1
|
Morimoto K, Nakashima A, Ishiuchi N, Miyasako K, Tanaka Y, Sasaki K, Matsuda G, Maeda S, Miyaki S, Masaki T. Renal protective effects of extracellular vesicle-encapsulated tumor necrosis factor-α-induced protein 6 derived from mesenchymal stem cells. Stem Cells 2025; 43:sxaf022. [PMID: 40249362 DOI: 10.1093/stmcls/sxaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Acute kidney injury (AKI) is involved in subsequent chronic kidney disease (CKD) development, and effective treatments to prevent AKI to CKD progression are lacking. Mesenchymal stem cells (MSCs) are emerging as a promising cellular therapy to impede such progression through the secretion of various humoral factors. Among these factors, tumor necrosis factor-α-induced protein 6 (TSG-6) has a central role in the anti-inflammatory effects of MSCs. However, the mechanisms by which MSCs secrete TSG-6 and exert anti-inflammatory effects are not fully clarified. Here, we investigated these mechanisms using TSG-6-overexpressing MSCs (TSG-6 MSCs) with an adeno-associated virus. Extracellular vesicles (EVs) were isolated from MSC culture supernatants by ultracentrifugation. MSCs were injected through the abdominal aorta into rats with ischemia-reperfusion injury (IRI) to evaluate their anti-inflammatory and anti-fibrotic effects. Additionally, we explored natural compounds that increased TSG-6 expression in MSCs. Most TSG-6 was immediately secreted in EVs and was not stored intracellularly. Administration of TSG-6 MSCs strongly suppressed renal fibrosis and inflammation in IRI rats. Although EVs and conditioned medium from TSG-6 MSCs (TSG-6 MSC-CM) strongly promoted polarization of M2 macrophages, TSG-6 MSC-CM after EV depletion promoted it only slightly. Moreover, TSG-6 MSC-CM enhanced regulatory T-cell induction. MSCs treated with indole-3-carbinol had enhanced TSG-6 expression and markedly suppressed IRI-induced renal fibrosis. Taken together, TSG-6 is secreted in EVs from MSCs and exerts potent anti-inflammatory effects by promoting M2 macrophage polarization and regulatory T-cell induction. Administration of MSCs with enhanced TSG-6 secretion is a promising therapeutic strategy to impede AKI to CKD progression.
Collapse
Affiliation(s)
- Keisuke Morimoto
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Yoshiki Tanaka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Go Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Research and Development, TWOCELLS Company, Limited, Hiroshima, 732-0816, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Research and Development, TWOCELLS Company, Limited, Hiroshima, 732-0816, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| |
Collapse
|
2
|
Ruan MF, Yin YH, Shao XD, Qi XS. Bone marrow mesenchymal stem cell transplantation for treatment of liver cirrhosis: Recent advances. Shijie Huaren Xiaohua Zazhi 2025; 33:106-113. [DOI: 10.11569/wcjd.v33.i2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Affiliation(s)
- Meng-Fan Ruan
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Jinzhou Medical University), Shenyang 110840, Liaoning Province, China
- Postgraduate College, Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Yu-Hang Yin
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Jinzhou Medical University), Shenyang 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Xiao-Dong Shao
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Jinzhou Medical University), Shenyang 110840, Liaoning Province, China
| | - Xing-Shun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Jinzhou Medical University), Shenyang 110840, Liaoning Province, China
- Postgraduate College, Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang 110122, Liaoning Province, China
| |
Collapse
|
3
|
Gasanov VAO, Kashirskikh DA, Khotina VA, Kuzmina DM, Nikitochkina SY, Mukhina IV, Vorotelyak EA, Vasiliev AV. Preclinical Evaluation of the Safety, Toxicity and Efficacy of Genetically Modified Wharton's Jelly Mesenchymal Stem/Stromal Cells Expressing the Antimicrobial Peptide SE-33. Cells 2025; 14:341. [PMID: 40072070 PMCID: PMC11898551 DOI: 10.3390/cells14050341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) offer promising therapeutic potential in cell-based therapies for various diseases. However, the safety of genetically modified MSCs remains poorly understood. This study aimed to evaluate the general toxicity and safety of Wharton's Jelly-Derived MSCs (WJ-MSCs) engineered to express the antimicrobial peptide SE-33 in an animal model. Genetically modified WJ-MSCs expressing SE-33 were administered to C57BL/6 mice at both therapeutic and excessive doses, either once or repeatedly. Animal monitoring included mortality, clinical signs, and behavioral observations. The toxicity assessment involved histopathological, hematological, and biochemical analyses of major organs and tissues, while immunotoxicity and immunogenicity were examined through humoral and cellular immune responses, macrophage phagocytic activity, and lymphocyte blast transformation. Antimicrobial efficacy was evaluated in a Staphylococcus aureus-induced pneumonia model by monitoring animal mortality and assessing bacterial load and inflammatory processes in the lungs. Mice receiving genetically modified WJ-MSCs exhibited no acute or chronic toxicity, behavioral abnormalities, or pathological changes, regardless of the dose or administration frequency. No significant immunotoxicity or alterations in immune responses were observed, and there were no notable changes in hematological or biochemical serum parameters. Infected animals treated with WJ-MSC-SE33 showed a significant reduction in bacterial load and lung inflammation and improved survival compared to control groups, demonstrating efficacy over native WJ-MSCs. Our findings suggest that WJ-MSCs expressing SE-33 are well tolerated, displaying a favorable safety profile comparable to native WJ-MSCs and potent antimicrobial activity, significantly reducing bacterial load, inflammation, and mortality in an S. aureus pneumonia model. These data support the safety profile of WJ-MSCs expressing SE-33 as a promising candidate for cell-based therapies for bacterial infections, particularly those complicated by antibiotic resistance.
Collapse
Affiliation(s)
- Vagif Ali oglu Gasanov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | | | - Victoria Alexandrovna Khotina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Daria Mikhailovna Kuzmina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Sofya Yurievna Nikitochkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Irina Vasilievna Mukhina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Ekaterina Andreevna Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
- Department of Cell Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey Valentinovich Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| |
Collapse
|
4
|
Abd-Allah SH, Khamis T, Samy W, Alsemeh AE, Abdullah DM, Hussein S. Mesenchymal Stem Cells and Their Derived Exosomes Mitigated Hepatic Cirrhosis in Rats by Altering the Expression of miR-23b and miR-221. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:724-740. [PMID: 39678523 PMCID: PMC11645418 DOI: 10.30476/ijms.2023.99524.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2024]
Abstract
Background The therapeutic effect of mesenchymal stem cells (MSCs) in liver cirrhosis is limited by their entrapment in the pulmonary vessels. Thus, the use of MSC-derived exosomes has become a promising strategy. The current work aimed to compare the role of human umbilical cord blood-MSCs (hUCB-MSCs) and their derived exosomes in the alleviation of liver cirrhosis focusing on the role of miR-23b and miR-221 and their direct effectors in inflammatory and autophagic pathways. Methods Rats were divided into six groups normal controls (negative control), liver cirrhosis group (positive control), liver cirrhotic rats that received conditioned media, liver cirrhotic rats that received hUCB-MSCs, cirrhotic rats that received exosomes, and cirrhotic rats that received both hUCB-MSCs and exosomes. The messenger RNA expression of transforming growth factor-β (TGF-β), Matrix metalloproteinase 9 (MMP 9), fibronectin, collagen type-1 (col1), alpha-smooth muscle actin (α-SMA), Suppressor of Mothers Against Decapentaplegic (SMAD) 2 and 7, Beclin, P62, and light chain 3 (LC3) were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemical staining for Beclin, P62, and LC3 was performed. Results The treatment of cirrhotic rats with hUCB-MSCs, exosomes, or the combination of them significantly downregulated miRNA-221, fibronectin, collagen I, α-SMA, Smad2 (P<0.001, for each), and P62 (P=0.032, P<0.001, P<0.001, respectively). Additionally, the treatment of cirrhotic rats with hUCB-MSCs, exosomes, or the combination of them significantly upregulated mTOR, Beclin, LC3, and Smad7 (P<0.001, for each) and miRNA-23 (P=0.021, P<0.001, P<0.001, respectively). Conclusion hUCB-MSCs and their derived exosomes ameliorated liver cirrhosis by anti-inflammatory and anti-fibrotic effects besides modulation of autophagy. The exosomes had a better improvement effect either alone or combined with hUCB-MSCs, as proved by improvement in liver function tests, and molecular, histopathological, and immunohistochemical profiles.
