1
|
Chen H, Ling R, Lai J, Liu Z, Wang Z, Yang H, Kong Y. CD44v6-mediated regulation of gastric cancer stem cells: a potential therapeutic target. Clin Exp Med 2025; 25:80. [PMID: 40069421 PMCID: PMC11897096 DOI: 10.1007/s10238-025-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Gastric cancer is the fourth most common cause of cancer-related deaths globally. Cancer stem cells (CSCs) play an essential role in tumor initiation, development, and chemoresistance. However, the molecular mechanisms that regulate CSC traits in gastric cancer, particularly the role of CD44v6 as a key CSC marker, remain poorly understood. Here, we demonstrate that CD44v6 is markedly upregulated in gastric cancer tissues and correlates with poor prognosis. Functional assays, including colony formation, wound healing, proliferation, and apoptosis assays, show that CD44v6 enhances CSC characteristics, such as self-renewal, proliferation, migration, and cisplatin chemoresistance. CD44v6 knockdown effectively suppresses these aggressive phenotypes. Mechanistically, CD44v6 regulates the expression of key CSC markers, including CD24, CD133, EpCAM, as well as stemness-related transcription factors Oct-4 and Nanog. Additionally, CD44v6 enhances cell proliferation and drug resistance in both in vitro and in vivo experiments. Collectively, our findings highlight the significant role of CD44v6 in regulating gastric CSC traits, suggesting it's a potential as a biomarker and therapeutic target for improving gastric cancer treatment outcomes, particularly in overcoming chemoresistance.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ruoyu Ling
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jiayu Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhiqi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong Province, China.
| | - Hua Yang
- Department of Basic Medicine, School of Medicine, Foshan University, Foshan, 528225, Guangdong Province, China.
| | - Yi Kong
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
2
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
3
|
Razavi Z, Soltani M, Pazoki-Toroudi H, Dabagh M. Microfluidic systems for modeling digestive cancer: a review of recent progress. Biomed Phys Eng Express 2024; 10:052002. [PMID: 39142294 DOI: 10.1088/2057-1976/ad6f15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | | | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, WI 53211, United States of America
| |
Collapse
|
4
|
Díaz del Arco C, Fernández Aceñero MJ, Ortega Medina L. Liquid biopsy for gastric cancer: Techniques, applications, and future directions. World J Gastroenterol 2024; 30:1680-1705. [PMID: 38617733 PMCID: PMC11008373 DOI: 10.3748/wjg.v30.i12.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
After the study of circulating tumor cells in blood through liquid biopsy (LB), this technique has evolved to encompass the analysis of multiple materials originating from the tumor, such as nucleic acids, extracellular vesicles, tumor-educated platelets, and other metabolites. Additionally, research has extended to include the examination of samples other than blood or plasma, such as saliva, gastric juice, urine, or stool. LB techniques are diverse, intricate, and variable. They must be highly sensitive, and pre-analytical, patient, and tumor-related factors significantly influence the detection threshold, diagnostic method selection, and potential results. Consequently, the implementation of LB in clinical practice still faces several challenges. The potential applications of LB range from early cancer detection to guiding targeted therapy or immunotherapy in both early and advanced cancer cases, monitoring treatment response, early identification of relapses, or assessing patient risk. On the other hand, gastric cancer (GC) is a disease often diagnosed at advanced stages. Despite recent advances in molecular understanding, the currently available treatment options have not substantially improved the prognosis for many of these patients. The application of LB in GC could be highly valuable as a non-invasive method for early diagnosis and for enhancing the management and outcomes of these patients. In this comprehensive review, from a pathologist's perspective, we provide an overview of the main options available in LB, delve into the fundamental principles of the most studied techniques, explore the potential utility of LB application in the context of GC, and address the obstacles that need to be overcome in the future to make this innovative technique a game-changer in cancer diagnosis and treatment within clinical practice.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - M Jesús Fernández Aceñero
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Luis Ortega Medina
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
5
|
Guan XL, Guan XY, Zhang ZY. Roles and application of exosomes in the development, diagnosis and treatment of gastric cancer. World J Gastrointest Oncol 2024; 16:630-642. [PMID: 38577463 PMCID: PMC10989387 DOI: 10.4251/wjgo.v16.i3.630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 03/12/2024] Open
Abstract
As important messengers of intercellular communication, exosomes can regulate local and distant cellular communication by transporting specific exosomal contents and can also promote or suppress the development and progression of gastric cancer (GC) by regulating the growth and proliferation of tumor cells, the tumor-related immune response and tumor angiogenesis. Exosomes transport bioactive molecules including DNA, proteins, and RNA (coding and noncoding) from donor cells to recipient cells, causing reprogramming of the target cells. In this review, we will describe how exosomes regulate the cellular immune response, tumor angiogenesis, proliferation and metastasis of GC cells, and the role and mechanism of exosome-based therapy in human cancer. We will also discuss the potential application value of exosomes as biomarkers in the diagnosis and treatment of GC and their relationship with drug resistance.
