and 4, but no difference between groups 3 and 4 (all P<0.001). The protein expressions of oxidative-stress (NOX-1/NOX-2/NOX-4/oxidized protein), apoptotic/mitochondrial-damaged (mitochondrial-Bax/caspase 3/PARP/p53/cytosolic-cytochrome-C) and inflammatory (IL-1β/TNF-α/NF-κB/MMP-9) biomarkers, and cellular-stress response signaling (PI3K/Akt/GSK3β and p-m-TOR) showed an opposite pattern, whereas the anti-oxidants (SIRT1/SIRT3), anti-inflammation (IL-10) and IKB-α/p-AMKP/mitochondrial-cytochrome-C exhibited an identical pattern to the LVEF among the five groups (all P<0.0001). The cellular expressions of inflammation (CD68), total cellular ROS (i.e., stained by H2DCFDA) and the LV infarct/fibrotic/collagen-deposition areas displayed an opposite pattern, whereas the cell gap junction (coonexin 43) and sarcomere length exhibited an identical pattern of LVEF among the five groups (all P<0.0001). Conclusion: Combined CW-exosome therapy markedly protected the heart against IR injury.
Collapse
Affiliation(s)
- Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen UniversityKaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Tri-Service General Hospital, National Defense Medical CenterTaipei 11490, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
14
|
Yang CC, Chen YT, Chen CH, Li YC, Shao PL, Huang TH, Chen YL, Sun CK, Yip HK. The therapeutic impact of entresto on protecting against cardiorenal syndrome-associated renal damage in rats on high protein diet. Biomed Pharmacother 2019; 116:108954. [PMID: 31108352 DOI: 10.1016/j.biopha.2019.108954] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This study tested the hypothesis that Entresto could safely and effectively preserve heart and kidney function in rats with cardiorenal syndrome (CRS) induced by 5/6 nephrectomy and intra-peritoneal doxorubicin administration (accumulated dosage up to 7.5 mg/kg) together with daily high-protein-diet (HPD). METHODS AND RESULTS Adult male Sprague-Dawley rats (n = 24) were equally categorized into Group 1 (sham-operated control + HPD), Group 2 (CRS + HPD) and Group 3 [CRS + HPD + Entresto (100 mg/kg/day orally) since Day 14 after CRS induction] and euthanized by Day 63 after CRS induction. By Day 63, circulatory BUN and creatinine levels and ratios of urine protein to creatinine were significantly higher in Group 2 than those in Groups 1 and 3, and significantly higher in Group 3 than in Group 1, whereas left-ventricular ejection fraction and kidney weight showed an opposite pattern among all groups (all p < 0.001). Microscopically, fibrosis area and intensity of oxidative stress (i.e., DCFDA stain) in kidney/heart tissues exhibited a pattern identical to that of creatinine level among all groups (all p < 0.0001). Kidney injury score and protein expressions of autophagy (i.e., beclin-1/Atg-5/protein ratio of LC3-BII/LC3-BI), fibrosis (Smad3/TGF-ß), apoptosis (mitochondrial-Bax/capase2/3/9), oxidative-stress (NOX-4/oxidized protein/xanthine-oxidase/catalase), membranous p47phox phosphorylation and mitochondrial-damage biomarker (cytosolic-cytochrome-C) were higher in Group 2 than those in Groups 1 and 3, and significantly higher in Group 3 than in Group 1, while protein expressions of anti-apoptosis (Bcl-2/Bcl-XL) and mitochondrial integrity (mitochondrial-cytochrome-C) markers displayed an opposite pattern among all groups in kidney tissues (all p < 0.0001). CONCLUSION Oral administration of entresto was safe and could offer protection against CRS-induced heart and kidney damage.
