1
|
Verma M, Rawat N, Rani R, Singh M, Choudhary A, Abbasi S, Kumar M, Kumar S, Tanwar A, Misir BR, Khanna S, Agrawal A, Faruq M, Rai S, Tripathi R, Kumar A, Pujani M, Bhojani M, Pandey AK, Nesari T, Prasher B. Adhatoda vasica and Tinospora cordifolia extracts ameliorate clinical and molecular markers in mild COVID-19 patients: a randomized open-label three-armed study. Eur J Med Res 2023; 28:556. [PMID: 38049897 PMCID: PMC10696694 DOI: 10.1186/s40001-023-01507-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/04/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infections caused mild-to-moderate illness. However, a sizable portion of infected people experience a rapid progression of hyper-inflammatory and hypoxic respiratory illness that necessitates an effective and safer remedy to combat COVID-19. METHODS A total of 150 COVID-19-positive patients with no to mild symptoms, between the age groups 19-65 years were enrolled in this randomized, open-labeled three-armed clinical trial. Among them, 136 patients completed the study with RT-PCR negative reports. The patients received herbal drugs orally (Group A (Adhatoda vasica; AV; 500 mg; n = 50); Group B (Tinospora cordifolia; TC; 500 mg; n = 43), and Group C (AV + TC; 250 mg each; n = 43)) for 14 days. Clinical symptoms, vital parameters, and viral clearance were taken as primary outcomes, and biochemical, hematological parameters, cytokines, and biomarkers were evaluated at three time points as secondary outcomes. RESULTS We found that the mean viral clearance time was 13.92 days (95% confidence interval [CI] 12.85-14.99) in Group A, 13.44 days (95% confidence interval [CI] 12.14-14.74) in Group B, and 11.86 days (95% confidence interval [CI] 10.62-13.11) days in Group C. Over a period of 14 days, the mean temperature in Groups A, and B significantly decreased linearly. In Group A, during the trial period, eosinophils, and PT/INR increased significantly, while monocytes, SGOT, globulin, serum ferritin, and HIF-1α, a marker of hypoxia reduced significantly. On the other hand, in Group B hsCRP decreased at mid-treatment. Eosinophil levels increased in Group C during the treatment, while MCP-3 levels were significantly reduced. CONCLUSIONS All the patients of the three-armed interventions recovered from COVID-19 and none of them reported any adverse effects from the drugs. Group C patients (AV + TC) resulted in a quicker viral clearance as compared to the other two groups. We provide the first clinical report of AV herbal extract acting as a modifier of HIF-1α in COVID-19 patients along with a reduction in levels of ferritin, VEGF, and PT/INR as the markers of hypoxia, inflammation, and thrombosis highlighting the potential use in progression stages, whereas the TC group showed immunomodulatory effects. Trial registration Clinical Trials Database -India (ICMR-NIMS), CTRI/2020/09/028043. Registered 24th September 2020, https://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=47443&EncHid=&modid=&compid=%27,%2747443det%27.
Collapse
Grants
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
Collapse
Affiliation(s)
- Mukta Verma
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- All India Institute of Ayurveda, New Delhi, India
| | - Neha Rawat
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- All India Institute of Ayurveda, New Delhi, India
| | - Ritu Rani
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Manju Singh
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Aditi Choudhary
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Sarfaraz Abbasi
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Manish Kumar
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Sachin Kumar
- ESIC Medical College and Hospital, Faridabad, Haryana, India
| | - Ankur Tanwar
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- All India Institute of Ayurveda, New Delhi, India
| | - Bishnu Raman Misir
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Sangeeta Khanna
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Shalini Rai
- All India Institute of Ayurveda, New Delhi, India
| | | | - Anil Kumar
- All India Institute of Ayurveda, New Delhi, India
| | - Mukta Pujani
- ESIC Medical College and Hospital, Faridabad, Haryana, India
| | | | | | | | - Bhavana Prasher
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India.
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India.
| |
Collapse
|
2
|
Mukerji M. Ayurgenomics-based frameworks in precision and integrative medicine: Translational opportunities. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e29. [PMID: 38550940 PMCID: PMC10953754 DOI: 10.1017/pcm.2023.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 11/06/2024]
Abstract
In today's globalized and flat world, a patient can access and seek multiple health and disease management options. A digitally enabled participatory framework that allows an evidence-based informed choice is likely to assume an immense importance in the future. In India, traditional knowledge systems, like Ayurveda, coexist with modern medicine. However, due to limited crosstalk between the clinicians of both disciplines, a patient attempts integrative medicine by seeking both options independently with limited understanding and evidence. There is a need for an integrative medicine platform with a formalized approach, which allows practitioners from the two diverse systems to crosstalk, coexist, and coevolve for an informed cross-referral that benefits the patients. To be successful, this needs frameworks that enable the bridging of disciplines through a common interface with shared ontologies. Ayurgenomics is an emerging discipline that explores the principles and practices of Ayurveda combined with genomics approaches for mainstream integration. The present review highlights how in conjunction with different disciplines and technologies this has provided frameworks for (1) the discovery of molecular correlates to build ontological links between the two systems, (2) the discovery of biomarkers and targets for early actionable interventions, (3) understanding molecular mechanisms of drug action from its usage perspective in Ayurveda with applications in repurposing, (4) understanding the network and P4 medicine perspective of Ayurveda through a common organizing principle, (5) non-invasive stratification of healthy and diseased individuals using a compendium of system-level phenotypes, and (6) developing evidence-based solutions for practice in integrative medicine settings. The concordance between the two contrasting streams has been built through extensive explorations and iterations of the concepts of Ayurveda and genomic observations using state-of-the-art technologies, computational approaches, and model system studies. These highlight the enormous potential of a trans-disciplinary approach in evolving solutions for personalized interventions in integrative medicine settings.