Collapse
Affiliation(s)
- Somia H. Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Doaa M. Abdullah
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Ali SA, Datusalia AK. Berberine attenuates ECM accumulation and the progression of acute liver failure through inhibition of NLRP3 inflammasome signalling. Toxicol Appl Pharmacol 2024; 492:117129. [PMID: 39428072 DOI: 10.1016/j.taap.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-β1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-β1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1β, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1β signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India.
| |
Collapse
|
6
|
Wei N, Chen X, Liu D, Bu X, Wang G, Sun X, Zhang J. A multi-modality imaging strategy to determine the multiple in vivo fates of human umbilical cord mesenchymal stem cells at different periods of acute liver injury treatment. J Mater Chem B 2024; 12:9213-9228. [PMID: 39041357 DOI: 10.1039/d4tb00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Human umbilical cord mesenchymal stem cells (HUCMSCs) are applied for disease therapy as a new type of drug in many countries. Their effects are not only presented by live cells, but also apoptotic bodies or cell fragments of dead cells. Therefore, it is meaningful to determine the multiple fates of HUCMSCs in vivo. Although various probes combining different imaging modalities have been developed to label and trace transplanted HUCMSCs in vivo, the status of the cells (live, dead, or apoptotic) was not distinguished, and a thorough understanding of the multiple fates of HUCMSCs after transplantation in vivo is lacking. Therefore, a magnetic resonance (MR)/near infrared fluorescent (NIRF)/bioluminescence (BI) multi-modality imaging strategy was developed. Iron oxide nanoparticles (IONPs) were assembled into 100 nm nanoparticles using epigallocatechin gallate as a chemical linker to increase the MR signal and reduce the exocytosis of IONPs for direct cell labeling and longitudinal MR imaging tracking. Fluorescent probes for apoptosis (DEVD-Cy-OH) were also loaded in the above assemblies to monitor the cell status. Meanwhile, the cell surface was labeled with the fluorescent dye Cy7 via bioorthogonal reactions to visualize the NIRF signal. Luciferase was lentivirally transfected into live cells to generate bioluminescence. Such labeling did not affect either the viability, proliferation, migration, differentiation characteristics of HUCMSCs or their therapeutic effects on acute liver injury mice in vivo. The in vivo fates of HUCMSCs were monitored via MR/NIRF/BI multi-modality imaging in acute liver injury mice. Although MR and Cy7 signals aggregated in injured liver for 7 days, the BI signals persisted for less than 24 hours. There was an increase in DEVD-Cy-OH signals in the injured liver, but they were almost at the basal level. That means that HUCMSCs survive in mice for a short time, and the dead form of HUCMSCs accumulated in a large quantity and sustained for a long time, which might contribute to their therapeutic effect.
Collapse
Affiliation(s)
- Naijie Wei
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoyang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Danchen Liu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangchao Bu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jingwei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
8
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
9
|
Lin S, Luo Y, Mao X, He W, Xu C, Zeng M. Homeobox B4 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on endotoxin-associated acute lung injury in rats. Am J Med Sci 2024; 368:242-252. [PMID: 38795966 DOI: 10.1016/j.amjms.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Alveolar capillary endothelial cell (EC) injury has a pivotal role in driving acute respiratory distress syndrome (ARDS) progression and maintaining endothelial homeostasis. A previous ex vivo study revealed that overexpression of homeobox B4 (HOXB4) in bone marrow mesenchymal stem cells (BMSCs) enhanced protection against lipopolysaccharide (LPS)-induced EC injury by activating the Wnt/β-catenin pathway. This in vivo study was performed to verify whether BMSCs overexpressing HOXB4 exert similar protective effects on LPS-induced acute lung injury (ALI) in an animal model. METHODS The ALI rat model was established by intraperitoneal injection of LPS. Wildtype BMSCs or BMSCs overexpressing HOXB4 were then injected via the tail vein. The lung characteristics of rats were visualized by computed tomography. Lung histopathological characteristics and collagen deposition were assessed by hematoxylin-eosin and Masson's staining, respectively, which were combined with the lung wet/dry ratio and proinflammatory factor levels in bronchoalveolar lavage fluid to further evaluate therapeutic effects. Expression of β-catenin and VE-cadherin was assessed by western blotting and immunofluorescence. RESULTS Compared with wildtype BMSCs, overexpression of HOXB4 optimized the therapeutic effects of BMSCs, which manifested as improvements in lung exudation and histopathological features, reduced lung collagen deposition, amelioration of lung permeability, attenuation of lung inflammation, and enhanced expression of β-catenin and VE-cadherin proteins. CONCLUSIONS HOXB4-overexpressing BMSCs optimized the protective effect against LPS-induced ALI by partially activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| |
Collapse
|
10
|
Mahmoudi A, Meidany P, Almahmeed W, Jamialahmadi T, Sahebkar A. Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review. CURRENT STEM CELL REPORTS 2024; 10:85-107. [DOI: 10.1007/s40778-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 01/04/2025]
|
11
|
Ghufran H, Azam M, Mehmood A, Umair M, Baig MT, Tasneem S, Butt H, Riazuddin S. Adipose Tissue and Umbilical Cord Tissue: Potential Sources of Mesenchymal Stem Cells for Liver Fibrosis Treatment. J Clin Exp Hepatol 2024; 14:101364. [PMID: 38449506 PMCID: PMC10912848 DOI: 10.1016/j.jceh.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Background/Aims Mesenchymal stem cells (MSCs) are potential alternatives for liver fibrosis treatment; however, their optimal sources remain uncertain. This study compares the ex-vivo expansion characteristics of MSCs obtained from adipose tissue (AT) and umbilical cord (UC) and assesses their therapeutic potential for liver fibrosis treatment. Methods Since MSCs from early to mid-passage numbers (P2-P6) are preferable for cellular therapy, we investigated the growth kinetics of AT-MSCs and UC-MSCs up to P6 and evaluated their therapeutic effects in a rat model of liver fibrosis induced by diethylnitrosamine. Results Results from the expansion studies demonstrated that both cell types exhibited bona fide characteristics of MSCs, including surface antigens, pluripotent gene expression, and differentiation potential. However, AT-MSCs demonstrated a shorter doubling time (58.2 ± 7.3 vs. 82.3 ± 4.3 h; P < 0.01) and a higher population doubling level (10.1 ± 0.7 vs. 8.2 ± 0.3; P < 0.01) compared to UC-MSCs, resulting in more cellular yield (230 ± 9.0 vs. 175 ± 13.2 million) in less time. Animal studies demonstrated that both MSC types significantly reduced liver fibrosis (P < 0.05 vs. the control group) while also improving liver function and downregulating fibrosis-associated gene expression. Conclusion AT-MSCs and UC-MSCs effectively reduce liver fibrosis. However, adipose cultures display an advantage by yielding a higher number of MSCs in a shorter duration, rendering them a viable choice for scenarios requiring immediate single-dose administration, often encountered in clinical settings.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Muhammad Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maria T. Baig
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
12
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sitbon A, Delmotte PR, Pistorio V, Halter S, Gallet J, Gautheron J, Monsel A. Mesenchymal stromal cell-derived extracellular vesicles therapy openings new translational challenges in immunomodulating acute liver inflammation. J Transl Med 2024; 22:480. [PMID: 38773651 PMCID: PMC11106935 DOI: 10.1186/s12967-024-05282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Inflammation plays a critical role in conditions such as acute liver failure, acute-on-chronic liver failure, and ischemia-reperfusion-induced liver injury. Various pathogenic pathways contribute to liver inflammation, involving inflammatory polarization of macrophages and Küpffer cells, neutrophil infiltration, dysregulation of T cell subsets, oxidative stress, and activation of hepatic stellate cells. While mesenchymal stromal cells (MSCs) have demonstrated beneficial properties, their clinical translation is limited by their cellular nature. However, MSC-derived extracellular vesicles (MSC-EVs) have emerged as a promising cell-free therapeutic approach for immunomodulation. MSC-EVs naturally mirror their parental cell properties, overcoming the limitations associated with the use of MSCs. In vitro and in vivo preclinical studies have demonstrated that MSC-EVs replicate the beneficial effects of MSCs in liver injury. This includes the reduction of cell death and oxidative stress, improvement of hepatocyte function, induction of immunomodulatory effects, and mitigation of cytokine storm. Nevertheless, MSC-EVs face challenges regarding the necessity of defining consistent isolation methods, optimizing MSCs culture conditions, and establishing quality control measures for EV characterization and functional assessment. By establishing standardized protocols, guidelines, and affordable cost mass production, clinicians and researchers will have a solid foundation to conduct further studies, validate the therapeutic efficacy of MSC-EVs, and ultimately pave the way for their clinical implementation in acute liver injury.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France.
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche de Saint-Antoine (CRSA), 75012, Paris, France.