Collapse
Affiliation(s)
- Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Then-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, 82445 Taiwan, ROC
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Department of Nursing, Asia University, Taichung, 41354, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC.
| |
Collapse
|
15
|
Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat. Biomed Pharmacother 2018; 109:658-670. [PMID: 30404073 DOI: 10.1016/j.biopha.2018.10.095] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
This study tested the hypothesis that early administration of empagliflozin (Empa), an inhibitor of glucose recycling in renal tubules, could preserve heart function in cardiorenal syndrome (CRS) in rat. Chronic kidney disease (CKD) was caused by 5/6 subtotal nephrectomy and dilated cardiomyopathy (DCM) by doxorubicin (DOX) treatment. In vitro results showed that protein expressions of cleaved-caspase3 and autophagy activity at 24 h/48 h in NRK-52P cells were significantly upregulated by para-Creso treatment; these were significantly downregulated by Empa treatment. Flow cytometric analysis showed that annexin-V (i.e., early/late apoptosis) in NRK-52P cells expressed an identical pattern to cleaved-caspase3 between the two groups (all p < 0.001). Adult-male-SD rats (n = 18) were equally categorized into group 1 (sham-control), group 2 (CRS) and group 3 [CRS + Empa; 20 mg/kg/day]. By day-42 after CRS induction, left-ventricular ejection fraction (LVEF) level exhibited an opposite pattern, whereas LV end-diastolic dimension and creatinine level displayed the same pattern, to cleaved-caspase3 among the three groups (all p < 0.0001). In LV tissues, protein expressions of inflammatory (tumor-necrosis factor-α/nuclear-factor-κB/interleukin-1ß/matrix-metalloprotianse-9), oxidative stress (NOX-1/NOX-2/oxidized protein), apoptotic (mitochondrial-Bax/cleaved-caspase-3/cleaved-PARP), fibrotic (transforming-growth factor-ß/Smad3), DNA/mitochondrial-damage (γ-H2AX/cytosolic-cytochrome-C) and heart failure (brain natriuretic peptide (BNP) levels displayed an opposite pattern to LVEF among the three groups (all p < 0.0001). Additionally, cellular expressions of DNA-damage/heart-failure (γ-H2AX+//XRCC1+CD90+//BNP+) biomarkers and histopathological findings of fibrotic/condensed collagen-deposition areas and apoptotic nuclei showed an identical pattern, whereas connexin43 and small-vessel number exhibited an opposite pattern, to inflammation among the three groups (all p < 0.0001). In conclusion, Empa therapy protected heart and kidney against CRS injury.
Collapse
|
16
|
Combined Therapy with SS31 and Mitochondria Mitigates Myocardial Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2018; 19:ijms19092782. [PMID: 30223594 PMCID: PMC6164143 DOI: 10.3390/ijms19092782] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 02/04/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury contributes to adverse cardiac outcomes after myocardial ischemia, cardiac surgery, or circulatory arrest. In this study, we evaluated the ability of combined SS31-mitochondria (Mito) therapy to protect heart cells from myocardial IR injury. Adult male SD rats (n = 8/each group) were randomized: group 1 (sham-operated control), group 2 (IR, 30-min ischemia/72 h reperfusion), group 3 (IR-SS31 (2 mg intra-peritoneal injection at 30 min/24 h/48 h after IR)), group 4 (IR-mitochondria (2 mg/derived from donor liver/intra-venous administration/30 min after IR procedure)), and group 5 (IR-SS31-mitochondria). In H9C2 cells, SS31 suppressed menadione-induced oxidative-stress markers (NOX-1, NOX-2, oxidized protein) while it increased SIRT1/SIRT3 expression and ATP levels. In adult male rats 72 h after IR, left ventricular ejection fraction (LVEF) was highest in sham-operated control animals and lowest in the IR group. LVEF was also higher in IR rats treated with SS31-Mito than untreated IR rats or those treated with Mito or SS31 alone. Areas of fibrosis/collagen-deposition showed the opposite pattern. Likewise, levels of oxidative-stress markers (NOX-1, NOX-2, oxidized protein), inflammatory markers (MMP-9, CD11, IL-1β, TNF-α), apoptotic markers (mitochondrial-Bax, cleaved-caspase-3, PARP), fibrosis markers (p-Smad3, TGF-β), DNA-damage (γ-H2AX), sarcomere-length, and pressure/volume overload markers (BNP, β-MHC) all showed a pattern opposite that of LVEF. Conversely, anti-apoptotic (BMP-2, Smad1/5) and energy integrity (PGC-1α/mitochondrial cytochrome-C) markers exhibited a pattern identical to that of LVEF. This study demonstrates that the combined SS31-Mito therapy is superior to either therapy alone for protecting myocardium from IR injury and indicates that the responsible mechanisms involved increased SIRT1/SIRT3 expression, which suppresses inflammation and oxidative stress and protects mitochondrial integrity.