Collapse
Affiliation(s)
- Mitali Mukerji
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, India
- School of Artificial Intelligence and Data Science (AIDE), Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
3
|
Missense Variants of von Willebrand Factor in the Background of COVID-19 Associated Coagulopathy. Genes (Basel) 2023; 14:genes14030617. [PMID: 36980889 PMCID: PMC10048626 DOI: 10.3390/genes14030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
COVID-19 associated coagulopathy (CAC), characterized by endothelial dysfunction and hypercoagulability, evokes pulmonary immunothrombosis in advanced COVID-19 cases. Elevated von Willebrand factor (vWF) levels and reduced activities of the ADAMTS13 protease are common in CAC. Here, we aimed to determine whether common genetic variants of these proteins might be associated with COVID-19 severity and hemostatic parameters. A set of single nucleotide polymorphisms (SNPs) in the vWF (rs216311, rs216321, rs1063856, rs1800378, rs1800383) and ADAMTS13 genes (rs2301612, rs28729234, rs34024143) were genotyped in 72 COVID-19 patients. Cross-sectional cohort analysis revealed no association of any polymorphism with disease severity. On the other hand, analysis of variance (ANOVA) uncovered associations with the following clinical parameters: (1) the rs216311 T allele with enhanced INR (international normalized ratio); (2) the rs1800383 C allele with elevated fibrinogen levels; and (3) the rs1063856 C allele with increased red blood cell count, hemoglobin, and creatinine levels. No association could be observed between the phenotypic data and the polymorphisms in the ADAMTS13 gene. Importantly, in silico protein conformational analysis predicted that these missense variants would display global conformational alterations, which might affect the stability and plasma levels of vWF. Our results imply that missense vWF variants might modulate the thrombotic risk in COVID-19.
Collapse
|
4
|
Rani R, Rengarajan P, Sethi T, Khuntia BK, Kumar A, Punera DS, Singh D, Girase B, Shrivastava A, Juvekar SK, Pesala B, Mukerji M, Deepak KK, Prasher B. Heart rate variability during head-up tilt shows inter-individual differences among healthy individuals of extreme Prakriti types. Physiol Rep 2022; 10:e15435. [PMID: 36106418 PMCID: PMC9475339 DOI: 10.14814/phy2.15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023] Open
Abstract
Autonomic modulation is critical during various physiological activities, including orthostatic stimuli and primarily evaluated by heart rate variability (HRV). Orthostatic stress affects people differently suggesting the possibility of identification of predisposed groups to autonomic dysfunction-related disorders in a healthy state. One way to understand this kind of variability is by using Ayurvedic approach that classifies healthy individuals into Prakriti types based on clinical phenotypes. To this end, we explored the differential response to orthostatic stress in different Prakriti types using HRV. HRV was measured in 379 subjects(Vata = 97, Pitta = 68, Kapha = 68, and Mixed Prakriti = 146) from two geographical regions(Vadu and Delhi NCR) for 5 min supine (baseline), 3 min head-up-tilt (HUT) at 60°, and 5 min resupine. We observed that Kapha group had lower baseline HRV than other two groups, although not statistically significant. The relative change (%Δ1&2 ) in various HRV parameters in response to HUT was although minimal in Kapha group. Kapha also had significantly lower change in HR, LF (nu), HF (nu), and LF/HF than Pitta in response to HUT. The relative change (%Δ1 ) in HR and parasympathetic parameters (RMSSD, HF, SD1) was significantly greater in the Vata than in the Kapha. Thus, the low baseline and lower response to HUT in Kapha and the maximum drop in parasympathetic activity of Vata may indicate a predisposition to early autonomic dysfunction and associated conditions. It emphasizes the critical role of Prakriti-based phenotyping in stratifying the differential responses of cardiac autonomic modulation in various postures among healthy individuals across different populations.