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Valéria Pistorio
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche de Saint-Antoine (CRSA), 75012, Paris, France
| | - Sébastien Halter
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
- Sorbonne Université, INSERM UMRS-959, Immunology-Immunopathology-Immunotherapy (I3), 75013, Paris, France
| | - Jérémy Gallet
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Jérémie Gautheron
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche de Saint-Antoine (CRSA), 75012, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche de Saint-Antoine (CRSA), 75012, Paris, France
- Sorbonne Université, INSERM UMRS-959, Immunology-Immunopathology-Immunotherapy (I3), 75013, Paris, France
| |
Collapse
|
14
|
Kurawaki S, Nakashima A, Ishiuchi N, Kanai R, Maeda S, Sasaki K, Masaki T. Mesenchymal stem cells pretreated with interferon-gamma attenuate renal fibrosis by enhancing regulatory T cell induction. Sci Rep 2024; 14:10251. [PMID: 38704512 PMCID: PMC11069572 DOI: 10.1038/s41598-024-60928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.
Collapse
Affiliation(s)
- So Kurawaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryo Kanai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
15
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
16
|
Wang Q, Li Y, Yuan H, Peng L, Dai Z, Sun Y, Liu R, Li W, Li J, Zhu C. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure. Tissue Cell 2024; 87:102326. [PMID: 38442547 DOI: 10.1016/j.tice.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) is a newly developed strategy for treating acute liver failure (ALF). Nonetheless, the low survival rate of MSCs after transplantation and their poor homing to damaged tissues limit the clinical application of MSCs. The research assessed whether hypoxic preconditioning (HPC) can improve the biological activity of human amniotic mesenchymal stem cells (hA-MSCs), promote their homing ability to the liver of mice with ALF, and influence liver tissue repair. METHODS Flow cytometry, CCK8, Transwell, and Western blotting assays were conducted to assess the effects of hypoxic preconditioning on the phenotype, proliferation, and migration of hA-MSCs and the changes in the c-Met and CXCR4 gene expression levels were studied. To evaluate the effects of the transplantation of hypoxic preconditioning of hA-MSCs on the homing and repair of D-galactosamine (D-GalN)/LPS-induced ALF, the mechanism was elucidated by adding c-Met, CXCR4-specific blockers (SU11274 and AMD3100). RESULTS After hypoxia pretreatment (1% oxygen volume fraction), hA-MSCs maintained the morphological characteristics of adherence and vortex colony growth and showed high CD44, CD90, and CD105 and low CD31, CD34, and CD45 expression levels. Hypoxic preconditioning of hA-MSCs significantly increased their proliferation and migration and highly expressed the c-Met and CXCR4 genes. In vivo and in vitro, this migration-promoting effect was suppressed by the c-Met specific blocker SU11274. In the acute liver failure mouse model, the HGF expression level was considerably elevated in the liver than that in the serum, lungs and kidneys. The transplantation of hypoxic preconditioned hA-MSCs introduced a remarkable improvement in the liver function and survival rate of mice with ALF and enhanced the anti-apoptosis ability of liver cells. The anti-apoptotic enhancing effect of hypoxic preconditioning was suppressed by the c-Met specific blocker SU11274. Hypoxic hA-MSCs administration was observed to have considerably increased the fluorescent cells in the liver than that recorded after administering normal oxygen-hA-MSCs. The number of hepatic fluorescent cells decreased remarkably after adding the c-Met inhibitor SU11274, compared to that recorded after hypoxic pretreatment, whereas the effect of c-Met inhibitor SU11274 on normal oxygen-hA-MSCs was not significant. CONCLUSIONS Hypoxic preconditioning depicted no impact on the morphology and phenotype features of the human amniotic mesenchymal stem cells, but it can promote their proliferation, migration, anti-apoptotic effect, and homing rate and improve the repair of acute liver failure, which might be mediated by the HGF/c-Met signaling axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zixing Dai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China.
| |
Collapse
|
17
|
Hu J, Li S, Zhong X, Wei Y, Sun Q, Zhong L. Human umbilical cord mesenchymal stem cells attenuate diet-induced obesity and NASH-related fibrosis in mice. Heliyon 2024; 10:e25460. [PMID: 38356602 PMCID: PMC10864966 DOI: 10.1016/j.heliyon.2024.e25460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) that may progress to cirrhosis and hepatocellular carcinoma but has no available treatment. Mesenchymal stem cells (MSCs) have become increasingly prominent in cell therapy. Human umbilical cord MSCs (hUC-MSCs) are considered superior to other MSCs due to their strong immunomodulatory ability, ease of collection, low immune rejection, and no tumorigenicity. Though hUC-MSCs have received increasing attention in research, they have been rarely applied in any investigations or treatments of NASH and associated fibrosis. Therefore, this study evaluated the therapeutic efficacy of hUC-MSCs in C57BL/6 mice with diet-induced NASH. At week 32, mice were randomized into two groups: phosphate-buffered saline and MSCs, which were injected into the tail vein. At week 40, glucose metabolism was evaluated using glucose and insulin tolerance tests. NASH-related indicators were examined using various biological methods. hUC-MSC administration alleviated obesity, glucose metabolism, hepatic steatosis, inflammation, and fibrosis. Liver RNA-seq showed that the expression of the acyl-CoA thioesterase (ACOT) family members Acot1, Acot2, and Acot3 involved in fatty acid metabolism were altered. The cytochrome P450 (CYP) members Cyp4a10 and Cyp4a14, which are involved in the peroxisome proliferator-activator receptor (PPAR) signaling pathway, were significantly downregulated after hUC-MSC treatment. In conclusion, hUC-MSCs effectively reduced Western diet-induced obesity, NASH, and fibrosis in mice, partly by regulating lipid metabolism and the PPAR signaling pathway.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Li
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yushuang Wei
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Qinjuan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|
18
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
19
|
Chen P, Yuan M, Yao L, Xiong Z, Liu P, Wang Z, Jiang Y, Li L. Human umbilical cord-derived mesenchymal stem cells ameliorate liver fibrosis by improving mitochondrial function via Slc25a47-Sirt3 signaling pathway. Biomed Pharmacother 2024; 171:116133. [PMID: 38198960 DOI: 10.1016/j.biopha.2024.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chronic Liver fibrosis may progress to liver cirrhosis and hepatocellular carcinoma (HCC), hence cause a substantial global burden. However, effective therapies for blocking fibrosis are still lacking. Although mesenchymal stem cells (MSCs) have been proven beneficial to liver regeneration after damage, the underlying mechanism of their therapeutic effects are not fully understood. Oxidative stress and mitochondrial functionality alteration directly contributes to the hepatocyte apoptosis and development of liver fibrosis. This study aims to elucidate the mechanism by which hUC-MSC alleviates liver fibrosis and mitochondrial dysfunction. RNA-sequencing was performed to characterize the transcriptomic changes after implantation of hUC-MSCs in mice with liver fibrosis. Next, western blot, RT-PCR, immunohistochemical and immunofluorescence staining were used to evaluate the expression of different genes in vitro and in vivo. Additionally, mitochondrial morphological and dynamic changes, ROS content, and ATP production were examined. Slc25a47, a newly identified liver-specific mitochondrial NAD+ transporter, was notably reduced in CCl4-treated mice and H2O2-stimulated hepatocytes. Conversely, hUC-MSCs increased the Slc25a47 expression and NAD+ level within mitochondria, thereby enhanced Sirt3 protein activity and alleviated mitochondrial dysfunction in the liver. Furthermore, Slc25a47 knockdown could partially abrogate the protective effects of hUC-MSCs on H2O2-induced mitochondrial fission and oxidative stress in hepatocytes. Our study illustrates that Slc25a47 is a key molecular for hUC-MSCs to improve liver fibrosis and regulates mitochondrial function through Sirt3 for the first time, and providing a theoretical basis for the clinical translation of hUC-MSCs transplantation in the treatment of patients with liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
20
|
Han L, Ma C, Wu Z, Xu H, Li H, Pan G. AhR-STAT3-HO-1/COX-2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver. Br J Pharmacol 2024; 181:125-141. [PMID: 37538043 DOI: 10.1111/bph.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The low efficacy of mesenchymal stem cells (MSCs) has restricted their application in the treatment of liver disease. Emerging evidence suggested that ferroptosis may provoke hepatocyte dysfunction and exacerbate damage to the liver microenvironment. Here, we have investigated the contribution of liver ferroptosis to the elimination and effectiveness of human MSC (hMSC). Furthermore, potential links between liver ferroptosis and aryl hydrocarbon receptors (AhR) were explored. EXPERIMENTAL APPROACH Two mouse models, iron supplement-induced hepatic ferroptosis and hepatic ischaemia/reperfusion (I/R) injury, were used to identify effects of ferroptosis on hMSC pharmacokinetics (PK)/pharmacodynamics (PD). KEY RESULTS AhR inhibition attenuated hepatic ferroptosis and improved survival of hMSCs. hMSC viability was decreased by iron supplementation or serum from I/R mice. The AhR antagonist CH223191 reversed iron overload and oxidative stress induced by ferroptosis and increased hMSC concentration and efficacy in mouse models. Effects of CH223191 were greater than those of deferoxamine, a conventional ferroptosis inhibitor. Transcriptomic results suggested that the AhR-signal transducer and activator of transcription 3 (STAT3)-haem oxygenase 1/COX-2 signalling pathway is critical to this process. These results were confirmed in a mouse model of hepatic I/R injury. In mice pre-treated with CH223191, hMSC exhibited more potent protective effects, linked to decreased hepatic ferroptosis. CONCLUSION AND IMPLICATIONS Our findings showed that ferroptosis was a critical factor in determining the fate of hMSCs. Inhibition of AhR decreased hepatic ferroptosis, thereby increasing survival and therapeutic effects of hMSCs in mouse models of liver disease.
