1
|
Yang CL, Song R, Hu JW, Huang JT, Li NN, Ni HH, Li YK, Zhang J, Lu Z, Zhou M, Wang JD, Li MJ, Zhan GH, Peng T, Yu HP, Qi LN, Wang QY, Xiang BD. Integrating single-cell and bulk RNA sequencing reveals CK19 + cancer stem cells and their specific SPP1 + tumor-associated macrophage niche in HBV-related hepatocellular carcinoma. Hepatol Int 2024; 18:73-90. [PMID: 38159218 DOI: 10.1007/s12072-023-10615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Cytokeratin 19-positive cancer stem cells (CK19 + CSCs) and their tumor-associated macrophages (TAMs) have not been fully explored yet in the hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN Single-cell RNA sequencing was performed on the viable cells obtained from 11 treatment-naïve HBV-associated HCC patients, including 8 CK19 + patients, to elucidate their transcriptomic landscape, CK19 + CSC heterogeneity, and immune microenvironment. Two in-house primary HCC cohorts (96 cases-related HBV and 89 cases with recurrence), TCGA external cohort, and in vitro and in vivo experiments were used to validate the results. RESULTS A total of 64,581 single cells derived from the human HCC and adjacent normal tissues were sequenced, and 11 cell types were identified. The result showed that CK19 + CSCs were phenotypically and transcriptionally heterogeneous, co-expressed multiple hepatics CSC markers, and were positively correlated with worse prognosis. Moreover, the SPP1 + TAMs (TAM_SPP1) with strong M2-like features and worse prognosis were specifically enriched in the CK19 + HCC and promoted tumor invasion and metastasis by activating angiogenesis. Importantly, matrix metalloproteinase 9 (MMP9) derived from TAM_SPP1, as the hub gene of CK19 + HCC, was activated by the VEGFA signal. CONCLUSIONS This study revealed the heterogeneity and stemness characteristics of CK19 + CSCs and specific immunosuppressive TAM_SPP1 in CK19 + HCC. The VEGFA signal can activate TAM_SPP1-derived MMP9 to promote the invasion and metastasis of CK19 + HCC tumors. This might provide novel insights into the clinical treatment of HCC patients.
Collapse
Affiliation(s)
- Cheng-Lei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Rui Song
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jun-Wen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jun-Tao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Nan-Nan Li
- Department of Ultrasound, Guangxi Zhuang Autonomous Region Workers' Hospital, Nanning, 530021, Guangxi Province, China
| | - Hang-Hang Ni
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Yuan-Kuan Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Zhan Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Min Zhou
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Jun-Duo Wang
- The First Clinical Medical School, Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Min-Jun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Guo-Hua Zhan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Hong-Ping Yu
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Province, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China.
| | - Qiu-Yan Wang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuang Yong Road, Nanning, 530021, Guangxi Province, China.
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Qingxiu District, 71 He Di Road, Nanning, 530021, Guangxi Province, China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, Guangxi Province, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, Guangxi Province, China.
| |
Collapse
|
3
|
Pascale F, Pelage JP, Wassef M, Ghegediban SH, Saint-Maurice JP, De Baere T, Denys A, Duran R, Deschamps F, Pellerin O, Maeda N, Laurent A, Namur J. Rabbit VX2 Liver Tumor Model: A Review of Clinical, Biology, Histology, and Tumor Microenvironment Characteristics. Front Oncol 2022; 12:871829. [PMID: 35619923 PMCID: PMC9128410 DOI: 10.3389/fonc.2022.871829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The rabbit VX2 is a large animal model of cancer used for decades by interventional radiologists to demonstrate the efficacy of various locoregional treatments against liver tumors. What do we know about this tumor in the new era of targeted therapy and immune-oncology? The present paper describes the current knowledge on the clinics, biology, histopathology, and tumor microenvironment of VX2 based on a literature review of 741 publications in the liver and in other organs. It reveals the resemblance with human cancer (anatomy, vascularity, angiogenic profile, drug sensitivity, immune microenvironment), the differences (etiology, growth rate, histology), and the questions still poorly explored (serum and tissue biomarkers, genomic alterations, immune checkpoint inhibitors efficacy).