Collapse
Affiliation(s)
- Xiao-Li Guan
- Department of General Medicine, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Xiao-Ying Guan
- Department of Pathology, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Zheng-Yi Zhang
- Department of General Medicine, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
6
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
7
|
Wang S, Li C, Yuan Y, Xiong Y, Xu H, Pan W, Pan H, Zhu Z. Microvesicles as drug delivery systems: A new frontier for bionic therapeutics in cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Yang Q, Xu J, Gu J, Shi H, Zhang J, Zhang J, Chen Z, Fang X, Zhu T, Zhang X. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201609. [PMID: 36253096 PMCID: PMC9731723 DOI: 10.1002/advs.202201609] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized vesicles that mediate cell-to-cell communication via transporting bioactive molecules and thus are critically involved in various physiological and pathological conditions. EVs contribute to different aspects of cancer progression, such as cancer growth, angiogenesis, metastasis, immune evasion, and drug resistance. EVs induce the resistance of cancer cells to chemotherapy, radiotherapy, targeted therapy, antiangiogenesis therapy, and immunotherapy by transferring specific cargos that affect drug efflux and regulate signaling pathways associated with epithelial-mesenchymal transition, autophagy, metabolism, and cancer stemness. In addition, EVs modulate the reciprocal interaction between cancer cells and noncancer cells in the tumor microenvironment (TME) to develop therapy resistance. EVs are detectable in many biofluids of cancer patients, and thus are regarded as novel biomarkers for monitoring therapy response and predicting prognosis. Moreover, EVs are suggested as promising targets and engineered as nanovehicles to deliver drugs for overcoming drug resistance in cancer therapy. In this review, the biological roles of EVs and their mechanisms of action in cancer drug resistance are summarized. The preclinical studies on using EVs in monitoring and overcoming cancer drug resistance are also discussed.
Collapse
Affiliation(s)
- Qiurong Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jing Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory MedicineNantong Tumor HospitalNantongJiangsu226361China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical PharmacologySchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Xinjian Fang
- Department of OncologyLianyungang Hospital Affiliated to Jiangsu UniversityLianyungangJiangsu222000China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care MedicineYixing Hospital affiliated to Jiangsu UniversityYixingJiangsu214200China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
9
|
Removal of small extracellular vesicles inhibits the progression of peritoneal dissemination in gastric cancer. Gastric Cancer 2022; 25:712-725. [PMID: 35368210 DOI: 10.1007/s10120-022-01293-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognosis of gastric cancer patients with peritoneal dissemination is extremely poor and effective treatment for peritoneal dissemination has not been established. Gastric cancer-derived small extracellular vesicles play an important role in the development of a favorable microenvironment for peritoneal metastasis and progression of peritoneal dissemination. Here, we aimed to investigate the transformation of gastric cancer cells by removing gastric cancer-derived small extracellular vesicles and to develop a novel therapy for inhibiting peritoneal dissemination. METHODS Gastric cancer cells were cultured in medium containing gastric cancer- and peritoneal mesothelium-derived small extracellular vesicles and in medium from which small extracellular vesicles were removed by ultracentrifugation. Cell function assays were performed in vitro, and the alternations in gene expression in gastric cancer cells were analyzed. The inhibitory effect of intraperitoneal lavage on peritoneal dissemination was investigated in vivo as a method to remove gastric cancer-derived small extracellular vesicles. RESULTS Removal of gastric cancer-derived small extracellular vesicles suppressed the proliferative and migrative abilities of gastric cancer cells and the adhesion of gastric cancer cells to peritoneal mesothelial cells. It altered the expression of several genes related to the cell cycle and epithelial-mesenchymal transition pathways of gastric cancer cells, leading to the inhibition of gastric cancer cell growth and peritoneal dissemination in vivo. CONCLUSIONS Our study provides novel insights into a novel therapy for inhibiting the peritoneal dissemination of gastric cancer by targeting gastric cancer-derived small extracellular vesicles to improve the prognosis of gastric cancer patients with peritoneal metastasis.
