1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Zhou Z, Cai S, Zhou X, Zhao W, Sun J, Zhou Z, Yang Z, Li W, Wang Z, Zou H, Fu H, Wang X, Khoo BL, Yang M. Circulating Tumor Cells Culture: Methods, Challenges, and Clinical Applications. SMALL METHODS 2024:e2401026. [PMID: 39726345 DOI: 10.1002/smtd.202401026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers. Furthermore, research based on CTC cell lines serves as a valuable complement to traditional cancer cell line-based research. While numerous reports exist on CTC in vitro culture and even the establishment of CTC cell lines, the methods used vary, leading to disparate culture outcomes. This review presents the developmental history and current status of CTC in vitro culture research. Additionally, the culture strategies applied in different methods and analyzed the impact of various steps on culture outcomes are compared. Overall, the review indicates that while the short-term culture of CTCs is relatively straightforward, long-term culture success has been achieved for various specific cancer types but still faces challenges. Further optimization of efficient and widely applicable culture strategies is needed. Additionally, ongoing applications of CTC in vitro culture are summarized, highlighting the potential of expanded CTCs for drug susceptibility testing and as therapeutic tools in personalized treatment.
Collapse
Affiliation(s)
- Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wei Zhao
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhe Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Heng Zou
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
3
|
Malara N, Coluccio ML, Grillo F, Ferrazzo T, Garo NC, Donato G, Lavecchia A, Fulciniti F, Sapino A, Cascardi E, Pellegrini A, Foxi P, Furlanello C, Negri G, Fadda G, Capitanio A, Pullano S, Garo VM, Ferrazzo F, Lowe A, Torsello A, Candeloro P, Gentile F. Multicancer screening test based on the detection of circulating non haematological proliferating atypical cells. Mol Cancer 2024; 23:32. [PMID: 38350884 PMCID: PMC10863189 DOI: 10.1186/s12943-024-01951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND the problem in early diagnosis of sporadic cancer is understanding the individual's risk to develop disease. In response to this need, global scientific research is focusing on developing predictive models based on non-invasive screening tests. A tentative solution to the problem may be a cancer screening blood-based test able to discover those cell requirements triggering subclinical and clinical onset latency, at the stage when the cell disorder, i.e. atypical epithelial hyperplasia, is still in a subclinical stage of proliferative dysregulation. METHODS a well-established procedure to identify proliferating circulating tumor cells was deployed to measure the cell proliferation of circulating non-haematological cells which may suggest tumor pathology. Moreover, the data collected were processed by a supervised machine learning model to make the prediction. RESULTS the developed test combining circulating non-haematological cell proliferation data and artificial intelligence shows 98.8% of accuracy, 100% sensitivity, and 95% specificity. CONCLUSION this proof of concept study demonstrates that integration of innovative non invasive methods and predictive-models can be decisive in assessing the health status of an individual, and achieve cutting-edge results in cancer prevention and management.
Collapse
Affiliation(s)
- Natalia Malara
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy.
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, IT, Italy
| | - Fabiana Grillo
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Teresa Ferrazzo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Nastassia C Garo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | | | | | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Turin, Italy
| | - Eliano Cascardi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Turin, Italy
| | - Antonella Pellegrini
- Società Italiana di Citologia (SICi), AO S.Giovanni-Addolorata, President, Roma, IT, Italy
| | - Prassede Foxi
- Cytodiagnostic Pistoia-Pescia Unit, USL Toscana Centro, Pistoia, IT, 51100, Italy
| | | | - Giovanni Negri
- Pathology Unit, Central Hospital Bolzano, via Boehler 5, Bolzano, IT, 39100, Italy
| | - Guido Fadda
- Human Pathology Department, Gaetano Barresi University, Messina, IT, Italy
| | - Arrigo Capitanio
- Linköping University Hospital SE , Linköping University, Linköping, Sweden
| | - Salvatore Pullano
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Virginia M Garo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Francesca Ferrazzo
- Department of Health Sciences, University Magna Graecia, Catanzaro, IT, Italy
| | - Alarice Lowe
- Department of Pathology, Stanford University Hospital, Stanford, CA, USA
| | | | - Patrizio Candeloro
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, IT, Italy
| | - Francesco Gentile
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, IT, Italy
| |
Collapse
|
4
|