Collapse
Affiliation(s)
- Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Kao YH, Chang CY, Lin YC, Chen PH, Lee PH, Chang HR, Chang WY, Chang YC, Wun SF, Sun CK. Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation. Curr Stem Cell Res Ther 2024; 19:906-918. [PMID: 37723631 DOI: 10.2174/1574888x19666230918102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-derived exosomes have been previously demonstrated to promote tissue regeneration in various animal disease models. This study investigated the protective effect of exosome treatment in carbon tetrachloride (CCl4)-induced acute liver injury and delineated possible underlying mechanism. METHODS Exosomes collected from conditioned media of previously characterized human umbilical cord-derived MSCs were intravenously administered into male CD-1 mice with CCl4-induced acute liver injury. Biochemical, histological and molecular parameters were used to evaluate the severity of liver injury. A rat hepatocyte cell line, Clone-9, was used to validate the molecular changes by exosome treatment. RESULTS Exosome treatment significantly suppressed plasma levels of AST, ALT, and pro-inflammatory cytokines, including IL-6 and TNF-α, in the mice with CCl4-induced acute liver injury. Histological morphometry revealed a significant reduction in the necropoptic area in the injured livers following exosome therapy. Consistently, western blot analysis indicated marked elevations in hepatic expression of PCNA, c-Met, Ets-1, and HO-1 proteins after exosome treatment. Besides, the phosphorylation level of signaling mediator JNK was significantly increased, and that of p38 was restored by exosome therapy. Immunohistochemistry double staining confirmed nuclear Ets-1 expression and cytoplasmic localization of c-Met and HO-1 proteins. In vitro studies demonstrated that exosome treatment increased the proliferation of Clone-9 hepatocytes and protected them from CCl4-induced cytotoxicity. Kinase inhibition experiment indicated that the exosome-driven hepatoprotection might be mediated through the JNK pathway. CONCLUSION Exosome therapy activates the JNK signaling activation pathway as well as up-regulates Ets-1 and HO-1 expression, thereby protecting hepatocytes against hepatotoxin-induced cell death.
Collapse
Affiliation(s)
- Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chih-Yang Chang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 52445, Taiwan
| | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 52445, Taiwan
- Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, 82445, Taiwan
| | - Huoy-Rou Chang
- Departments of Biomedical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Wen-Yu Chang
- Department of Dermatology, EDa Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- The School of Medicine for International Students, College of Medicine, IShou University, Kaohsiung, 82445, Taiwan
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shen-Fa Wun
- Departments of Biomedical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- The School of Medicine for International Students, College of Medicine, IShou University, Kaohsiung, 82445, Taiwan
| |
Collapse
|
22
|
Xie Y, Yao J, Yan M, Lin Y, Wei J, Wang H, Mao Y, Liu P, Li X. Pretreatment of UC-MSCs with IFN-α2 improves treatment of liver fibrosis by recruiting neutrophils. J Transl Med 2023; 21:832. [PMID: 37980535 PMCID: PMC10656886 DOI: 10.1186/s12967-023-04732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The use of umbilical cord mesenchymal stem cells (UC-MSCs) is a burgeoning method for the treatment of liver cirrhosis. However, the secretory phenotype and regulatory ability of UC-MSCs are easily affected by their microenvironment. Ensuring a specific microenvironment to enhance the UC-MSCs phenotype is a potential strategy for improving their therapeutic efficacy. The aim of this study was to explore therapeutic UC-MSCs phenotypes for improving liver fibrosis. METHODS RNA-sequencing was used to analyze the response pattern of UC-MSCs after exposure to the serum of cirrhotic patients with HBV. Using immunohistochemistry, quantitative polymerase chain reaction, and immunofluorescence techniques, we evaluated the therapeutic effect of UC-MSCs pretreated with interferon alpha 2 (IFN-α2) (pre-MSCs) in an animal model of cirrhosis. Immunoblotting, ELISA, and other techniques were used to analyze the signaling pathways underlying the IFN-induced changes in UC-MSCs. RESULTS UC-MSCs exposed to the serum of patients with hepatitis B-induced cirrhosis showed an enhanced response to type I IFN. The activated type I IFN signal induced the highest secretion of colony-stimulating factor 3 (CSF-3), interleukin (IL)-8, and chemokine (C-C motif) ligand 20 (CCL20) by the UC-MSCs. Pre-MSCs showed a higher therapeutic efficacy than untreated UC-MSCs in an animal model of liver fibrosis. Immunohistochemical analysis revealed that pre-MSCs could recruit neutrophils resulting in an increase in the secretion of matrix metalloprotease 8 that alleviated fibrosis. When neutrophils in animals were depleted, the therapeutic effect of pre-MSCs on fibrosis was inhibited. IFN-α2 altered the secretory phenotype of UC-MSCs by activating phosphorylated signal transducer and activator of transcription 1 and 2 (p-STAT1 and p-STAT2). CONCLUSIONS Pre-MSCs exhibited enhanced secretion of CSF-3, IL-8, and CCL20 and recruited neutrophils to alleviate fibrosis. This new strategy can improve cell therapy for liver cirrhosis.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Mengchao Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pinyan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
23
|
Liang C, Gao S, Gao J, Xu Y, Li Q. Comparison of effects of HucMSCs, exosomes, and conditioned medium on NASH. Sci Rep 2023; 13:18431. [PMID: 37891247 PMCID: PMC10611740 DOI: 10.1038/s41598-023-45828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the effects and potential mechanisms of human umbilical cord mesenchymal stem cells, exosomes, and their conditioned media on lipid storage in oleic acid (OA) and palmitic acid (PA) treated hepatocytes and high-fat methionine- choline deficient diet (HFMRCD) induced non-alcoholic steatohepatitis (NASH) mice. AML12 cells were stimulated with OA and PA to establish the lipid storage cell model. HucMSCs, exosomes, and culture medium were then co-cultured. At the same time, C57BL/6 mice were fed an HFMRCD for 6 or 8 weeks to establish a NASH mouse model. The effect of HucMSCs, exosomes, and culture medium on lipid droplet repair of hepatocytes or NASH mice was then assessed. The weight of hepatocytes or liver tissue, Oil Red O, hematoxylin-eosin staining, Masson staining, Western blot, and qPCR were used to detect the related IL-6, TNF-α, TGF-β1 andEI24/AMPK/mTOR pathway expression in hepatocytes and liver tissue. Compared with the model group, the effect of HucMSCs-Ex on inhibiting the accumulation of lipid droplets was more obvious at the cell level. In vivo study showed that HucMSCs-Ex reduces activity scores in NASH mice and improves liver tissue morphology by reducing vacuolar degeneration, fat deposition, and collagen deposition of liver tissue. Western blot and qPCR results showed that inflammatory factors and AMPK/mTOR or EI24-related autophagy pathways were altered before and after treatment. HucMSCs, HucMSC-Ex, and CM can promote autophagy in hepatocytes or NASH mice through the AMPK/mTOR or EI24-related autophagy pathway and alleviate injury associated with lipid deposition, collagen deposition or inflammation, reversing the progression of NASH.