Collapse
|
10
|
Jin X, Qiu X, Huang Y, Zhang H, Chen K. miR-223-3p carried by cancer-associated fibroblast microvesicles targets SORBS1 to modulate the progression of gastric cancer. Cancer Cell Int 2022; 22:96. [PMID: 35193596 PMCID: PMC8862537 DOI: 10.1186/s12935-022-02513-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) aggravate gastric cancer (GC) development. Methods Combined with bioinformatics analysis and literature review, miR-223-3p had high expression in microvesicles (MVs) derived from GC CAFs, and it could modulate SORBS1. miR-223-3p and SORBS1 mRNA levels were assessed by qRT-PCR. The levels of CAFs markers, MVs markers, epithelial-mesenchymal transition (EMT)-associated proteins, and SORBS1 protein were assessed by western blot. MVs isolated from fibroblasts were observed by transmission electron microscopy. Combined with immunofluorescence and co-culture experiments, GC cells were determined to absorb MVs carrying miR-223-3p. Cell functions were measured using CCK-8, transwell, flow cytometry and colony formation assays. The binding of miR-223-3p and SORBS1 was determined by dual-luciferase assay and RNA immunoprecipitation. The cancer-promoting effect of MVs carrying miR-223-3p on experimental animals was verified in vivo by tumor-bearing experiment in nude mice. Results miR-223-3p was upregulated in the MVs secreted by GC CAFs and could be transmitted to GC cells through MVs, to boost the malignant progression of tumor cells. Additionally, it was also revealed that miR-223-3p targeted SORBS1 and accelerated progression along with EMT in GC. Conclusions CAFs-derived MVs could carry miR-223-3p to GC cells to target SORBS1, thereby promoting the malignant progression of GC.
Collapse
Affiliation(s)
- Xiaoli Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xi Qiu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yi Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Hang Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Kaibo Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
11
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
12
|
Ludwig N, Rao A, Sandlesh P, Yerneni SS, Swain AD, Bullock KM, Hansen KM, Zhang X, Jaman E, Allen J, Krueger K, Hong CS, Banks WA, Whiteside TL, Amankulor NM. Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro Oncol 2021; 24:197-209. [PMID: 34254643 DOI: 10.1093/neuonc/noab153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gliomas are the most common primary brain tumors and are universally fatal. Mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) define a distinct glioma subtype associated with an immunosuppressive tumor microenvironment. Mechanisms underlying systemic immunosuppression in IDH mutant (mutIDH) gliomas are largely unknown. Here, we define genotype-specific local and systemic tumor immunomodulatory functions of tumor-derived glioma exosomes (TEX). METHODS TEX produced by human and murine wildtype and mutant IDH glioma cells (wtIDH and mutIDH, respectively) were isolated by size exclusion chromatography (SEC). TEX morphology, size, quantity, molecular profiles and biodistribution were characterized. TEX were injected into naive and tumor-bearing mice, and the local and systemic immune microenvironment composition was characterized. RESULTS Using in vitro and in vivo glioma models, we show that mutIDH TEX are more numerous, possess distinct morphological features and are more immunosuppressive than wtIDH TEX. mutIDH TEX cargo mimics their parental cells, and induces systemic immune suppression in naive and tumor-bearing mice. TEX derived from mutIDH gliomas and injected into wtIDH tumor-bearing mice reduce tumor-infiltrating effector lymphocytes, dendritic cells and macrophages, and increase circulating monocytes. Astonishingly, mutIDH TEX injected into brain tumor-bearing syngeneic mice accelerate tumor growth and increase mortality compared with wtIDH TEX. CONCLUSIONS Targeting of mutIDH TEX represents a novel therapeutic approach in gliomas.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Aparna Rao
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Poorva Sandlesh
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Alexander D Swain
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Kristin M Bullock
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Kim M Hansen
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Xiaoran Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jordan Allen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Katharine Krueger
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Departments of Immunology and Otolaryngology, Pittsburgh, USA
| |
Collapse
|
13
|
Chen X, Wang H, Huang Y, Chen Y, Chen C, Zhuo W, Teng L. Comprehensive Roles and Future Perspectives of Exosomes in Peritoneal Metastasis of Gastric Cancer. Front Oncol 2021; 11:684871. [PMID: 34268118 PMCID: PMC8276633 DOI: 10.3389/fonc.2021.684871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent digestive malignancies. A great number of patients at first visit or post curative resections are diagnosed with widespread metastasis within the peritoneal cavity. Overwhelming evidence has demonstrated that exosomes, a variety of biologically functional extracellular vesicles comprising active factors, mediate the progression and metastasis of GC. Although the regulatory mechanisms of exosomes remain fairly elusive, they are responsible for intercellular communication between tumor cells and normal stroma, cancer-related fibroblasts, immune cells within the primary tumor and metastatic niche. In this review, we provide new insight into the molecular signatures of GC-associated exosomes in reprogramming the tumor microenvironment and the subsequent promotion of peritoneal metastasis—including infiltration of the gastric wall, implantation of tumor cells onto the pre-metastatic peritoneum, and remodeling of the pre-metastatic niche. Based on this review, we hope to draw a more general conclusion for the functions of exosomes in the progression and peritoneal metastasis of GC and highlight the future perspective on strategies targeting exosomes in prognostic biomarkers and therapy for peritoneal metastasis.