Collapse
|
17
|
Noels H, Theelen W, Sternkopf M, Jankowski V, Moellmann J, Kraemer S, Lehrke M, Marx N, Martin L, Marx G, Jankowski J, Goetzenich A, Stoppe C. Reduced post-operative DPP4 activity associated with worse patient outcome after cardiac surgery. Sci Rep 2018; 8:11820. [PMID: 30087386 PMCID: PMC6081383 DOI: 10.1038/s41598-018-30235-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 01/04/2023] Open
Abstract
Cardiac surgery with cardiopulmonary bypass (CPB) triggers myocardial ischemia/reperfusion injury contributing to organ dysfunction. Preclinical studies revealed that dipeptidyl peptidase (DPP4) inhibition is protective during myocardial infarction. Here, we assessed for the first time the relation of peri-operative DPP4-activity in serum of 46 patients undergoing cardiac surgery with patients' post-operative organ dysfunction during intensive care unit (ICU) stay. Whereas a prior myocardial infarction significantly reduced pre-operative DDP4-activity, patients with preserved left ventricular function showed an intra-operative decrease of DPP4-activity. The latter correlated with aortic cross clamping time, indicative for the duration of surgery-induced myocardial ischemia. As underlying mechanism, mass-spectrometry revealed increased DPP4 oxidation by cardiac surgery, with DPP4 oxidation reducing DPP4-activity in vitro. Further, post-operative DPP4-activity was negatively correlated with the extent of post-operative organ injury as measured by SAPS II and SOFA scoring, circulating levels of creatinine and lactate, as well as patients' stay on the ICU. In conclusion, cardiac surgery reduces DPP4-activity through oxidation, with low post-operative DPP4-activity being associated with organ dysfunction and worse outcome of patients during the post-operative ICU stay. This likely reflects the severity of myocardial ischemia/reperfusion injury and may suggest potential beneficial effects of anti-oxidative treatments during cardiac surgery.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
| | - Wendy Theelen
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Sandra Kraemer
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Andreas Goetzenich
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
18
|
Abbas SS, Mahmoud HM, Schaalan MF, El-Abhar HS. Involvement of brain natriuretic peptide signaling pathway in the cardioprotective action of sitagliptin. Pharmacol Rep 2018; 70:720-729. [PMID: 29935398 DOI: 10.1016/j.pharep.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study is focusing on the role of brain natriuretic peptide (BNP), a substrate of dipeptidyl peptidase-4 (DPP-4) enzyme, and its signaling survival pathway in the cardioprotective mechanism of sitagliptin, a DPP-4 inhibitor. METHODS Male Wistar rats were randomized into 7 groups, sham, I/R, KT-5823 (selective protein kinase (PK) G inhibitor), 5-HD (selective mito-KATP channel blocker), sitagliptin (300mg/kg, po), sitagliptin+KT-5823, and sitagliptin+5-HD. Sitagliptin was administered for 3 days prior to induction of coronary I/R, while either KT-5823 or 5-HD was administered intravenously 5min before coronary ligation. RESULTS Pretreatment with sitagliptin provided significant protection against I/R injury as manifested by decreasing, percentage of infarct size, suppressing the elevated ST segment, reducing the increased cardiac enzymes, as well as DPP-4 activity and elevating both heart rate (HR) and left ventricular developed pressure (LVDP). However, the addition of either blocker to sitagliptin regimen reversed partly its cardioprotective effects. Although I/R increased BNP content, it unexpectedly decreased that of cGMP; nevertheless, sitagliptin elevated both parameters, an effect that was not affected by the use of the two blockers. On the molecular level, sitagliptin decreased caspase-3 activity and downregulated the mRNA levels of BNP, Bax, and Cyp D, while upregulated that of Bcl2. The use of either KT-5823 or 5-HD with sitagliptin hindered its effect on the molecular markers tested. CONCLUSIONS The results of the present study suggest that the cardioprotective effect of sitagliptin is mediated partly, but not solely, through the BNP/cGMP/PKG survival signaling pathway.