Collapse
Affiliation(s)
- Chenchen Liang
- School of Public Health, Dali University, Dali, 671013, Yunnan, China
| | - Siyuan Gao
- Center of Liver Diseases, The Third People's Hospital of Kunming, Kunming, 650041, Yunnan, China
| | - Jianpeng Gao
- Department of Administration, Kunming Yan'an Hospital, Kunming, 650051, Yunnan, China.
| | - Yanwen Xu
- School of Public Health, Dali University, Dali, 671013, Yunnan, China
| | - Qilong Li
- School of Public Health, Dali University, Dali, 671013, Yunnan, China
| |
Collapse
|
24
|
Zheng W, Bian S, Qiu S, Bishop CE, Wan M, Xu N, Sun X, Sequeira RC, Atala A, Gu Z, Zhao W. Placenta mesenchymal stem cell-derived extracellular vesicles alleviate liver fibrosis by inactivating hepatic stellate cells through a miR-378c/SKP2 axis. Inflamm Regen 2023; 43:47. [PMID: 37798761 PMCID: PMC10557276 DOI: 10.1186/s41232-023-00297-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-β1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS TGF-β1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-β1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION Pd-MSCs-EVs ameliorated TGF-β1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shi Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Meimei Wan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
25
|
Wang YH, Chen EQ. Mesenchymal Stem Cell Therapy in Acute Liver Failure. Gut Liver 2023; 17:674-683. [PMID: 36843422 PMCID: PMC10502502 DOI: 10.5009/gnl220417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 02/28/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease syndrome with rapid deterioration and high mortality. Liver transplantation is the most effective treatment, but the lack of donor livers and the high cost of transplantation limit its broad application. In recent years, there has been no breakthrough in the treatment of ALF, and the application of stem cells in the treatment of ALF is a crucial research field. Mesenchymal stem cells (MSCs) are widely used in disease treatment research due to their abundant sources, low immunogenicity, and no ethical restrictions. Although MSCs are effective for treating ALF, the application of MSCs to ALF needs to be further studied and optimized. In this review, we discuss the potential mechanisms of MSCs therapy for ALF, summarize some methods to enhance the efficacy of MSCs, and explore optimal approaches for MSC transplantation.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Arfianti A, Ulfah, Hutabarat LS, Agnes Ivana G, Budiarti AD, Sahara NS, Saputra NP. Hipoxia modulates the secretion of growth factors of human umbilical cord-derived mesenchymal stem cells. Biomedicine (Taipei) 2023; 13:49-56. [PMID: 37937056 PMCID: PMC10627211 DOI: 10.37796/2211-8039.1416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/08/2023] [Indexed: 11/09/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) has great potential as therapies due its ability to regenerate tissue damage and promote tissue homeostasis. Preconditioning of MSC in low oxygen concentration has been shown to affect the therapeutic potential of these cells. This study aimed to compare the characteristic and secretion of trophic factors of MSCs cultured under hypoxia and normoxia. Methods MSCs were isolated from Wharton's jelly of human umbilical cord (UC) tissue by explant method and characterized by flow cytometry. Following 24 h of CoCl2-induced hypoxic culture, the viability and metabolic activity of MSC were analyzed by trypan blue exclusion test and methyl thiazolyl tetrazolium (MTT) assay, respectively. The secretion of hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) was assessed in conditioned medium using enzyme-linked immunosorbent assay (ELISA) method. Results Flow cytometry analysis showed >99% of the population of MSCs cells were positive for CD73 and CD90 and > 62% were positive for CD105. While the cell viability of MSC was not affected by hypoxic cultured condition, the metabolic activity rate of these cells was decreased under hypoxic conditioning. In line with reduced metabolic activity, hypoxic human UC-derived MSC produced less HGF than normoxic counterpart. Compared to normoxic MSC, hypoxic preconditioned MSC secreted higher level of VEGF in the conditioned medium (p < 0.05). Conclusions Hypoxia decreased the metabolic activity of MSCs associated with the modulation of HGF and VEGF secretions. It is suggested that hypoxia may also affect the therapeutic capacity of MSC cells.
Collapse
Affiliation(s)
- Arfianti Arfianti
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| | - Ulfah
- Department of Anatomy, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| | - Leopold S. Hutabarat
- Undergraduate Program, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| | - G Agnes Ivana
- Undergraduate Program, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| | - Anisa D. Budiarti
- Undergraduate Program, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| | - Nabilla S. Sahara
- LONTAR Laboratory, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| | - Nicko P.K. Saputra
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Riau, Pekanbaru, 28133,
Indonesia
| |
Collapse
|
27
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
28
|
Yao Y, Zhang L, Cheng F, Jiang Q, Ye Y, Ren Y, He Y, Su D, Cheng L, Shi G, Dai L, Deng H. PPARγ-dependent hepatic macrophage switching acts as a central hub for hUCMSC-mediated alleviation of decompensated liver cirrhosis in rats. Stem Cell Res Ther 2023; 14:184. [PMID: 37501214 PMCID: PMC10375757 DOI: 10.1186/s13287-023-03416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Decompensated liver cirrhosis (DLC), a terminal-stage complication of liver disease, is a major cause of morbidity and mortality in patients with hepatopathies. Human umbilical cord mesenchymal stem cell (hUCMSC) therapy has emerged as a novel treatment alternative for the treatment of DLC. However, optimized therapy protocols and the associated mechanisms are not entirely understood. METHODS We constructed a DLC rat model consistent with the typical clinical characteristics combined use of PB and CCL4. Performing dynamic detection of liver morphology and function in rats for 11 weeks, various disease characteristics of DLC and the therapeutic effect of hUCMSCs on DLC in experimental rats were thoroughly investigated, according to ascites examination, histopathological, and related blood biochemical analyses. Flow cytometry analysis of rat liver, immunofluorescence, and RT-qPCR was performed to examine the changes in the liver immune microenvironment after hucMSCs treatment. We performed RNA-seq analysis of liver and primary macrophages and hUCMSCs co-culture system in vitro to explore possible signaling pathways. PPARγ antagonist, GW9662, and clodronate liposomes were used to inhibit PPAR activation and pre-exhaustion of macrophages in DLC rats' livers, respectively. RESULTS We found that changing the two key issues, the frequency and initial phase of hUCMSCs infusion, can affect the efficacy of hUCMSCs, and the optimal hUCMSCs treatment schedule is once every week for three weeks at the early stage of DLC progression, providing the best therapeutic effect in reducing mortality and ascites, and improving liver function in DLC rats. hUCMSCs treatment skewed the macrophage phenotype from M1-type to M2-type by activating the PPARγ signaling pathway in the liver, which was approved by primary macrophages and hUCMSCs co-culture system in vitro. Both inhibition of PPARγ activation with GW9662 and pre-exhaustion of macrophages in DLC rats' liver abolished the regulation of hUCMSCs on macrophage polarization, thus attenuating the beneficial effect of hUCMSCs treatment in DLC rats. CONCLUSIONS These data demonstrated that the optimal hUCMSCs treatment effectively inhibits the ascites formation, prolongs survival and significantly improves liver structure and function in DLC rats through the activation of the PPARγ signaling pathway within liver macrophages. Our study compared the efficacy of different hUCMSCs infusion regimens for DLC, providing new insights on cell-based therapies for regenerative medicine.
Collapse
Affiliation(s)
- Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Lin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, People's Republic of China
| | - Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Yuting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dongsheng Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
29
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
30
|
Shang LC, Wang M, Liu Y, Zhu X, Wang S. MSCs Ameliorate Hepatic IR Injury by Modulating Phenotypic Transformation of Kupffer Cells Through Drp-1 Dependent Mitochondrial Dynamics. Stem Cell Rev Rep 2023:10.1007/s12015-023-10566-6. [PMID: 37243829 DOI: 10.1007/s12015-023-10566-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Hepatic ischemia and reperfusion (IR) injury, characterized by reactive oxygen species (ROS) production and immune disorders, leads to exogenous antigen-independent local inflammation and hepatocellular death. Mesenchymal stem cells (MSCs) have been shown to be immunomodulatory, antioxidative and contribute to liver regeneration in fulminant hepatic failure. We aimed to investigate the underlying mechanisms by which MSCs protect against liver IR injury in a mouse model. METHODS MSCs suspension was injected 30 min prior to hepatic warm IR. Primary kupffer cells (KCs) were isolated. Hepatic injury, inflammatory responses, innate immunity, KCs phenotypic polarization and mitochondrial dynamics were evaluated with or without KCs Drp-1 overexpression RESULTS: MSCs markedly ameliorated liver injury and attenuated inflammatory responses and innate immunity after liver IR injury. MSCs significantly restrained M1 phenotypic polarization but boosted M2 polarization of KCs extracted from ischemic liver, as demonstrated by lowered transcript levels of iNOS and IL-1β but raised transcript levels of Mrc-1 and Arg-1 combined with p-STAT6 up-regulation and p-STAT1 down-regulation. Moreover, MSCs inhibited KCs mitochondrial fission, as evidenced by decreased Drp1 and Dnm2 levels. We overexpressed Drp-1 in KCs which promote mitochondrial fission during IR injury. the regulation of MSCs towards KCs M1/M2 polarization was abrogated by Drp-1 overexpression after IR injury. Ultimately, in vivo Drp-1 overexpression in KCs hampered the therapeutic effects of MSCs against hepatic IR injury CONCLUSIONS: We revealed that MSCs facilitated M1-M2 phenotypic polarization through inhibiting Drp-1 dependent mitochondrial fission and further attenuated liver IR injury. These results add a new insight into regulating mechanisms of mitochondrial dynamics during hepatic IR injury and may offer novel opportunities for developing therapeutic targets to combat hepatic IR injury.