Collapse
Affiliation(s)
- Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zheng Y, Zeng J, Lin D, Xia H, Wang X, Chen L, Chen H, Huang L, Zeng C. Extracellular vesicles derived from cancer-associated fibroblast carries miR-224-5p targeting SLC4A4 to promote the proliferation, invasion and migration of colorectal cancer cells. Carcinogenesis 2021; 42:1143-1153. [PMID: 34170291 DOI: 10.1093/carcin/bgab055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 12/09/2022] Open
Abstract
More and more studies indicated that extracellular vesicles (EVs) carrying miRNAs have been potential biomarkers of various cancers including colorectal cancer (CRC). This study aims to explore the function of miR-224-5p carried by EVs derived from cancer-associated fibroblasts (CAFs) in CRC. Here, we found that miR-224-5p was highly expressed while SLC4A4 was lowly expressed in CRC cells. Moreover, dual-luciferase reporter gene assay testified that miR-224-5p targeted SLC4A4. The expression of miR-224-5p in CAFs-derived EVs was found to be elevated. It was also testified that CAFs-derived EVs could transfer miR-224-5p into CRC cells. miR-224-5p in CAFs-derived EVs facilitated the proliferation, migration, invasion and anti-apoptosis of CRC cells. Overexpressing miR-224-5p increased the proliferative, migratory and invasive abilities of CRC cells and inhibit CRC cell apoptosis, while overexpressing SLC4A4 caused the opposite result. Research in vitro and in vivo further indicated that miR-224-5p promoted CRC cell progression via binding to its downstream target gene SLC4A4. Rescue assay also demonstrated that overexpressing miR-224-5p reversed the inhibitory effect of overexpressed SLC4A4 on cancer cell growth. In addition, in vivo assay identified that high level of miR-224-5p promoted the growth of cancer cells in mice in vivo. In conclusion, we explored the effect of miR-224-5p in CRC, which helps for further exploration of new methods for CRC targeted therapy.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Jintao Zeng
- Basic Medical College, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Dajia Lin
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Haoyun Xia
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Liqi Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Liangxiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Changqing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
15
|
Fazakas C, Kozma M, Molnár K, Kincses A, Dér A, Fejér A, Horváth B, Wilhelm I, Krizbai IA, Végh AG. Breast adenocarcinoma-derived exosomes lower first-contact de-adhesion strength of adenocarcinoma cells to brain endothelial layer. Colloids Surf B Biointerfaces 2021; 204:111810. [PMID: 33965749 DOI: 10.1016/j.colsurfb.2021.111810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Despite of advances in modern therapeutics, one of the most feared complications of cancer are brain metastases, which often cause life impairing profound neurological symptoms and premature death. Breast adenocarcinoma is among the leading "sources" of brain metastases. Since the central nervous system lacks a classical lymphatic circulation, invading metastatic cells can reach the brain parenchyma only through haematogenous routes and must breach the blood-brain barrier (BBB). The key step before the transmigration of metastatic cells through the highly regulated interface of the BBB is the establishment of firm adhesion between the tumor cell and the cerebral endothelial layer. Using atomic force microscopy, as a high resolution force spectrograph, direct measurements of intercellular interactions was performed between living adenocarcinoma cells and a confluent endothelial layer pre-treated with carcinoma cell-derived exosomes. By immobilization of a living adenocarcinoma cell to an atomic force microscope's cantilever, intercellular de-adhesions were directly measured by single cell force spectroscopy (SCFS) at quasi-physiological conditions. De-adhesion dynamics and strength was characterized by several different calculated parameters, involving aspects of both membrane and cell surface related factors. Our results indicate that de-adhesion strength was lower in case of exosome pre-treated endothelial cells as compared to non-treated controls. Breast adenocarcinoma-derived exosomes have direct effect on de-adhesion pattern of brain endothelium.