Collapse
Affiliation(s)
- Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Hesham M Mahmoud
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Ibrahim MA, Geddawy A, Abdel-Wahab S. Sitagliptin prevents isoproterenol-induced myocardial infarction in rats by modulating nitric oxide synthase enzymes. Eur J Pharmacol 2018; 829:63-69. [DOI: 10.1016/j.ejphar.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 02/04/2023]
|
20
|
Zhou Y, Guo Z, Yan W, Wang W. Cardiovascular effects of sitagliptin - An anti-diabetes medicine. Clin Exp Pharmacol Physiol 2018; 45:628-635. [DOI: 10.1111/1440-1681.12953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Yi Zhou
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Zhiying Guo
- Department of Pathophysiology; School of Basic Medicine; Jining Medical University; Shandong China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases; Beijing China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Wen Wang
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases; Beijing China
| |
Collapse
|
21
|
Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation 2017; 136:849-870. [PMID: 28847797 DOI: 10.1161/circulationaha.117.028136] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the cardiovascular actions of GLP-1R agonists and DPP-4 inhibitors, with a focus on the translation of mechanisms derived from preclinical studies to complementary findings in clinical studies. We highlight areas of uncertainty requiring more careful scrutiny in ongoing basic science and clinical studies. As newer more potent GLP-1R agonists and coagonists are being developed for the treatment of type 2 diabetes mellitus, obesity, and nonalcoholic steatohepatitis, the delineation of the potential mechanisms that underlie the cardiovascular benefit and safety of these agents have immediate relevance for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Nauck
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.).
| | - Juris J Meier
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Matthew A Cavender
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Mirna Abd El Aziz
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Daniel J Drucker
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| |
Collapse
|
22
|
Shen S, Zhou J, Meng S, Wu J, Ma J, Zhu C, Deng G, Liu D. The protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Exp Ther Med 2017; 14:4077-4082. [PMID: 29067100 PMCID: PMC5647708 DOI: 10.3892/etm.2017.5047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Thirty-six SD rats were randomly divided into three groups (n=12) including sham operation (S) group, ischemia-reperfusion group (I/R) group and ischemic preconditioning (IP) group. After anesthesia with intraperitoneal injection of chloral hydrate, bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h to establish the I/R model. Both kidneys in rats of S group were separated and exposed for 45 min, but renal pedicles were not clipped. In IP group, bilateral renal pedicles were clipped for 5 min, followed by perfusion for 5 min, this procedure was repeated 3 times. Then bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h. Blood samples were collected and rats were sacrificed to collect renal tissue. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. Activity of superoxide dismutase (SOD) was measured by xanthine oxidase assay. Degree of renal injury was evaluated by H&E staining. TUNEL kit was used to detect the number of apoptotic cells in renal tissue. Expression levels of Bcl-2 and Bax were detected by semi-quantitative PCR and western blot analysis at mRNA and protein levels, respectively. Results showed that levels of Cr and BUN in I/R and IP groups were significantly higher than those in S group, and levels of Cr and BUN in I/R group were significantly higher than that in IP group (P<0.05). Activity of SOD in I/R group and IP group were significantly lower than those in S group, and activity of SOD in I/R group were significantly lower than those in IP group (P<0.05). H&E staining showed that, compared with S group, renal injury in the I/R and IP groups was more serious than that in the S group, and I/R group was more serious than the IP group (P<0.05). TUNEL apoptosis assay showed that number of apoptotic cells in IP and I/R groups were significantly higher than that in the S group (P<0.01). Semi-quantitative PCR and western blot analysis showed that, compared with the S group, expression levels of Bcl-2 mRNA and protein were significantly decreased, expression levels of Bax mRNA and protein were significantly increased, and the ratio of Bcl-2/Bax was significantly decreased in the IP and I/R groups (P<0.01). Compared with the I/R group, expression level of Bcl-2 was significantly increased, the level of Bax was significantly deceased, and the ratio of Bcl-2/Bax was significantly increased in the IP group (P<0.01). As a result, ischemic preconditioning can protect rats with renal ischemia-reperfusion injury possibly by increasing the expression level of Bcl-2 and decreasing the expression level of Bax.