Li M, Wu S, Zhuang C, Shi C, Gu L, Wang P, Guo F, Wang Y, Liu Z. Metabolomic analysis of circulating tumor cells derived liver metastasis of colorectal cancer. Heliyon 2022; 9:e12515. [PMID: 36691542 PMCID: PMC9860459 DOI: 10.1016/j.heliyon.2022.e12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is one of the essential features of tumor that may dramatically contribute to metastasis and collapse. The metabolic profiling is investigated on the patient derived tissue and cancer cell line derived mouse metastasis xenograft. As well-recognized "seeds" for remote metastasis of tumor, role of circulating tumor cells (CTCs) in the study of metabolic reprogramming feature of tumor is yet to be elucidated. More specifically, whether there is difference of metabolic features of liver metastasis in colorectal cancer (CRC) derived from either CTCs or cancer cell line is still unknown. In this study, comprehensive untargeted metabolomics was performed using high performance liquid chromatography-mass spectrometry (HPLC-MS) in liver metastasis tissues from CT26 cells and CTCs derived mouse models. We identified 288 differential metabolites associated with the pathways such as one carbon pool by folate, folate biosynthesis and histidine metabolism through bioinformation analysis. Multiple gene expression was upregulated in the CTCs derived liver metastasis, specifically some specific enzymes. These results indicated that the metabolite phenotype and corresponding gene expression in the CTCs derived liver metastasis tissues was different from the parental CT26 cells, displaying a specific up-regulation of mRNAs involved in the above metabolism-related pathways. The metabolic profile of CTCs was characterized on the liver metastatic process in colorectal cancer. The invasion ability and chemo drug tolerance of the CTCs derived tumor and metastasis was found to be overwhelming higher than cell line derived counterpart. Identification of the differential metabolites will lead to a better understanding of the hallmarks of the cancer progression and metastasis, which may suggest potential attractive target for treating metastatic CRC.
Collapse
Affiliation(s)
- Meng Li
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Chengle Zhuang
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Chenzhang Shi
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Lei Gu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Peng Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Fangfang Guo
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China,Corresponding author.
| | - Zhongchen Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China,Corresponding author.
| |
Collapse
|
5
|
Malara N, Kovacs G, Bussu F, Ferrazzo T, Garo V, Raso C, Cornacchione P, Iezzi R, Tagliaferri L. Liquid Biopsy-Guided Interventional Oncology: A Proof of Concept with a Special Focus on Radiotherapy and Radiology. Cancers (Basel) 2022; 14:4676. [PMID: 36230601 PMCID: PMC9562702 DOI: 10.3390/cancers14194676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Although the role of liquid biopsy (LB) to measure minimal residual disease (MRD) in the treatment of epithelial cancer is well known, the biology of the change in the availability of circulating biomarkers arising throughout treatments such as radiotherapy and interventional radio-oncology is less explained. Deep knowledge of how therapeutic effects can influence the biology of the release mechanism at the base of the biomarkers available in the bloodstream is needed for selecting the appropriate treatment-induced tumor circulating biomarker. Combining existing progress in the LB and interventional oncology (IO) fields, a proof of concept is provided, discussing the advantages of the traditional risk assessment of relapsing lesions, limitations, and the timing of detection of the circulating biomarker. The current review aims to help both interventional radiologists and interventional radiation oncologists evaluate the possibility of drawing a tailor-made board of blood-based surveillance markers to reveal subclinical diseases and avoid overtreatment.
Collapse
Affiliation(s)
- Natalia Malara
- Department of Health Sciences, University Magna Grecia, 88100 Catanzaro, Italy
- Nanotechnology Research Center, University Magna Grecia, 88100 Catanzaro, Italy
| | - György Kovacs
- Gemelli-INTERACTS, Università Cattolica del Sacro Cuore, 88168 Rome, Italy
| | - Francesco Bussu
- Department of Medical Surgical and Experimental Sciences, Sassari University, 07100 Sassari, Italy
| | - Teresa Ferrazzo
- Department of Health Sciences, University Magna Grecia, 88100 Catanzaro, Italy
| | - Virginia Garo
- Department of Health Sciences, University Magna Grecia, 88100 Catanzaro, Italy
| | - Cinzia Raso
- Department of Health Sciences, University Magna Grecia, 88100 Catanzaro, Italy
| | - Patrizia Cornacchione
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 88168 Rome, Italy
| | - Roberto Iezzi
- UOC di Radiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 88168 Rome, Italy
| | - Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 88168 Rome, Italy
| |
Collapse
|
6
|