Collapse
Affiliation(s)
- Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Adrienn Fejér
- Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Barnabás Horváth
- Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Institute of Life Sciences, Vasile Goldiş Western University, Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Institute of Life Sciences, Vasile Goldiş Western University, Arad, Romania
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
16
|
Xue X, Huang J, Yu K, Chen X, He Y, Qi D, Wu Y. YB-1 transferred by gastric cancer exosomes promotes angiogenesis via enhancing the expression of angiogenic factors in vascular endothelial cells. BMC Cancer 2020; 20:996. [PMID: 33054752 PMCID: PMC7557103 DOI: 10.1186/s12885-020-07509-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Angiogenesis is important for the progression of gastric cancer (GC). Y-box binding protein 1 (YB-1) predicts advanced disease and indicates neovasculature formation in GC tissues, while the related mechanisms remain elusive. Exosomes mediate intercellular communications via transferring various molecules including proteins, lipids, mRNAs, and microRNAs, while the cargos of GC exosomes and the related mechanisms in GC angiogenesis were rarely reported except for several microRNAs. Methods In this study, human umbilical vein endothelial cells (HUVECs) were, respectively, treated by the exosomes isolated from the YB-1 transfected and the control SGC-7901 cells (SGC-7901-OE-Exo and SGC-7901-NC-Exo), and their apoptosis, proliferation, migration, invasion, and angiogenesis were, sequentially, compared. The levels of angiogenic factors including VEGF, Ang-1, MMP-9 and IL-8 in the exosome-treated HUVECs and the GC-derived exosomes were, separately, detected using PCR and Western blotting as well as RNA sequencing assays. Results We observed the consistent level of YB-1 in the exosomes and their originated GC cells, and the internalization of exosomes into HUVECs. Comparing with SGC-7901-NC-Exo, SGC-7901-OE-Exo significantly inhibited the apoptosis but promoted the proliferation, migration, invasion, and angiogenesis of HUVECs, within which the increased mRNA and protein levels of VEGF, Ang-1, MMP-9 and IL-8 were demonstrated. Meanwhile, mRNA levels of VEGF, Ang-1, MMP-9 and IL-8 showed no significant difference between SGC-7901-NC-Exo and SGC-7901-OE-Exo, although statistically higher mRNA of YB-1 was detected in the SGC-7901-OE-Exo. Conclusions Our findings illustrate YB-1 as the key component of exosome to promote GC angiogenesis by upregulating specific angiogenic factors in the exosome-treated endothelial cells but not in the exosomes themselves.