Collapse
Affiliation(s)
- Sheng Shen
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jiexue Zhou
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shandong Meng
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jiaqing Wu
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Juan Ma
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Chunli Zhu
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Gengguo Deng
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Dong Liu
- Department of Organ Transplantation, Guangdong Second Pronincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
23
|
Lei Y, Hu L, Yang G, Piao L, Jin M, Cheng X. Dipeptidyl Peptidase-IV Inhibition for the Treatment of Cardiovascular Disease - Recent Insights Focusing on Angiogenesis and Neovascularization. Circ J 2017; 81:770-776. [PMID: 28344207 DOI: 10.1253/circj.cj-16-1326] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a complex enzyme that acts as a membrane-anchored cell surface exopeptidase and transmits intracellular signals through a small intracellular tail. DPP-IV exists in human blood in a soluble form, and truncates a large number of peptide hormones, chemokines, cytokines, and growth factors in vitro and in vivo. DPP-IV has gained considerable interest as a therapeutic target, and a variety of DPP-IV inhibitors that prolong the insulinotropic effects of glucagon-like peptide-1 (GLP-1) are widely used in clinical settings as antidiabetic drugs. Indeed, DPP-IV is upregulated in proinflammatory states, including obesity and cardiovascular disease with and without diabetes mellitus. Consistent with this maladaptive role, DPP-IV inhibitors seem to exert a protective role in cardiovascular disease. In addition to their GLP-1-dependent vascular protective actions, DPP-IV inhibitors exhibit GLP-1-independent beneficial effects on angiogenesis/neovascularization via several signaling pathways (e.g., stromal cell-derived factor-1α/C-X-C chemokine receptor type-4, vascular endothelial growth factor-A/endothelial nitric oxide synthase, etc.). This review focuses on recent findings in this field, highlighting the role of DPP-IV in therapeutic angiogenesis/neovascularization in ischemic heart disease and peripheral artery disease.
Collapse
Affiliation(s)
- Yanna Lei
- Department of ICU, Yanbian University Hospital
| | - Lina Hu
- Department of Public Health, Guilin Medical College
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital
| | - Minggen Jin
- Department of ICU, Yanbian University Hospital
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University.,Department of Cardiovascular Internal Medicine, Kyung Hee University Hospital, Kyung Hee University
| |
Collapse
|
24
|
Wesley UV, Hatcher JF, Ayvaci ER, Klemp A, Dempsey RJ. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis. Mol Neurobiol 2016; 54:4973-4985. [PMID: 27525674 DOI: 10.1007/s12035-016-0039-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA.
| | - James F Hatcher
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Emine R Ayvaci
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Abby Klemp
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA.