Collapse
Affiliation(s)
- Ritu Rani
- Centre of Excellence for Applied Development of Ayurveda Prakriti and GenomicsCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | | | - Tavpritesh Sethi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- Indraprastha Institute of Information TechnologyDelhiIndia
| | - Bharat Krushna Khuntia
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
| | - Arvind Kumar
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
| | - Deep Shikha Punera
- Centre of Excellence for Applied Development of Ayurveda Prakriti and GenomicsCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Deepika Singh
- Centre of Excellence for Applied Development of Ayurveda Prakriti and GenomicsCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
| | - Bhushan Girase
- Vadu Rural Health ProgramKEM Hospital Research CentrePuneIndia
| | | | | | - Bala Pesala
- Indian Institute of Technology JodhpurRajasthanIndia
| | - Mitali Mukerji
- Centre of Excellence for Applied Development of Ayurveda Prakriti and GenomicsCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- Indian Institute of Technology JodhpurRajasthanIndia
| | | | - Bhavana Prasher
- Centre of Excellence for Applied Development of Ayurveda Prakriti and GenomicsCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- CSIR's Ayurgenomics Unit–TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics) CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Genomics and Molecular MedicineCSIR‐Institute of Genomics & Integrative BiologyDelhiIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| |
Collapse
|
5
|
Abbas T, Chaturvedi G, Prakrithi P, Pathak AK, Kutum R, Dakle P, Narang A, Manchanda V, Patil R, Aggarwal D, Girase B, Srivastava A, Kapoor M, Gupta I, Pandey R, Juvekar S, Dash D, Mukerji M, Prasher B. Whole Exome Sequencing in Healthy Individuals of Extreme Constitution Types Reveals Differential Disease Risk: A Novel Approach towards Predictive Medicine. J Pers Med 2022; 12:jpm12030489. [PMID: 35330488 PMCID: PMC8952204 DOI: 10.3390/jpm12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Precision medicine aims to move from traditional reactive medicine to a system where risk groups can be identified before the disease occurs. However, phenotypic heterogeneity amongst the diseased and healthy poses a major challenge for identification markers for risk stratification and early actionable interventions. In Ayurveda, individuals are phenotypically stratified into seven constitution types based on multisystem phenotypes termed “Prakriti”. It enables the prediction of health and disease trajectories and the selection of health interventions. We hypothesize that exome sequencing in healthy individuals of phenotypically homogeneous Prakriti types might enable the identification of functional variations associated with the constitution types. Exomes of 144 healthy Prakriti stratified individuals and controls from two genetically homogeneous cohorts (north and western India) revealed differential risk for diseases/traits like metabolic disorders, liver diseases, and body and hematological measurements amongst healthy individuals. These SNPs differ significantly from the Indo-European background control as well. Amongst these we highlight novel SNPs rs304447 (IFIT5) and rs941590 (SERPINA10) that could explain differential trajectories for immune response, bleeding or thrombosis. Our method demonstrates the requirement of a relatively smaller sample size for a well powered study. This study highlights the potential of integrating a unique phenotyping approach for the identification of predictive markers and the at-risk population amongst the healthy.
Collapse
Affiliation(s)
- Tahseen Abbas
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gaura Chaturvedi
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
| | - P. Prakrithi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
| | - Ankit Kumar Pathak
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
| | - Rintu Kutum
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Pushkar Dakle
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
| | - Ankita Narang
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
| | - Vijeta Manchanda
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
| | - Rutuja Patil
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Dhiraj Aggarwal
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Bhushan Girase
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Ankita Srivastava
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA;
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India;
| | - Sanjay Juvekar
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Debasis Dash
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Correspondence: (D.D.); (M.M.); (B.P.)
| | - Mitali Mukerji
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Jodhpur 342037, India
- Correspondence: (D.D.); (M.M.); (B.P.)
| | - Bhavana Prasher
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
- Correspondence: (D.D.); (M.M.); (B.P.)
| |
Collapse
|
6
|
Chakraborty S, Singhmar S, Singh D, Maulik M, Patil R, Agrawal SK, Mishra A, Ghazi M, Vats A, Natarajan VT, Juvekar S, Prasher B, Mukerji M. Baseline cell proliferation rates and response to UV differ in lymphoblastoid cell lines derived from healthy individuals of extreme constitution types. Cell Cycle 2021; 20:903-913. [PMID: 33870855 DOI: 10.1080/15384101.2021.1909884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Differences in human phenotypes and susceptibility to complex diseases are an outcome of genetic and environmental interactions. This is evident in diseases that progress through a common set of intermediate patho-endophenotypes. Precision medicine aims to delineate molecular players for individualized and early interventions. Functional studies of lymphoblastoid cell line (LCL) model of phenotypically well-characterized healthy individuals can help deconvolute and validate these molecular mechanisms. In this study, LCLs are developed from eight healthy individuals belonging to three extreme constitution types, deep phenotyped on the basis of Ayurveda. LCLs were characterized by karyotyping and immunophenotyping. Growth characteristics and response to UV were studied in these LCLs. Significant differences in cell proliferation rates were observed between the contrasting groups such that one type (Kapha) proliferates significantly slower than the other two (Vata, Pitta). In response to UV, one of the fast growing groups (Vata) shows higher cell death but recovers its numbers due to an inherent higher rates of proliferation. This study reveals that baseline differences in cell proliferation could be a key to understanding the survivability of cells under UV stress. Variability in baseline cellular phenotypes not only explains the cellular basis of different constitution types but can also help set priors during the design of an individualized therapy with DNA damaging agents. This is the first study of its kind that shows variability of intermediate patho-phenotypes among healthy individuals with potential implications in precision medicine.