Collapse
Affiliation(s)
- Florentina Pascale
- Research and Development Department, Archimmed Société à responsabilité limtée Limited liability Company (SARL), Jouy-en-Josas, France
| | - Jean-Pierre Pelage
- Université de Caen Normandie (UNICEAN), Centre d'Energie atomique (CEA), Centre National de la Recherche Scientifique, Imagerie et Stratégies Thérapeutiques pour les Cancers et Tissus Cérébraux CERVOxy (ISTCT-CERVOxy) Normandie University, Caen, France.,Department of Interventional and Diagnostic Imaging, University Hospital of Caen, Avenue de la Côte de Nacre, Caen, France
| | - Michel Wassef
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, Assistance Publique Hopitaux de Paris (APHP); Unité de Formation et de Recherche (URF) de Médecine Paris Nord, Université de Paris, Paris, France
| | - Saïda H Ghegediban
- Research and Development Department, Archimmed Société à responsabilité limtée Limited liability Company (SARL), Jouy-en-Josas, France
| | - Jean-Pierre Saint-Maurice
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique Hopitaux de Paris (APHP); Unité de Formation et de Recherche (URF) de Médecine Paris Nord, Université de Paris, Paris, France
| | - Thierry De Baere
- Department of Interventional Radiology, Gustave Roussy Cancer Center, Villejuif, France.,Unité de Formation et de Recherche (URF) Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Deschamps
- Department of Interventional Radiology, Gustave Roussy Cancer Center, Villejuif, France.,Unité de Formation et de Recherche (URF) Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Olivier Pellerin
- Department of Interventional Radiology, Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de Paris (APHP) Université de Paris, Paris, France
| | - Noboru Maeda
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Alexandre Laurent
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique Hopitaux de Paris (APHP); Unité de Formation et de Recherche (URF) de Médecine Paris Nord, Université de Paris, Paris, France
| | - Julien Namur
- Research and Development Department, Archimmed Société à responsabilité limtée Limited liability Company (SARL), Jouy-en-Josas, France
| |
Collapse
|
4
|
Yan X, Sun T, Song Y, Peng W, Xu Y, Luo G, Li M, Chen S, Fang WW, Dong L, Xuan S, He T, Cao B, Lu Y. In situ Thermal-Responsive Magnetic Hydrogel for Multidisciplinary Therapy of Hepatocellular Carcinoma. NANO LETTERS 2022; 22:2251-2260. [PMID: 35254836 DOI: 10.1021/acs.nanolett.1c04413] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current surgical single modality treatments for hepatocellular carcinoma (HCC) were restricted by recurrence, blood loss, significant trauma, and poor prognostic. Although multidisciplinary strategies for HCC treatment have been highly recommended by the clinical guidelines, there was limited choice of materials and treatments. Herein, we reported an in situ formed magnetic hydrogel with promising bioapplicable thermal-responsiveness, strong adhesion in wet conditions, high magnetic hyperthermia, and biocompatibility, leading to efficient HCC multidisciplinary treatment including postoperative treatment and transarterial embolization therapy. In vivo results indicated that this hydrogel could reduce the postoperative recurrence rate. The hemostatic ability of the thermal-responsive hydrogel was further demonstrated in both the liver scratch model and liver tumor resection. Computed tomography imaging suggested that the hydrogel could completely embolize the arterial vessels of rabbit liver tumor by vascular intervention operation, which could serve as multidisciplinary responsive materials to external magnetic field and body temperature for HCC treatment.
Collapse
Affiliation(s)
- Xu Yan
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Tianci Sun
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Wei Peng
- Department of General Surgery, Department of Interventional Radiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Yunjun Xu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Guangyi Luo
- Department of General Surgery, Department of Interventional Radiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Min Li
- Department of General Surgery, Department of Interventional Radiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Liang Dong
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Shouhu Xuan
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Baoqiang Cao
- Department of General Surgery, Department of Interventional Radiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
5
|
Liang YJ, Yu H, Feng G, Zhuang L, Xi W, Ma M, Chen J, Gu N, Zhang Y. High-Performance Poly(lactic-co-glycolic acid)-Magnetic Microspheres Prepared by Rotating Membrane Emulsification for Transcatheter Arterial Embolization and Magnetic Ablation in VX 2 Liver Tumors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43478-43489. [PMID: 29116741 DOI: 10.1021/acsami.7b14330] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interventional embolization is a popular minimally invasive vascular therapeutic technique and has been widely applied for hepatocellular carcinoma (HCC) therapy. However, harmful effects caused by transcatheter arterial chemoembolization (TACE) and radioembolization, such as the toxicity of chemotherapy or excessive radiation damage, are serious disadvantages and significantly reduce the therapeutic efficacy. Here, a synergistic therapeutic strategy combined transcatheter arterial embolization and magnetic ablation (TAEMA) by using poly(lactic-co-glycolic acid) (PLGA)-magnetic microspheres (MMs) has been successfully applied to orthotopic VX2 liver tumors of rabbits. These MMs fabricated by novel rotating membrane emulsification system with well-controlled sizes (100-1000 μm) exhibited extremely low hemolysis ratio and excellent biocompatibility with HepG2 cells and L02 cells. Moreover, experimental results demonstrated that, while exposed to alternating magnetic field (AMF) after TAE, the tumor edge could be heated up by more than 15 °C both in vivo and in vitro, whereas only a negligible increase of temperature was observed in the normal hepatic parenchyma (NHP) nearby. Sufficient temperature increase induces apoptosis of tumor cells. This can further inhibit the tumor angiogenesis and results in necrosis compared to the rabbits only treated with TAE. In stark contrast, tumors rapidly grow and subtotal metastasis occurs in the lungs or kidneys, causing severe complications for rabbits only irradiated under AMF. Importantly, the results from the biochemical examination and the gene expression of relative HCC markers further confirmed that the treatment protocol using PLGA-MMs could achieve good biosafety and excellent therapeutic efficacy, which are promising for liver cancer therapy.
Collapse
Affiliation(s)
- Yi-Jun Liang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| | - Hui Yu
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Guodong Feng
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Linlin Zhuang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Wei Xi
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| | - Jun Chen
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| |
Collapse
|