| |
Collapse
|
25
|
Mazumder MK, Giri A, Kumar S, Borah A. A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption. Life Sci 2016; 161:27-36. [PMID: 27493078 DOI: 10.1016/j.lfs.2016.07.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 12/23/2022]
Abstract
AIMS In the present study, a novel mice model of chronic kidney disease (CKD) was developed, and psycho-motor behavioural abnormalities, blood-brain barrier (BBB) integrity and brain histology were studied. MAIN METHODS Swiss albino female mice were given high adenine diet (0.3% w/w mixed with feed) for 4weeks. Serum urea and creatinine levels and renal histological studies were performed to validate the model. Psycho-motor behavioural abnormalities and neurological severity were studied. BBB integrity was assessed using Evans blue extravasation method. Nissl staining was performed to see possible morphological aberrations in brain. KEY FINDINGS There was a significant increase in serum urea and creatinine levels in mice given high adenine diet, and the mice had abnormal kidney morphology. Deposition of adenine and 2,8-dihydroxyadenine crystals, and increased collagen deposits in the renal tissues were found, which validate induction of CKD in the mice. Motor behavioural abnormalities, depression-like and anxiolytic behaviour and increase in neurological severity were prevalent in mice with CKD. Evans Blue dye extravasation was found to occur in the brain, which signifies disruption of BBB. However, Nissl staining did not reveal any morphological aberration in brain tissue. SIGNIFICANCE The present study puts forward a highly reproducible mice model of CKD validated with serum parameters and renal histopathological changes. The mice showed psycho-motor behavioural abnormalities and BBB disruption. It is a convenient model to study the disease pathology, and understanding the associated disorders, and their therapeutic interventions.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anirudha Giri
- Environmental Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Sanjeev Kumar
- Microbial and Molecular Immunology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupom Borah
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
26
|
Administration of antioxidant peptide SS-31 attenuates transverse aortic constriction-induced pulmonary arterial hypertension in mice. Acta Pharmacol Sin 2016; 37:589-603. [PMID: 27063219 DOI: 10.1038/aps.2015.162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/25/2015] [Indexed: 11/08/2022]
Abstract
AIM Antioxidant peptide SS-31 is a class of cell-permeable small peptides, which selectively resides on the inner mitochondrial membrane and possesses intrinsic mitochondrial protective capacities. In this study we investigated the therapeutic effects of antioxidant peptide SS-31 on transverse aortic constriction (TAC)-induced pulmonary arterial hypertension (PAH) in a murine model. METHODS Adult male mice were divided into 3 groups: sham-operated mice, TAC mice, and TAC+SS-31 mice that underwent TAC surgery and received SS-31 (2 mg/d, ip) for 60 d. The right ventricular systolic blood pressure (RVSBP) was measured on d 60 prior to sacrificing the mice; then their right heart and lung tissues were collected for histological and biochemical examinations. Lung injury scores were defined by the increased crowded area and decreased number of alveolar sacs. RESULTS TAC mice showed significantly higher RVSBP compared with sham-operated mice, the elevation was substantially suppressed in TAC+SS-31 mice. The same pattern of changes was found in pulmonary levels of oxidative stress proteins (NOX-1/NOX-2/oxidized proteins), cytosolic cytochrome c, biomarkers related to inflammation (MMP-9/TNF-α/iNOS), calcium overload index (TRPC1, 2, 4, 6), apoptosis (mitochondrial BAX, cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), hypoxic (HIF-1α), DNA damage (γ-H2AX) and endothelial function (eNOS/ET-1R), as well as in lung injury score, number of muscularized vessels in lungs, number of TRPC1(+) and HIF-1α(+) cells in pulmonary artery, and number of γ-H2AX(+) and Ki-67(+) cells in lung parenchyma. An opposite pattern of changes was observed in pulmonary anti-fibrotic markers (Smad1/5, BMP-2), number of small vessels, and number of alveolar sacs. In contrast, the levels of antioxidant proteins (HO-1/NQO-1/GR/GPx) in lung parenchyma were progressively and significantly increased from sham-operated mice, TAC mice to TAC+SS-31 mice. CONCLUSION Antioxidant peptide SS-31 administration effectively attenuates TAC-induced PAH in mice.