Collapse
Affiliation(s)
- Xiaoxia Xue
- Science Experiment Center, China Medical University, 77 Puhe Road, Shenyang North New Area, Liaoning, 110122, Shenyang, China
| | - Jin Huang
- Department of Radiation Therapy, The First Hospital, China Medical University, 518 Chuangxin Road, Hunnan District, Shenyang, 110167, Liaoning, China
| | - Kai Yu
- Department of General Practice, The First Hospital, China Medical University, 155 South Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xinyue Chen
- Department of General Practice, The First Hospital, China Medical University, 155 South Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yini He
- Department of General Practice, The First Hospital, China Medical University, 155 South Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Dianjun Qi
- Department of General Practice, The First Hospital, China Medical University, 155 South Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ying Wu
- Department of General Practice, The First Hospital, China Medical University, 155 South Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
17
|
Zhang X, Xu Y, Wang J, Zhao S, Li J, Huang X, Xu H, Zhang X, Suo S, Lv Y, Zhang Y, Yu W. miR-221-3p Delivered by BMMSC-Derived Microvesicles Promotes the Development of Acute Myelocytic Leukemia. Front Bioeng Biotechnol 2020; 8:81. [PMID: 32117949 PMCID: PMC7033425 DOI: 10.3389/fbioe.2020.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The study aims to investigate the effects of miR-221-3p in bone marrow mesenchymal stem cell (BMMSC)-derived microvesicles (MVs) on cell cycle, proliferation and invasion of acute myelocytic leukemia (AML). Methods: Bioinformatics was used to predict differentially expressed miRNAs (DEmiRNAs) in AML. The morphology of BMMSC-derived MVs was observed under an electron microscope, and the positional relation of MVs and OCI-AML2 cells was observed by a fluorescence microscope. MTT, Transwell, and flow cytometry assays were used to analyze the effects of MVs on OCI-AML2 cells. The targeted relationship between miR-221-3p and CDKN1C was detected by dual luciferase assay. Results: It was verified that miR-221-3p promoted the proliferation, invasion and migration of OCI-AML2 cells, and induced the cell cycle arrest in G1/S phase as well as inhibited cell apoptosis. Further studies showed that MVs promoted the proliferation, migration and invasion of AML, and induced the cell cycle arrest in G1/S phase through miR-221-3p. It was confirmed that miR-221-3p can directly target CDKN1C to regulate cell cycle, proliferation and invasion of AML. Conclusion: miR-221-3p in BMMSC-derived MVs regulated AML cell cycle, cell proliferation and invasion through targeting CDKN1C. miR-221-3p and CDKN1C were considered to be potential targets and biomarkers for the treatment of AML in clinic.
Collapse
Affiliation(s)
- Xuewu Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yu Xu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Shuqi Zhao
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jianhu Li
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xin Huang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Huan Xu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Shanshan Suo
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yi Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| |
Collapse
|
18
|
Szatanek R, Weglarczyk K, Stec M, Baran J, Parlinska-Wojtan M, Siedlar M, Baj-Krzyworzeka M. Autologous tumor‑derived microvesicles influence gene expression profiles and enhance protumorigenic chemotactic potential, signal transduction and cellular respiration in gastric cancer cells. Int J Oncol 2019; 56:359-367. [PMID: 31789386 DOI: 10.3892/ijo.2019.4923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
Tumor‑derived microvesicles (TMVs) interact with a variety of different cell types within the immune system, including lymphocytes, monocytes, dendritic cells and tumor cells that they have originated from. In the present study, the effects of autologous‑TMVs (auto‑TMVs) on gene expression, chemotaxis, intercellular signaling and cellular metabolism were examined in cells of the gastric cancer (GC) cell line 1415 (GC1415). The effects of auto‑TMVs on mRNA gene expression in GC1415 cells were assessed using pathway‑focused PCR arrays. A chemotaxis assay was performed using the HoloMonitor M4 System. Signaling pathways were evaluated using western blot analysis, and cellular respiration was measured using the Seahorse XF Cell Mito Stress Test. Exposure of the GC1415 cells to auto‑TMVs led to the overexpression (75 genes) and underexpression (96 genes) of genes that are associated with signal transduction, metabolism, chemotaxis, angiogenesis and metastasis. The auto‑TMVs were indicated to induce chemotaxis and activate the PI3K/AKT signaling pathway in GC1415 cells. However, the MAPK/ERK signaling pathway was not indicated to be activated. Furthermore, studies on cellular respiration in GC1415 cells exposed to auto‑TMVs demonstrated a metabolic shift to glycolysis. The results of the current study thus indicate that auto‑TMVs may exert an effect on tumor cell function.
Collapse
Affiliation(s)
- Rafal Szatanek
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Jaroslaw Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | | | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| |
Collapse
|
19
|
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S, Wang J. Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer 2019; 18:50. [PMID: 30925930 PMCID: PMC6441155 DOI: 10.1186/s12943-019-0973-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that the ability of cancer cells to convey biological information to recipient cells within the tumor microenvironment (TME) is crucial for tumor progression. Microvesicles (MVs) are heterogenous vesicles formed by budding of the cellular membrane, which are secreted in larger amounts by cancer cells than normal cells. Recently, several reports have also disclosed that MVs function as important mediators of intercellular communication between cancerous and stromal cells within the TME, orchestrating complex pathophysiological processes. Chemokines are a family of small inflammatory cytokines that are able to induce chemotaxis in responsive cells. MVs which selective incorporate chemokines as their molecular cargos may play important regulatory roles in oncogenic processes including tumor proliferation, apoptosis, angiogenesis, metastasis, chemoresistance and immunomodulation, et al. Therefore, it is important to explore the association of MVs and chemokines in TME, identify the potential prognostic marker of tumor, and develop more effective treatment strategies. Here we review the relevant literature regarding the role of MVs and chemokines in TME.