Collapse
Affiliation(s)
- Long-Cheng Shang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Man Wang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Xinhua Zhu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| | - Shuai Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
31
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
32
|
Ling M, Tang C, Yang X, Yu N, Song Y, Ding W, Sun Y, Yan R, Wang S, Li X, Gao H, Zhang Z, Xing Y. Integrated metabolomics and phosphoproteomics reveal the protective role of exosomes from human umbilical cord mesenchymal stem cells in naturally aging mouse livers. Exp Cell Res 2023; 427:113566. [PMID: 37004949 DOI: 10.1016/j.yexcr.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Aging is characterized by a general decline in cellular function, which ultimately affects whole body homeostasis. This study aimed to investigate the effects and underlying mechanisms of exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-exos) on the livers of naturally aging mice. METHOD Twenty-two-month-old C57BL6 mice were used as a natural aging animal model, divided into a saline-treated wild-type aged control group (WT-AC) and a hUCMSC-exo-treated group (WT-AEX), and then detected by morphology, metabolomics and phosphoproteomics. RESULTS Morphological analysis showed that hUCMSC-exos ameliorated structural disorder and decreased markers of senescence and genome instability in aging livers. Metabolomics showed that hUCMSC-exos decreased the contents of saturated glycerophospholipids, palmitoyl-glycerols and eicosanoid derivatives associated with lipotoxicity and inflammation, consistent with the decreased phosphorylation of metabolic enzymes, such as propionate-CoA ligase (Acss2), at S267 detected by phosphoproteomics. Moreover, phosphoproteomics indicated that hUCMSC-exos reduced the phosphorylation of proteins participating in nuclear transport and cancer signaling, such as heat shock protein HSP90-beta (Hsp90ab1) at S226 and nucleoprotein TPR (Tpr) at S453 and S379, while increasing those involved in intracellular communication, such as calnexin (Canx) at S563 and PDZ domain-containing protein 8 (Pdzd8). Finally, phosphorylated HSP90β and Tpr were verified predominantly in hepatocytes. CONCLUSION HUCMSC-exos improved metabolic reprogramming and genome stability mainly associated with phosphorylated HSP90β in hepatocytes in natural aging livers. This work provides a comprehensive resource of biological data by omics to support future investigations of hUCMSC-exos in aging.
Collapse
Affiliation(s)
- Mingying Ling
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Congmin Tang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Xuechun Yang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, 250101, Jinan, Shandong, China; College of Clinical Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Wenjing Ding
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Shaopeng Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, 250101, Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yanqiu Xing
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
33
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
34
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
35
|
Therapeutic Efficiency of Nasal Mucosa-Derived Ectodermal Mesenchymal Stem Cells in Rats with Acute Hepatic Failure. Stem Cells Int 2023; 2023:6890299. [PMID: 36655034 PMCID: PMC9842420 DOI: 10.1155/2023/6890299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Liver transplantation is limited by the insufficiency of liver organ donors when treating end-stage liver disease or acute liver failure (ALF). Ectodermal mesenchymal stem cells (EMSCs) derived from nasal mucosa have emerged as an alternative cell-based therapy. However, the role of EMSCs in acute liver failure remains unclear. Methods EMSCs were obtained from the nasal mucosa tissue of rats. First, EMSCs were seeded on the gelatin-chitosan scaffolds, and the biocompatibility was evaluated. Next, the protective effects of EMSCs were investigated in carbon tetrachloride- (CCl4-) induced ALF rats. Finally, we applied an indirect coculture system to analyze the paracrine effects of EMSCs on damaged hepatocytes. A three-step nontransgenic technique was performed to transform EMSCs into hepatocyte-like cells (HLCs) in vitro. Results EMSCs exhibited a similar phenotype to other mesenchymal stem cells along with self-renewal and multilineage differentiation capabilities. EMSC-seeded gelatin-chitosan scaffolds can increase survival rates and ameliorate liver function and pathology of ALF rat models. Moreover, transplanted EMSCs can secrete paracrine factors to promote hepatocyte regeneration, targeted migration, and transdifferentiate into HLCs in response to the liver's microenvironment, which will then repair or replace the damaged hepatocytes. Similar to mature hepatocytes, HLCs generated from EMSCs possess functions of expressing specific hepatic markers, storing glycogen, and producing urea. Conclusions These results confirmed the feasibility of EMSCs in acute hepatic failure treatment. To our knowledge, this is the first time that EMSCs are used in the therapy of liver diseases. EMSCs are expected to be a novel and promising cell source in liver tissue engineering.
Collapse
|
36
|
Liu P, Qian Y, Liu X, Zhu X, Zhang X, Lv Y, Xiang J. Immunomodulatory role of mesenchymal stem cell therapy in liver fibrosis. Front Immunol 2023; 13:1096402. [PMID: 36685534 PMCID: PMC9848585 DOI: 10.3389/fimmu.2022.1096402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is a fibrogenic and inflammatory process that results from hepatocyte injury and is characterized by hepatic architectural distortion and resultant loss of liver function. There is no effective treatment for advanced fibrosis other than liver transplantation, but it is limited by expensive costs, immune rejection, and postoperative complications. With the development of regenerative medicine in recent years, mesenchymal stem cell (MSCs) transplantation has become the most promising treatment for liver fibrosis. The underlying mechanisms of MSC anti-fibrotic effects include hepatocyte differentiation, paracrine, and immunomodulation, with immunomodulation playing a central role. This review discusses the immune cells involved in liver fibrosis, the immunomodulatory properties of MSCs, and the immunomodulation mechanisms of MSC-based strategies to attenuate liver fibrosis. Meanwhile, we discuss the current challenges and future directions as well.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yerong Qian
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Radiotherapy, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
37
|
Chen Q, Jin M, Wang S, Wang K, Chen L, Zhu X, Zhang Y, Wang Y, Li Y, Li S, Zeng Y, Feng L, Yang W, Gao Y, Zhou S, Peng Q. Establishing an hTERT-driven immortalized umbilical cord-derived mesenchymal stem cell line and its therapeutic application in mice with liver failure. J Tissue Eng 2023; 14:20417314231200328. [PMID: 37736245 PMCID: PMC10510347 DOI: 10.1177/20417314231200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Acute liver failure (ALF) is characterized by rapid liver cell destruction. It is a multi-etiological and fulminant complication with a clinical mortality of over 80%. Therapy using mesenchymal stem cells (MSCs) or MSCs-derived exosomes can alleviate acute liver injury, which has been demonstrated in animal experiments and clinical application. However, similar to other stem cells, different cell sources, poor stability, cell senescence and other factors limit the clinical application of MSCs. To achieve mass production and quality control on stem cells and their exosomes, transfecting umbilical cord mesenchymal stem cell (UCMSC) with lentivirus overexpressing human telomerase reverse transcriptase (hTERT) gene, the hTERT-UCMSC was constructed as an immortalized MSC cell line. Compared with the primary UCMSC (P3) and immortalized cell line hTERT-UCMSC at early passage (P10), the hTERT-UCMSC retained the key morphological and physiological characteristics of UCMSC at the 35th passage (P35), and showed no signs of carcinogenicity and toxic effect in mice. There was no difference in either exosome production or characteristics of exosomes among cultures from P3 primary cells, P10 and P35 immortalized hTERT-UCMSCs. Inoculation of either hTERT-UCMSC (P35) or its exosomes improved the survival rate and liver function of ALF mice induced by thioacetamide (TAA). Our findings suggest that this immortalized cell line can maintain its characteristics in long-term culture. Inoculation of hTERT-UCMSC and its exosomes could potentially be used in clinics for the treatment of liver failure in the future.