Collapse
|
27
|
Lu HI, Chung SY, Chen YL, Huang TH, Zhen YY, Liu CF, Chang MW, Chen YL, Sheu JJ, Chua S, Yip HK, Lee FY. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats. Am J Transl Res 2016; 8:778-798. [PMID: 27158369 PMCID: PMC4846926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4(D)) remained unclear. Male-adult (DPP-4(D)) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4(D) + TAC), group 3 [DPP-4(D) + TAC + exendin-4 10 µg/day], and group 4 [DPP-4(D) + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p < 0.001). The protein expressions of oxidative stress (oxidized protein, NOX-1, NOX-2), inflammatory (MMP-9, TNF-α, NF-κB), apoptotic (Bax, cleaved caspase 3 and PARP), fibrotic (TGF-β, Smad3), heart failure (BNP, β-MHC), DNA damaged (γ-H2AX) and ischemic stress (p-P38, p-Akt, p53, ATM) biomarkers showed an opposite pattern of LVEF among the four groups (all p < 0.03). Fibrotic area (by Masson's trichrome, Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4(D) rat.
Collapse
Affiliation(s)
- Hung-I Lu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Tein-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Yen-Yi Zhen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Chu-Feng Liu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Meng-Wei Chang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan, China
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| |
Collapse
|
28
|
Chen YL, Chung SY, Chai HT, Chen CH, Liu CF, Chen YL, Huang TH, Zhen YY, Sung PH, Sun CK, Chua S, Lu HI, Lee FY, Sheu JJ, Yip HK. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy. J Pharmacol Exp Ther 2015; 355:516-27. [PMID: 26511374 DOI: 10.1124/jpet.115.225375] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
This study tested for the benefits of early administration of carvedilol as protection against doxorubicin (DOX)-induced cardiomyopathy. Thirty male, adult B6 mice were categorized into group 1 (untreated control), group 2 [DOX treatment (15 mg/every other day for 2 weeks, i.p.], and group 3 [carvedilol (15 mg/kg/d, from day 7 after DOX treatment for 28 days)], and euthanized by day 35 after DOX treatment. By day 35, the left ventricular ejection fraction (LVEF) was significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1, whereas the left ventricular (LV) end-diastolic and LV end-systolic dimensions showed an opposite pattern to the LVEF among the three groups. The protein expressions of fibrotic (Smad3, TGF-β), apoptotic (BAX, cleaved caspase 3, PARP), DNA damage (γ-H2AX), oxidative stress (oxidized protein), mitochondrial damage (cytosolic cytochrome-C), heart failure (brain natriuretic peptide), and hypertrophic (β-MHC) biomarkers of the LV myocardium showed an opposite pattern to the LVEF among the three groups. The protein expressions of antifibrotic (BMP-2, Smad1/5), α-MHC, and phosphorylated-Akt showed an identical pattern to the LVEF among the three groups. The microscopic findings of fibrotic and collagen-deposition areas and the numbers of γ-H2AX(+) and 53BP1(+) cells in the LV myocardium exhibited an opposite pattern, whereas the numbers of endothelial cell (CD31(+), vWF(+)) markers showed an identical pattern to the LVEF among the three groups. Cardiac stem cell markers (C-kit(+) and Sca-1(+) cells) were significantly and progressively increased from group 1 to group 3. Additionally, the in vitro study showed carvedilol treatment significantly inhibited DOX-induced cardiomyoblast DNA (CD90/XRCC1(+), CD90/53BP1(+), and r-H2AX(+) cells) damage. Early carvedilol therapy protected against DOX-induced DNA damage and cardiomyopathy.
Collapse
Affiliation(s)
- Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Chih-Hung Chen
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Chu-Feng Liu
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Yen-Yi Zhen
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Cheuk-Kwan Sun
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Hung-I Lu
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Fan-Yen Lee
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Jiunn-Jye Sheu
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine (Y.-L.C., S.-Y.C., H.-T.C., Y.-L.C., T.-H.H., Y.-Y.Z., P.-H.S., S.C., H.-K.Y.); Division of General Medicine, Department of Internal Medicine (C.-H.C.); Department of Emergency Medicine (C.-F.L.); Division of Thoracic and Cardiovascular Surgery, Department of Surgery (H.-I.L., F.-Y.L., J.-J.S.); Institute for Translational Research in Biomedine (S.C., H.-K.Y.); and Center for Shockwave Medicine and Tissue Engineering (H.-K.Y.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan (C.-K.S.); and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan (H.-K.Y.)
| |
Collapse
|