Collapse
Affiliation(s)
- Sumita Chakraborty
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sunanda Singhmar
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dayanidhi Singh
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahua Maulik
- CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Department of Biological Sciences, Indian Institute of Science Education & Research, IISER Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Rutuja Patil
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune, Maharashtra, India
| | - Satyam Kumar Agrawal
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,School of Pharmacy and Emerging Sciences (SPES), Baddi University of Emerging Science and Technology (BUEST), Baddi, Himachal Pradesh, India
| | - Anushree Mishra
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Madeeha Ghazi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Archana Vats
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Vivek T Natarajan
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Juvekar
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune, Maharashtra, India
| | - Bhavana Prasher
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitali Mukerji
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Gheware A, Dholakia D, Kannan S, Panda L, Rani R, Pattnaik BR, Jain V, Parekh Y, Enayathullah MG, Bokara KK, Subramanian V, Mukerji M, Agrawal A, Prasher B. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: potential for repurposing in COVID-19-like conditions. Respir Res 2021; 22:99. [PMID: 33823870 PMCID: PMC8022127 DOI: 10.1186/s12931-021-01698-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-β1 (TGF-β1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-β1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.
Collapse
Affiliation(s)
- Atish Gheware
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhwani Dholakia
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Kannan
- Center for High Computing, CSIR- Central Leather Research Institute (CLRI), Chennai, 600020, India
| | - Lipsa Panda
- Center for Translational Research in Lung Disease, CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritu Rani
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Vaibhav Jain
- Center for Translational Research in Lung Disease, CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yash Parekh
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - M Ghalib Enayathullah
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkatesan Subramanian
- Center for High Computing, CSIR- Central Leather Research Institute (CLRI), Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anurag Agrawal
- Center for Translational Research in Lung Disease, CSIR- IGIB, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Bhavana Prasher
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India.
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India.
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Gheware A, Panda L, Khanna K, Bhatraju NK, Jain V, Sagar S, Kumar M, Singh VP, Kannan S, Subramanian V, Mukerji M, Agrawal A, Prasher B. Adhatoda vasica rescues the hypoxia-dependent severe asthma symptoms and mitochondrial dysfunction. Am J Physiol Lung Cell Mol Physiol 2021; 320:L757-L769. [PMID: 33565386 DOI: 10.1152/ajplung.00511.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe asthma is a chronic airway disease that exhibits poor response to conventional asthma therapies. Growing evidence suggests that elevated hypoxia increases the severity of asthmatic inflammation among patients and in model systems. In this study, we elucidate the therapeutic effects and mechanistic basis of Adhatoda vasica (AV) aqueous extract on mouse models of acute allergic as well as severe asthma subtypes at physiological, histopathological, and molecular levels. Oral administration of AV extract attenuates the increased airway resistance and inflammation in acute allergic asthmatic mice and alleviates the molecular signatures of steroid (dexamethasone) resistance like IL-17A, KC (murine IL-8 homologue), and HIF-1α (hypoxia-inducible factor-1α) in severe asthmatic mice. AV inhibits HIF-1α levels through restoration of expression of its negative regulator-PHD2 (prolyl hydroxylase domain-2). Alleviation of hypoxic response mediated by AV is further confirmed in the acute and severe asthma model. AV reverses cellular hypoxia-induced mitochondrial dysfunction in human bronchial epithelial cells-evident from bioenergetic profiles and morphological analysis of mitochondria. In silico docking of AV constituents reveal higher negative binding affinity for C and O-glycosides for HIF-1α, IL-6, Janus kinase 1/3, TNF-α, and TGF-β-key players of hypoxia inflammation. This study for the first time provides a molecular basis of action and effect of AV whole extract that is widely used in Ayurveda practice for diverse respiratory ailments. Further, through its effect on hypoxia-induced mitochondrial dysfunction, the study highlights its potential to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Atish Gheware
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,CSIR's Ayurgenomics Unit, TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-IGIB, Delhi, India.,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lipsa Panda
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kritika Khanna
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naveen Kumar Bhatraju
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India
| | - Vaibhav Jain
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shakti Sagar
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish Kumar
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India
| | - Vijay Pal Singh
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India
| | - Sadasivam Kannan
- Center for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - Venkatesan Subramanian
- Center for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,CSIR's Ayurgenomics Unit, TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-IGIB, Delhi, India.,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhavana Prasher
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,CSIR's Ayurgenomics Unit, TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-IGIB, Delhi, India.,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Effect of EGLN1 Genetic Polymorphisms on Hemoglobin Concentration in Andean Highlanders. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3436581. [PMID: 33282944 PMCID: PMC7686849 DOI: 10.1155/2020/3436581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
The physiological characteristics of Andean natives living at high altitudes have been investigated extensively, with many studies reporting that Andean highlanders have a higher hemoglobin (Hb) concentration than other highlander populations. It has previously been reported that positive natural selection has acted independently on the egl-9 family hypoxia inducible factor 1 (EGLN1) gene in Tibetan and Andean highlanders and is related to Hb concentration in Tibetans. However, no study has yet revealed the genetic determinants of Hb concentration in Andeans even though several single-nucleotide polymorphisms (SNPs) in EGLN1 have previously been examined. Therefore, we explored the relationship between hematological measurements and tag SNPs designed to cover the whole EGLN1 genomic region in Andean highlanders living in Bolivia. Our findings indicated that haplotype frequencies estimated from the EGLN1 SNPs were significantly correlated with Hb concentration in the Bolivian highlanders. Moreover, we found that an Andean-dominant haplotype related to high Hb level may have expanded rapidly in ancestral Andean highlander populations. Analysis of genotype data in an ~436.3 kb genomic region containing EGLN1 using public databases indicated that the population structure based on EGLN1 genetic markers in Andean highlanders was largely different from that in other human populations. This finding may be related to an intrinsic or adaptive physiological characteristic of Andean highlanders. In conclusion, the high Hb concentrations in Andean highlanders can be partly characterized by EGLN1 genetic variants.