Collapse
Affiliation(s)
- Xiaojie Bian
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leilei Du
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, China.
| |
Collapse
|
20
|
Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 2019; 18:62. [PMID: 30925929 PMCID: PMC6441168 DOI: 10.1186/s12943-019-0967-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death in both men and women due to delayed diagnosis and high metastatic frequency. Extracellular vesicles (EVs) are membrane-bound nanovesicles which are released by cells into body fluids such as plasma, saliva, breast milk, cerebrospinal fluid, semen, urine, lymphatic fluid, amniotic fluid, sputum and synovial fluid. EVs deliver almost all types of biomolecules such as proteins, nucleic acids, metabolites, and even pharmacological compounds. These bioactive molecules can be delivered to recipient cells to influence their biological properties, modify surrounding microenvironment and distant targets. The extensive exploration of EVs enhances our comprehension of GC biology referring to tumor growth, metastasis, immune response and evasion, chemoresistance and treatment. In this review, we will sum up the effects of GC-derived EVs to the tumor microenvironment. Moreover, we will also summarize the function of microenvironment-derived EVs in GC and discuss how the bidirectional communication between tumor and microenvironment affect GC growth, metastatic behavior, immune response, and drug resistance. At last, we prospect the clinical application viewpoint of EVs in GC.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Baoan District, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Chunli Song
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Baoan District, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Yang Li
- Department of Gastrointestinal Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Yiwen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Baoan District, Shenzhen, 518020, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Fu M, Gu J, Jiang P, Qian H, Xu W, Zhang X. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol Cancer 2019; 18:41. [PMID: 30876419 PMCID: PMC6419325 DOI: 10.1186/s12943-019-1001-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Exosomes are nanosized extracellular vesicles that can be released by almost all types of cells. Initially considered as the garbage bins acting to discard unwanted products of cells, exosomes are now recognized as an important way for cellular communication by transmitting bioactive molecules including proteins, DNA, mRNAs, and non-coding RNAs. The recent studies have shown that exosomes are critically involved in human health and diseases including cancer. Exosomes have been suggested to participate in the promotion of tumorigenesis, tumor growth and metastasis, tumor angiogenesis, tumor immune escape, and tumor therapy resistance. Increasing evidence indicate that exosomes play important roles in gastric cancer development and progression. In this review, we summarized the current understanding of exosomes in gastric cancer with an emphasis on the biological roles of exosomes in gastric cancer and their potential as biomarkers for gastric cancer diagnosis as well as potential targets for gastric cancer therapy.
Collapse
Affiliation(s)
- Min Fu
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital, 30 Tongyang North Road, Nantong, 226361, Jiangsu, China
| | - Pengcheng Jiang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Hui Qian
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
22
|
Sato S, Weaver AM. Extracellular vesicles: important collaborators in cancer progression. Essays Biochem 2018; 62:149-163. [PMID: 29666212 PMCID: PMC6377252 DOI: 10.1042/ebc20170080] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane vesicles that are released from cells and mediate cell-cell communication. EVs carry protein, lipid, and nucleic acid cargoes that interact with recipient cells to alter their phenotypes. Evidence is accumulating that tumor-derived EVs can play important roles in all steps of cancer progression. Here, we review recent studies reporting critical roles for EVs in four major areas of cancer progression: promotion of cancer invasiveness and motility, enhancement of angiogenesis and vessel permeability, conditioning premetastatic niches, and immune suppression.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
23
|
Chen KB, Chen J, Jin XL, Huang Y, Su QM, Chen L. Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed Rep 2018; 8:503-509. [PMID: 29774141 DOI: 10.3892/br.2018.1088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
The prognosis of patients with peritoneal dissemination from gastric cancer is poor, and the underlying molecular mechanism remains unclear. Exosomes, as macromolecular phospholipid bilayer vesicles comprising of proteins, nucleic acids and lipids, serve as mediators of cell-cell communication. Gastric cancer tumor-derived exosomes may be involved in the pathological process of peritoneal dissemination by mediating crosstalk between cancer cells and mesothelial cells, to result in the induction of enhanced tumor growth, migratory, adhesive and invasive abilities, peritoneal fibrosis and apoptosis, mesothelial-to-mesenchymal transition, angiogenesis and chemoresistance. The present review focuses on previous studies addressing the exosome-dependent molecular transfer in peritoneal dissemination in gastric cancer and the potential clinical applications.