Collapse
Affiliation(s)
- Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Simin Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kexin Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liqin Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, The First People’ s Hospital of Kashi, Kashgar, Xinjiang, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Youmin Zeng
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Feng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Zhao X, Xue X, Cui Z, Kwame Amevor F, Wan Y, Fu K, Wang C, Peng C, Li Y. microRNAs-based diagnostic and therapeutic applications in liver fibrosis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022:e1773. [PMID: 36585388 DOI: 10.1002/wrna.1773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Cui
- College Science and Technology, Southwest University, Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Hou G, Li J, Liu W, Wei J, Xin Y, Jiang X. Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol 2022; 10:1100305. [PMID: 36578783 PMCID: PMC9790971 DOI: 10.3389/fcell.2022.1100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is an effective treatment option for multiple thoracic malignant tumors, including lung cancers, thymic cancers, and tracheal cancers. Radiation-induced lung injury (RILI) is a serious complication of radiotherapy. Radiation causes damage to the pulmonary cells and tissues. Multiple factors contribute to the progression of Radiation-induced lung injury, including genetic alterations, oxidative stress, and inflammatory responses. Especially, radiation sources contribute to oxidative stress occurrence by direct excitation and ionization of water molecules, which leads to the decomposition of water molecules and the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS). Subsequently, reactive oxygen species and reactive nitrogen species overproduction can induce oxidative DNA damage. Immune cells and multiple signaling molecules play a major role in the entire process. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple differentiation potentials, which are under investigation to treat radiation-induced lung injury. Mesenchymal stem cells can protect normal pulmonary cells from injury by targeting multiple signaling molecules to regulate immune cells and to control balance between antioxidants and prooxidants, thereby inhibiting inflammation and fibrosis. Genetically modified mesenchymal stem cells can improve the natural function of mesenchymal stem cells, including cellular survival, tissue regeneration, and homing. These reprogrammed mesenchymal stem cells can produce the desired products, including cytokines, receptors, and enzymes, which can contribute to further advances in the therapeutic application of mesenchymal stem cells. Here, we review the molecular mechanisms of radiation-induced lung injury and discuss the potential of Mesenchymal stem cells for the prevention and treatment of radiation-induced lung injury. Clarification of these key issues will make mesenchymal stem cells a more fantastic novel therapeutic strategy for radiation-induced lung injury in clinics, and the readers can have a comprehensive understanding in this fields.
Collapse
Affiliation(s)
- Guowen Hou
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
40
|
Mo Y, Kang SY, Bang JY, Kim Y, Jeong J, Jeong EM, Kim HY, Cho SH, Kang HR. Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model. Mol Cells 2022; 45:833-845. [PMID: 36380733 PMCID: PMC9676992 DOI: 10.14348/molcells.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti- asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.
Collapse
Affiliation(s)
- Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Yoon Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yujin Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jiung Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eui-Man Jeong
- Department of Pharmacy, Jeju National University College of Pharmacy, Jeju 63243, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
41
|
Transplantation of adipose-derived mesenchymal stem cells ameliorates acute hepatic injury caused by nonsteroidal anti-inflammatory drug diclofenac sodium in female rats. Biomed Pharmacother 2022; 155:113805. [PMID: 36271578 DOI: 10.1016/j.biopha.2022.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although the beneficial role of adipose-derived mesenchymal stem cells (AD-MSCs) in acute liver injury has been addressed by numerous studies employing different liver injury inducers, the role of rat AD-MSCs (rAD-MSCs) in diclofenac sodium (DIC) - induced acute liver injury has not yet been clarified. OBJECTIVE This study aimed to investigate whether rat adipose- rAD-MSCs injected intraperitoneal could restore the DIC-induced hepatoxicity. METHODS Hepatotoxicity was induced by DIC in a dose-based manner, after which intraperitoneal injection of rAD-MSCs was performed. RESULTS Here, the transplanted cells migrated to the injured liver, and this was evidenced by detecting the specific SRY in the liver samples. After administering DIC, a significant decrease in body weight, survival rate, serum proteins, antioxidants, anti-apoptotic gene expression, and certain growth factors, whereas hepatic-specific markers, pro-inflammatory mediators, and oxidative, pro-apoptotic, and ER-stress markers were elevated. These adverse effects were significantly recovered after engraftment with rAD-MSCs. This was evidenced by enhanced survival and body weight, improved globulin and albumin values, increased expression of SOD, GPx, BCL-2, VEGF, and FGF-basic expression, and decreased serum ALT, AST, ALP, and total bilirubin. rAD-MSCs also reduced liver cell damage by suppressing the expression of MDA, IL-1B, IL-6, BAX, JNK, GRP78/BiP, CHOP, XBP-1, and cleaved caspase 3/7. Degenerative hepatic changes and multifocal areas of fatty change within liver cells were observed in DIC-received groups. These changes were improved with the transplantation of rAD-MSCs. CONCLUSIONS We could conclude that targeted AD-MSCs could be applied to reduce hepatic toxicity caused by NSAIDs (DIC).
Collapse
|
42
|
Molaei S, Amiri F, Salimi R, Ferdowsi S, Bahadori M. Therapeutic effects of mesenchymal stem cells-conditioned medium derived from suspension cultivation or silymarin on liver failure mice. Mol Biol Rep 2022; 49:10315-10325. [PMID: 36097106 DOI: 10.1007/s11033-022-07785-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard. We aimed to compare the Silymarin, as traditional treatment with mesenchymal stem cell conditioned medium (MSC-CM), as a novel strategy, both with therapeutic potentialities in term of liver failure (LF) treatment. METHODS AND RESULTS Mice models with liver failure were induced with CCl4 and were treated in the groups as follows: normal mice receiving DMEM-LG medium as control, LF-mice receiving DMEM-LG medium as sham, LF-mice receiving Silymarin as LF-SM, and LF-mice receiving MSC sphere CM as LF-MSC-CM. Biochemical, histopathological, molecular and protein level parameters were evaluated using blood and liver samples. Liver enzymes, MicroRNA-122 values as well as necrotic score were significantly lower in the LF-SM and LF-MSC-CM groups compared to sham. LF-SM showed significantly higher level of total antioxidant capacity and malondialdehyde than that of LF-MSC-CM groups. Sph-MSC-CM not only induced more down-regulated expression of fibrinogen-like protein 1 and receptor interacting protein kinases1 but also led to higher expression level of keratinocyte growth factor. LF-MSC-CM showed less mortality rate compared to other groups. CONCLUSIONS Hepato-protective potentialities of Sph-MSC-CM are comparable to those of Silymarin. More inhibition of necroptosis/ necrosis and inflammation might result in rapid liver repair in case of MSC-CM administration.
Collapse
Affiliation(s)
- Sedigheh Molaei
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rasoul Salimi
- Department of Emergency Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
43
|
Virovic-Jukic L, Ljubas D, Stojsavljevic-Shapeski S, Ljubičić N, Filipec Kanizaj T, Mikolasevic I, Grgurevic I. Liver regeneration as treatment target for severe alcoholic hepatitis. World J Gastroenterol 2022; 28:4557-4573. [PMID: 36157937 PMCID: PMC9476880 DOI: 10.3748/wjg.v28.i32.4557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Severe alcoholic hepatitis (AH) is a distinct entity in the spectrum of alcohol-related liver disease, with limited treatment options and high mortality. Supportive medical care with corticosteroids in selected patients is the only currently available treatment option, often with poor outcomes. Based on the insights into the pathogenetic mechanisms of AH, which are mostly obtained from animal studies, several new treatment options are being explored. Studies have implicated impaired and deranged liver regeneration processes as one of the culprit mechanisms and a potential therapeutic target. Acknowledging evidence for the beneficial effects of granulocyte colony-stimulating factor (G-CSF) on liver regeneration and immunomodulation in animal models, several human studies investigated its role in the treatment of advanced alcohol-related liver disease and AH. Contrary to the previously published studies suggesting benefits of G-CSF in the outcomes of patients with severe AH, these effects were not confirmed by a recently published multicenter randomized trial, suggesting that other options should rather be pursued. Stem cell transplantation represents another option for improving liver regeneration, but evidence for its efficacy in patients with severe AH and advanced alcohol-related liver disease is still very scarce and unconvincing, with established lack of efficacy in patients with compensated cirrhosis. In this review, we summarize the current knowledge on the pathogenesis and experimental therapies targeting liver regeneration. The lack of high-quality studies and evidence is a major obstacle in further treatment development. New insights into the pathogenesis of not only liver injury, but also liver regeneration processes are mandatory for the development of new treatment options. A reliable experimental model of the pathogenesis of AH and processes involved in liver recovery is still missing, and data obtained from animal studies are essential for future research.