Collapse
|
10
|
Ayurgenomics and Modern Medicine. ACTA ACUST UNITED AC 2020; 56:medicina56120661. [PMID: 33265906 PMCID: PMC7760374 DOI: 10.3390/medicina56120661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Within the disciplines of modern medicine, P4 medicine is emerging as a new field which focuses on the whole patient. The development of Ayurgenomics could greatly enrich P4 medicine by providing a clear theoretical understanding of the whole patient and a practical application of ancient and modern preventative and therapeutic practices to improve mental and physical health. One of the most difficult challenges today is understanding the ancient concepts of Ayurveda in terms of modern science. To date, a number of researchers have attempted this task, of which one of the most successful outcomes is the creation of the new field of Ayurgenomics. Ayurgenomics integrates concepts in Ayurveda, such as Prakriti, with modern genetics research. It correlates the combination of three doshas, Vata, Pitta and Kapha, with the expression of specific genes and physiological characteristics. It also helps to interpret Ayurveda as an ancient science of epigenetics which assesses the current state of the doshas, and uses specific personalized diet and lifestyle recommendations to improve a patient’s health. This review provides a current update of this emerging field.
Collapse
|
11
|
Sharma R, Prajapati PK. Predictive, Preventive and Personalized Medicine: Leads From Ayurvedic Concept of Prakriti (Human Constitution). ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00244-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Narang A, Uppilli B, Vivekanand A, Naushin S, Yadav A, Singhal K, Shamim U, Sharma P, Zahra S, Mathur A, Seth M, Parveen S, Vats A, Hillman S, Dolma P, Varma B, Jain V, Prasher B, Sengupta S, Mukerji M, Faruq M. Frequency spectrum of rare and clinically relevant markers in multiethnic Indian populations (ClinIndb): A resource for genomic medicine in India. Hum Mutat 2020; 41:1833-1847. [PMID: 32906206 DOI: 10.1002/humu.24102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
There have been concerted efforts toward cataloging rare and deleterious variants in different world populations using high-throughput genotyping and sequencing-based methods. The Indian population is underrepresented or its information with respect to clinically relevant variants is sparse in public data sets. The aim of this study was to estimate the burden of monogenic disease-causing variants in Indian populations. Toward this, we have assessed the frequency profile of monogenic phenotype-associated ClinVar variants. The study utilized a genotype data set (global screening array, Illumina) from 2795 individuals (multiple in-house genomics cohorts) representing diverse ethnic and geographically distinct Indian populations. Of the analyzed variants from Global Screening Array, ~9% were found to be informative and were either not known earlier or underrepresented in public databases in terms of their frequencies. These variants were linked to disorders, namely inborn errors of metabolism, monogenic diabetes, hereditary cancers, and various other hereditary conditions. We have also shown that our study cohort is genetically a better representative of the Indian population than its representation in the 1000 Genome Project (South Asians). We have created a database, ClinIndb, linked to the Leiden Open Variation Database, to help clinicians and researchers in diagnosis, counseling, and development of appropriate genetic screening tools relevant to the Indian populations and Indians living abroad.