Collapse
Affiliation(s)
- Kai-Bo Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jian Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiao-Li Jin
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yi Huang
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Qiu-Ming Su
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Li Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
24
|
de Andrade A, de Oliveira CE, Dourado MR, Macedo C, Winck FV, Paes Leme AF, Salo T, Coletta RD, de Almeida Freitas R, Galvão HC. Extracellular vesicles from oral squamous carcinoma cells display pro- and anti-angiogenic properties. Oral Dis 2018; 24:725-731. [PMID: 28887832 DOI: 10.1111/odi.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A new intercellular communication mode established by neoplastic cells and tumor microenvironment components is based on extracellular vesicles (EVs). However, the biological effects of the EVs released by tumor cells on angiogenesis are not completely understood. Here, we aimed to understand the biological effects of EVs isolated from two cell lines of oral squamous cell carcinoma (OSCC) (SCC15 and HSC3) on endothelial cell tubulogenesis. METHODS OSCC-derived EVs were isolated with a polymer-based precipitation method, quantified using nanoparticle tracking analysis and verified for EV markers by dot blot. Functional assays were performed to assess the angiogenic potential of the OSCC-derived EVs. RESULTS The results showed that EVs derived from both cell lines displayed typical spherical-shaped morphology and expressed the EV markers CD63 and Annexin II. Although the average particle concentration and size were quite similar, SCC15-derived EVs promoted a pronounced tubular formation associated with significant migration and apoptosis rates of the endothelial cells, whereas EVs derived from HSC3 cells inhibited significantly endothelial cell tubulogenesis and proliferation. CONCLUSION The findings of this study reveal that EVs derived from different OSCC cell lines by a polymer-based precipitation method promote pro- or anti-angiogenic effects.
Collapse
Affiliation(s)
- Aldl de Andrade
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - C E de Oliveira
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - M R Dourado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Ccs Macedo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - F V Winck
- Mass Spectrometry Laboratory, Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - A F Paes Leme
- Mass Spectrometry Laboratory, Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - T Salo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil.,Unit of Cancer Research and Translational Medicine, Faculty of Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Institute of Oral and Maxillofacial Disease, HUSLAB, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - R D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - R de Almeida Freitas
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - H C Galvão
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
25
|
Barteneva NS, Baiken Y, Fasler-Kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim Biophys Acta Rev Cancer 2017; 1868:372-393. [DOI: 10.1016/j.bbcan.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
26
|
Effect of the irradiation on Neuroblastoma-derived microvesicles: A physical and biological investigation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Green TM, Santos MF, Barsky SH, Rappa G, Lorico A. Analogies Between Cancer-Derived Extracellular Vesicles and Enveloped Viruses with an Emphasis on Human Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2016; 4:169-179. [PMID: 32226654 PMCID: PMC7099913 DOI: 10.1007/s40139-016-0116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Cancer cells utilize extracellular vesicles (EVs) as a means of transferring oncogenic proteins and nucleic acids to other cells to enhance the growth and spread of the tumor. There is an unexpected amount of similarities between these small, membrane-bound particles and enveloped virions, including protein content, physical characteristics (i.e., size and morphology), and mechanisms of entry and exit into target cells. Recent Findings This review describes the attributes shared by both cancer-derived EVs, with an emphasis on breast cancer-derived EVs, and enveloped viral particles and discusses the methods by which virions can utilize the EV pathway as a means of transferring viral material and oncogenes to host cells. Additionally, the possible links between human papilloma virus and its influence on the miRNA content of breast cancer-derived EVs are examined. Summary The rapidly growing field of EVs is allowing investigators from different disciplines to enter uncharted territory. The study of the emerging similarities between cancer-derived EVs and enveloped virions may lead to novel important scientific discoveries.
Collapse
Affiliation(s)
- Toni M Green
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Mark F Santos
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Sanford H Barsky
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Germana Rappa
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Aurelio Lorico
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| |
Collapse
|