Collapse
Affiliation(s)
- Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Dominik Ljubas
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Sanja Stojsavljevic-Shapeski
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
| | - Neven Ljubičić
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Dental Medicine, Zagreb 10000, Croatia
| | - Tajana Filipec Kanizaj
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology, Merkur University Hospital, Zagreb 10000, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology, Rijeka University Hospital Center, Rijeka 51000, Croatia
- Department of Internal Medicine, University of Rijeka School of Medicine, Rijeka 10000, Croatia
| | - Ivica Grgurevic
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Dubrava University Hospital, Zagreb 10000, Croatia
| |
Collapse
|
44
|
Khosravi-Farsani S, Zaminy A, Kazemi S, Hashemzadeh-Chaleshtori M. Mesenchymal stem cells versus their conditioned medium in the treatment of ischemia/reperfusion injury: Evaluation of efficacy and hepatic specific gene expression in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:799-807. [PMID: 36033951 PMCID: PMC9392563 DOI: 10.22038/ijbms.2022.62642.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Objectives The mechanisms underlying the beneficial effects of MSCs on hepatic I/R injury are still poorly described, especially the changes in hepatocyte gene expression. In this study, the effect of bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (AMSCs) and their conditioned medium on hepatocyte gene expression resulted by I/R shock were investigated. Materials and Methods Liver ischemia models were induced by clamping in experimental groups. Experimental groups received MSCs or conditioned medium treatments and the control group received Dulbecco's Modified Eagle Medium (DMEM). During 1, 24 hr, and 1 week after treatment, the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) enzymes and tissue catalase activity (CAT) were measured. Gene expression of a number of hepatocyte-specific genes (Alb, Afp, and Ck8) and Icam-1 which is upregulated under inflammatory conditions were also evaluated in 5, 24 hr, and 1-week intervals after I/R insult. Results In this study, liver enzymes showed a much more shift in the control group than treated groups and it was more noticeable 5 hr post-treatment. Moreover, gene expression pattern of the control group underwent changes after I/R injury. However, treated groups gene expression analysis met a steady trend after I/R insult. Conclusion Our finding shows that stem cell treatment has better curative effects than conditioned medium. BMSCs, AMSCs or BMSC and AMSC-derived bioactive molecules injection have potential to be considered as a therapeutic approach for treating acute liver injury.
Collapse
Affiliation(s)
- Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Zaminy
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sedigheh Kazemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,Corresponding author: Morteza Hashemzadeh-Chaleshtori. Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. Tel: +98-38-33331471;
| |
Collapse
|
45
|
Meng W, Liu Y, Zhu Z, Liu S, Shen Y, Liu S. Injectable Hyaluronic Acid/Human Umbilical Cord Mesenchymal Stem Cells/Bone Morphogenetic Protein-2 Promotes the Repair of Radial Bone Defects in Rabbits. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Bone defects are common in orthopedics and can be caused by congenital diseases, trauma, infection, tumors and other reasons. The treatment of large-scale bone defects is a clinical problem faced by orthopedists. The development of tissue engineering technology is
expected to solve this problem. Objective: To explore the effect of injectable hyaluronic acid/hUCMSC/BMP-2 on the healing of rabbit radial bone defects. Methods: X-ray examination and tissue specimens were examined to macroscopically observe bone defect healing; tetracycline
fluorescence and vonKossa staining were performed to observe the formation of new bone, and H&E staining was performed to examine cartilage and trabecular bone formation. Results: The injectable hyaluronic acid/hUCMSC/BMP-2 could significantly promote the early repair of bone defects
and accelerate the process of bone formation. Conclusion: The direct injection of hyaluronic acid/hUCMSC/BMP-2 into afresh bone defect site has a significant beneficial effect on early repair of the bone defect.
Collapse
Affiliation(s)
- Weidong Meng
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Yanjun Liu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Zhehui Zhu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Shenghang Liu
- Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Yong Shen
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Shizhang Liu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| |
Collapse
|
46
|
Liu QW, Ying YM, Zhou JX, Zhang WJ, Liu ZX, Jia BB, Gu HC, Zhao CY, Guan XH, Deng KY, Xin HB. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Res Ther 2022; 13:224. [PMID: 35659360 PMCID: PMC9166579 DOI: 10.1186/s13287-022-02906-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis. Methods hAMSCs were transplanted into carbon tetrachloride (CCl4)-induced liver fibrosis mice via tail vein, and the effects of hAMSCs on hepatic fibrosis were assessed. The effects of hAMSCs and hAMSCs conditional medium (CM) on the activation of hepatic stellate cells (HSCs) were investigated in vivo and in vitro. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may inhibit the activation of HSCs. Finally, the underlying mechanisms were explored by assessing IGF-1R/PI3K/AKT and GSK3β/β-catenin signaling pathways in the activated HSCs (LX-2) with hAMSCs and hAMSCs transfected with corresponding siRNAs. Results Our results showed that hAMSCs possessed the characterizations of mesenchymal stem cells. hAMSCs significantly reduced liver fibrosis and improved liver function in mice by inhibiting HSCs activation in vivo. Both hAMSCs and hAMSC-CM remarkably inhibited the collagen deposition and activation of LX-2 cells in vitro. Antibody array assay showed that insulin-like growth factor binding protein-3 (IGFBP-3), Dickkopf-3 (DKK-3), and Dickkopf-1 (DKK-1) were highly expressed in the co-culture group and hAMSC-CM group compared with LX-2 group. Western blot assay demonstrated that IGFBP-3, DKK-3, and DKK-1 derived from hAMSCs inhibit LX-2 cell activation through blocking canonical Wnt signaling pathway. Conclusions Our results demonstrated that IGFBP-3, Dkk3, and DKK-1 secreted by hAMSCs attenuated liver fibrosis in mice through inhibiting HSCs activation via depression of Wnt/β-catenin signaling pathway, suggesting that hAMSCs or hAMSC-CM provides an alternative therapeutic approach for the treatment of liver fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02906-z.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China.,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yan-Min Ying
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Jia-Xin Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Wen-Jie Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Zhao-Xiao Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing-Bing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, People's Republic of China
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China.,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Chu-Yu Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China. .,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China. .,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
47
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
48
|
Shokravi S, Borisov V, Zaman BA, Niazvand F, Hazrati R, Khah MM, Thangavelu L, Marzban S, Sohrabi A, Zamani A. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Res Ther 2022; 13:192. [PMID: 35527304 PMCID: PMC9080215 DOI: 10.1186/s13287-022-02825-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stromal cells (MSCs) and their derivative exosome have become a promising approach in the context of liver diseases therapy, in particular, acute liver failure (ALF). In addition to their differentiation into hepatocytes in vivo, which is partially involved in liver regeneration, MSCs support liver regeneration as a result of their appreciated competencies, such as antiapoptotic, immunomodulatory, antifibrotic, and also antioxidant attributes. Further, MSCs-secreted molecules inspire hepatocyte proliferation in vivo, facilitating damaged tissue recovery in ALF. Given these properties, various MSCs-based approaches have evolved and resulted in encouraging outcomes in ALF animal models and also displayed safety and also modest efficacy in human studies, providing a new avenue for ALF therapy. Irrespective of MSCs-derived exosome, MSCs-based strategies in ALF include administration of native MSCs, genetically modified MSCs, pretreated MSCs, MSCs delivery using biomaterials, and also MSCs in combination with and other therapeutic molecules or modalities. Herein, we will deliver an overview regarding the therapeutic effects of the MSCs and their exosomes in ALF. As well, we will discuss recent progress in preclinical and clinical studies and current challenges in MSCs-based therapies in ALF, with a special focus on in vivo reports.
Collapse
Affiliation(s)
- Samin Shokravi
- Department of Research and Academic Affairs, Larkin Community Hospital, Miami, FL USA
| | - Vitaliy Borisov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region Iraq
| | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Raheleh Hazrati
- Department of Medicinal Chemistry, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Sima Marzban
- Department of Research and Academic Affairs, Larkin Community Hospital, Miami, FL USA
| | - Armin Sohrabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
50
|
The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases. Cells 2022; 11:cells11091410. [PMID: 35563716 PMCID: PMC9101582 DOI: 10.3390/cells11091410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment for end-stage liver diseases and acute liver failure (ALF). Due to several limitations, stem-cell-based therapies are currently being developed as alternative solutions. Stem cells or progenitor cells derived from various sources have emerged as an alternative source of hepatic regeneration. Therefore, hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are also known to differentiate into hepatocyte-like cells (HPLCs) and liver progenitor cells (LPCs) that can be used in preclinical or clinical studies of liver disease. Furthermore, these cells have been shown to be effective in the development of liver organoids that can be used for disease modeling, drug testing and regenerative medicine. In this review, we aim to discuss the characteristics of stem-cell-based therapies for liver diseases and present the current status and future prospects of using HLCs, LPCs or liver organoids in clinical trials.
Collapse
|