Collapse
Affiliation(s)
- Ankita Narang
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Bharathram Uppilli
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Asokachandran Vivekanand
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Salwa Naushin
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arti Yadav
- CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Khushboo Singhal
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sana Zahra
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Malika Seth
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shaista Parveen
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Archana Vats
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sara Hillman
- NIHR UCL Clinical Lecturer and Subspecialty Trainee Maternal and Fetal Medicine, UCL Institute for Women's Health, London, UK
| | - Padma Dolma
- Department of Obstetrics and Gynaecology, Sonam Norboo Memorial Hospital, Leh, Ladakh, India
| | - Binuja Varma
- CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vandana Jain
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Bhavana Prasher
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Sivasubbu S, Scaria V. Genomics of rare genetic diseases-experiences from India. Hum Genomics 2019; 14:52. [PMID: 31554517 PMCID: PMC6760067 DOI: 10.1186/s40246-019-0215-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Home to a culturally heterogeneous population, India is also a melting pot of genetic diversity. The population architecture characterized by multiple endogamous groups with specific marriage patterns, including the widely prevalent practice of consanguinity, not only makes the Indian population distinct from rest of the world but also provides a unique advantage and niche to understand genetic diseases. Centuries of genetic isolation of population groups have amplified the founder effects, contributing to high prevalence of recessive alleles, which translates into genetic diseases, including rare genetic diseases in India.Rare genetic diseases are becoming a public health concern in India because a large population size of close to a billion people would essentially translate to a huge disease burden for even the rarest of the rare diseases. Genomics-based approaches have been demonstrated to accelerate the diagnosis of rare genetic diseases and reduce the socio-economic burden. The Genomics for Understanding Rare Diseases: India Alliance Network (GUaRDIAN) stands for providing genomic solutions for rare diseases in India. The consortium aims to establish a unique collaborative framework in health care planning, implementation, and delivery in the specific area of rare genetic diseases. It is a nation-wide collaborative research initiative catering to rare diseases across multiple cohorts, with over 240 clinician/scientist collaborators across 70 major medical/research centers. Within the GUaRDIAN framework, clinicians refer rare disease patients, generate whole genome or exome datasets followed by computational analysis of the data for identifying the causal pathogenic variations. The outcomes of GUaRDIAN are being translated as community services through a suitable platform providing low-cost diagnostic assays in India. In addition to GUaRDIAN, several genomic investigations for diseased and healthy population are being undertaken in the country to solve the rare disease dilemma.In summary, rare diseases contribute to a significant disease burden in India. Genomics-based solutions can enable accelerated diagnosis and management of rare diseases. We discuss how a collaborative research initiative such as GUaRDIAN can provide a nation-wide framework to cater to the rare disease community of India.
Collapse
Affiliation(s)
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Delhi, 110025, India.
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Delhi, 110025, India.
| |
Collapse
|
14
|
Kaushik M, Mahendru S, Chaudhary S, Kumar M, Kukreti S. Prerequisite of a Holistic Blend of Traditional and Modern Approaches of Cancer Management. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180417160750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
With the advent of changes in lifestyle of people all around the world,
cancer cases have been showing an exponential rise. Researchers from varied fields have been trying
to solve this tricky issue.
Methods:
We undertook a systematic search of bibliographic databases of peer-reviewed research
literature to evaluate the holistic blend of modern and traditional approaches, especially the
Ayurvedic perspective of treatment of cancer along with the effect of our diet and lifestyle on the
management (both prevention and cure) of cancer.
Results:
On the basis of extensive literature survey, it was found that Ayurveda as one of the ancient
medicinal systems had been very well documented for utilizing its best practices for the
treatment of various diseases including cancer, by utilization of several herbal plants and dietary
interventions as therapeutics. Active components present in various herbs, which interfere with
certain molecular targets to inhibit carcinogenesis are also summarized. Further, beneficial effects
of yoga and exercise on psychological distress, cancer-related fatigue and global side-effects as
well as their mechanism of action are also discussed. In addition, we recapitulate an upcoming
field of Ayurgenomics to understand the possible correlation of Prakriti with genetics as well as
epigenetics.
Conclusion:
Both genetic as well as environmental factors have shown their linkage with cancer.
Substantial advancements in the field of targeted therapies have opened new horizons for the cancer
patients. To fight with this grave situation, a combination of ancient and modern medicinal
systems seems to be the need of the hour.
Collapse
Affiliation(s)
- Mahima Kaushik
- Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Mahendru
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Mohan Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | | |
Collapse
|
15
|
Jin T, Zhu L, Bai M, He X, Wang L, Yuan D, Li S, He Y. Association between the IL1R2 rs2072472 polymorphism and high-altitude pulmonary edema risk. Mol Genet Genomic Med 2019; 7:e542. [PMID: 30672138 PMCID: PMC6418374 DOI: 10.1002/mgg3.542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 01/06/2023] Open
Abstract
Aim High‐altitude pulmonary edema (HAPE), as a multifactorial disease, is caused by stress failure and involves both environmental and genetic factors. Study shows that IL‐1 receptors can selectively decrease the oxygen arterial hypertension and influence the blood coagulation. So we evaluated whether genetic polymorphisms in IL1R1 and 1L1R2 genes are associated with the risk of HAPE in Chinese Han population. Methods Ten susceptible SNPs in the IL1R1 and IL1R2 genes were genotyped among 265 HAPE cases and 303 controls using the Agena MassARRAY platform. The associations of the SNP frequencies with HAPE were analyzed by chi‐square (χ2) test/Fisher's test. The genetic models were used to evaluate associations. Results In the allele model, we found that rs2072472 was significantly associated with a 0.73‐fold decreased risk of HAPE (OR = 0.73, 95% CI = 0.55–0.97, p = 0.033). In the genetic model analysis, the rs2072472 in IL1R2 gene was associated with a 0.32‐fold decreased risk of HAPE in the codominant model, 0.67‐fold decreased risk of HAPE in the dominant model, 0.36‐fold decreasing the risk of HAPE in the recessive model, and 0.66‐fold decreased risk of HAPE in the log‐additive model, respectively. We found three candidate SNPs (rs11674595, rs4851527, and rs719250) in the IL1R2 gene have shown strong linkage, and none of the haplotypes was significantly associated with risk of HAPE. Conclusion These findings suggested that IL1R2 polymorphisms may contribute to the protection of HAPE.
Collapse
Affiliation(s)
- Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Linhao Zhu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Shanqu Li
- Medical Examination Center of Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, Xianyan, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
16
|
Big Data Analysis of Traditional Knowledge-based Ayurveda Medicine. PROGRESS IN PREVENTIVE MEDICINE 2018. [DOI: 10.1097/pp9.0000000000000020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Chauhan NS, Pandey R, Mondal AK, Gupta S, Verma MK, Jain S, Ahmed V, Patil R, Agarwal D, Girase B, Shrivastava A, Mobeen F, Sharma V, Srivastava TP, Juvekar SK, Prasher B, Mukerji M, Dash D. Western Indian Rural Gut Microbial Diversity in Extreme Prakriti Endo-Phenotypes Reveals Signature Microbes. Front Microbiol 2018; 9:118. [PMID: 29487572 PMCID: PMC5816807 DOI: 10.3389/fmicb.2018.00118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity amidst healthy individuals at genomic level is being widely acknowledged. This, in turn, is modulated by differential response to environmental cues and treatment regimens, necessitating the need for stratified/personalized therapy. We intend to understand the molecular determinants of Ayurvedic way (ancient Indian system of medicine) of endo-phenotyping individuals into distinct constitution types termed “Prakriti,” which forms the basis of personalized treatment. In this study, we explored and analyzed the healthy human gut microbiome structure within three predominant Prakriti groups from a genetically homogenous cohort to discover differentially abundant taxa, using 16S rRNA gene based microbial community profiling. We found Bacteroidetes and Firmicutes as major gut microbial components in varying composition, albeit with similar trend across Prakriti. Multiple species of the core microbiome showed differential abundance within Prakriti types, with gender specific signature taxons. Our study reveals that despite overall uniform composition of gut microbial community, healthy individuals belonging to different Prakriti groups have enrichment of specific bacteria. It highlights the importance of Prakriti based endo-phenotypes to explain the variability amongst healthy individuals in gut microbial flora that have important consequences for an individual's health, disease and treatment.
Collapse
Affiliation(s)
- Nar S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- CSIR Ayurgenomics Unit - TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anupam K Mondal
- G.N. Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (IGIB), New Delhi, India
| | - Shashank Gupta
- CSIR Ayurgenomics Unit - TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Manoj K Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Sweta Jain
- CSIR Ayurgenomics Unit - TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vasim Ahmed
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rutuja Patil
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune, India
| | - Dhiraj Agarwal
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune, India
| | - Bhushan Girase
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune, India
| | | | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology, Mandi, India
| | - Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology, Mandi, India
| | | | - Sanjay K Juvekar
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune, India
| | - Bhavana Prasher
- CSIR Ayurgenomics Unit - TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (IGIB), New Delhi, India.,Genomics and Molecular Medicine and CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Mitali Mukerji
- CSIR Ayurgenomics Unit - TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (IGIB), New Delhi, India.,Genomics and Molecular Medicine and CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Debasis Dash
- CSIR Ayurgenomics Unit - TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,G.N. Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (IGIB), New Delhi, India
| |
Collapse
|
18
|
Traditional Knowledge-based Medicine: A Review of History, Principles, and Relevance in the Present Context of P4 Systems Medicine. PROGRESS IN PREVENTIVE MEDICINE 2017. [DOI: 10.1097/pp9.0000000000000011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits. PLoS One 2017; 12:e0185380. [PMID: 28981546 PMCID: PMC5628820 DOI: 10.1371/journal.pone.0185380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/10/2017] [Indexed: 01/19/2023] Open
Abstract
In Ayurveda system of medicine individuals are classified into seven constitution types, “Prakriti”, for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.
Collapse
|
20
|
Zhu L, Liu L, He X, Yan M, Du J, Yang H, Zhang Y, Yuan D, Jin T. Association between genetic polymorphism of telomere-associated gene ACYP2 and the risk of HAPE among the Chinese Han population: A Case-control study. Medicine (Baltimore) 2017; 96:e6504. [PMID: 28353602 PMCID: PMC5380286 DOI: 10.1097/md.0000000000006504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) is a hypoxia-induced, life-threatening, pulmonary edema, which is characterized by exaggerated pulmonary hypertension caused by stress failure. ACYP2 was found to associated with telomere length, the aim of this study was to identify whether ACYP2 polymorphisms increase or decrease HAPE risk in the Chinese Han individuals.In present study, we have genotyped 7 single-nucleotide polymorphisms (SNPs) in ACYP2 to determine the haplotypes in a case-control study with 265 HAPE patients and 303 healthy individuals. Genotypes were determined using the Sequenom MassARRAY method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression with adjustment for gender and age. We found 3 SNPs yielded significant evidence for association with HAPE risk which had not been investigated before. Rs6713088 was found to have a 1.85- and 1.30-fold increased risk of HAPE in the recessive and additive model. The GT of rs843752 also conferred an increased risk of HAPE (GT/TT: OR = 1.51, 95% CI: 1.05-2.16, P = 0.026) and the genotype frequency distributions of rs843752 had significant difference between cases and controls. The CC genotype of rs17045754 had a protect effect on HAPE patients, and it was found to have a 0.29-fold reduced risk of HAPE in the recessive model.Although additional, larger population-based studies are needed to confirm these findings, our study shed light on the association between ACYP2 variant and HAPE risk in Han Chinese population for the first time.
Collapse
Affiliation(s)
- Linhao Zhu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi
| | - Lijun Liu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi
| | - Mengdan Yan
- School of Life Sciences, Northwest University, Xi’an
| | - Jieli Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hua Yang
- School of Life Sciences, Northwest University, Xi’an
| | - Yuan Zhang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi
- School of Life Sciences, Northwest University, Xi’an
| |
Collapse
|
21
|
Prasher B, Varma B, Kumar A, Khuntia BK, Pandey R, Narang A, Tiwari P, Kutum R, Guin D, Kukreti R, Dash D, Mukerji M. Ayurgenomics for stratified medicine: TRISUTRA consortium initiative across ethnically and geographically diverse Indian populations. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:274-293. [PMID: 27457695 DOI: 10.1016/j.jep.2016.07.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/02/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Genetic differences in the target proteins, metabolizing enzymes and transporters that contribute to inter-individual differences in drug response are not integrated in contemporary drug development programs. Ayurveda, that has propelled many drug discovery programs albeit for the search of new chemical entities incorporates inter-individual variability "Prakriti" in development and administration of drug in an individualized manner. Prakriti of an individual largely determines responsiveness to external environment including drugs as well as susceptibility to diseases. Prakriti has also been shown to have molecular and genomic correlates. We highlight how integration of Prakriti concepts can augment the efficiency of drug discovery and development programs through a unique initiative of Ayurgenomics TRISUTRA consortium. METHODS Five aspects that have been carried out are (1) analysis of variability in FDA approved pharmacogenomics genes/SNPs in exomes of 72 healthy individuals including predominant Prakriti types and matched controls from a North Indian Indo-European cohort (2) establishment of a consortium network and development of five genetically homogeneous cohorts from diverse ethnic and geo-climatic background (3) identification of parameters and development of uniform standard protocols for objective assessment of Prakriti types (4) development of protocols for Prakriti evaluation and its application in more than 7500 individuals in the five cohorts (5) Development of data and sample repository and integrative omics pipelines for identification of genomic correlates. RESULTS Highlight of the study are (1) Exome sequencing revealed significant differences between Prakriti types in 28 SNPs of 11 FDA approved genes of pharmacogenomics relevance viz. CYP2C19, CYP2B6, ESR1, F2, PGR, HLA-B, HLA-DQA1, HLA-DRB1, LDLR, CFTR, CPS1. These variations are polymorphic in diverse Indian and world populations included in 1000 genomes project. (2) Based on the phenotypic attributes of Prakriti we identified anthropometry for anatomical features, biophysical parameters for skin types, HRV for autonomic function tests, spirometry for vital capacity and gustometry for taste thresholds as objective parameters. (3) Comparison of Prakriti phenotypes across different ethnic, age and gender groups led to identification of invariant features as well as some that require weighted considerations across the cohorts. CONCLUSION Considering the molecular and genomics differences underlying Prakriti and relevance in disease pharmacogenomics studies, this novel integrative platform would help in identification of differently susceptible and drug responsive population. Additionally, integrated analysis of phenomic and genomic variations would not only allow identification of clinical and genomic markers of Prakriti for application in personalized medicine but also its integration in drug discovery and development programs.
Collapse
Affiliation(s)
- Bhavana Prasher
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Genomics and Molecular Medicine & CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative research, CSIR-IGIB, Delhi, India.
| | - Binuja Varma
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Arvind Kumar
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Bharat Krushna Khuntia
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Rajesh Pandey
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Ankita Narang
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Pradeep Tiwari
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative research, CSIR-IGIB, Delhi, India
| | - Rintu Kutum
- G.N.Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative research, CSIR-IGIB, Delhi, India
| | - Debleena Guin
- Genomics and Molecular Medicine & CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine & CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Debasis Dash
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; G.N.Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative research, CSIR-IGIB, Delhi, India
| | - Mitali Mukerji
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Genomics and Molecular Medicine & CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative research, CSIR-IGIB, Delhi, India.
| |
Collapse
|
22
|
|