Sun B, Ji W, Liu C, Lin X, Chen L, Qian H, Su C. miR-2392 functions as tumour suppressor and inhibits malignant progression of hepatocellular carcinoma via directly targeting JAG2. Liver Int 2022; 42:1658-1673. [PMID: 35485355 DOI: 10.1111/liv.15284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Dysregulation of microRNA (miRNA) expression in various cancers and their vital roles in malignant progression of cancers are well investigated. Our previous studies have analysed miRNAs that promote malignant progression in hepatocellular carcinoma (HCC); this study aims to systematically elucidate the mechanism of metastasis suppressor miRNAs in HCC. METHODS High-throughput RNA sequencing was used to identify anti-metastatic miRNAs. The relative expression levels of miRNAs were confirmed by qRT-PCR. The biological functions of miRNAs were detected in vitro and in vivo. Circulating tumour cells (CTCs) were enriched from blood samples of HCC patients and cultured by three-dimensional (3D) system. Kaplan-Meier and Cox regression were used to analyse the value of potential target mRNAs on overall survival. RESULTS miR-2392 was significantly down-regulated in HCC. Overexpression of miR-2392 suppressed proliferation, clonogenicity, mobility, spheroid formation and maintenance of cancer stem cells (CSC)-like characteristics in HCC cells. CTCs from HCC patients with lower serum miR-2392 level had stronger cell spheroid formation ability. A negative correlation between the content of miR-2392 in serum and the number of CTC spheroids had been found. We identified Jagged2 (JAG2) as a direct target of miR-2392. miR-2392 inhibited the expression of JAG2 by targeting 3'-UTR of JAG2. Down-regulation of JAG2 inhibited the overexpression effects of miR-2392 in vitro and in vivo. JAG2 is highly expressed in HCC and is closely related to poor prognosis and survival of patients. CONCLUSIONS miR-2392 may play a role as a tumour suppressor to guide the individualized precise treatment of HCC.
Collapse
Affiliation(s)
- Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Lei Chen
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Haihua Qian
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy. SENSORS 2022; 22:s22134788. [PMID: 35808284 PMCID: PMC9269204 DOI: 10.3390/s22134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
Platelets are emerging as a promising source of blood biomarkers for several pathologies, including cancer. New automated techniques for easier manipulation of platelets in the context of lab-on-a-chips could be of great support for liquid biopsy. Here, several polymeric materials were investigated for their behavior in terms of adhesion and activation of human platelets. Polymeric materials were selected among the most used in microfabrication (PDMS, PMMA and COC) and commercial and home-made resins for 3D printing technology with the aim to identify the most suitable for the realization of microdevices for human platelets isolation and analysis. To visualize adherent platelets and their activation state scanning, electron microscopy was used, while confocal microscopy was used for evaluating platelets’ features. In addition, atomic force microscopy was employed to further study platelets adherent to the polymeric materials. Polymers were divided in two main groups: the most prone to platelet adhesion and materials that cause few or no platelets to adhere. Therefore, different polymeric materials could be identified as suitable for the realization of microdevices aimed at capturing human platelets, while other materials could be employed for the fabrication of microdevices or parts of microdevices for the processing of platelets, without loss on surfaces during the process.
Collapse
|
8
|
Innaro N, Gervasi R, Ferrazzo T, Garo NC, Curto LS, Lavecchia A, Aquila I, Donato G, Malara N. Minimal residual disease assessment of papillary thyroid carcinoma through circulating tumor cell-based cytology. Cancer Med 2022; 11:4830-4837. [PMID: 35586892 PMCID: PMC9761073 DOI: 10.1002/cam4.4813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/03/2023] Open
Abstract
The overall estimated risk of recurrence after an apparently complete thyroid cancer resection ranges from <1% to 55%, and the high-quality pathology report is crucial for proper risk stratification. The neck ultrasound (US) and serum thyroglobulin (Tg) and anti-Tg antibody (TgAb) assays are the mainstays for Differentiated Thyroid Cancer (DTC) follow-up. However, the neck US includes a high frequency of nonspecific findings and despite the serum, Tg unmasks the presence of thyrocytes, it is not discriminating between normal and malignant cells. In this study, to improve post-surgery follow-up of minimal residual disease in papillary thyroid cancer (PTC) patients, blood-derived cytology specimens were evaluated for the presence of circulating tumor cells (CTCs). The presence of CTCs of thyroid origin was confirmed by cytomorphological and tissue-specific antigens analysis (Thyroid Transcription Factor-1/TTF-1 and Tg) and proliferative profile (percentage of cells in S-phase). Our data revealed an unfavorable' prognostic risk in patients with >5% CTCs (p = 0.09) and with >30% S-phase cells at baseline (p = 0.0015), predicting ≤1 year relapsing lesion event. These results suggest a new intriguing frontier of precision oncology forefront cytology-based liquid biopsy.
Collapse
Affiliation(s)
- Nadia Innaro
- Unit of Endocrinological surgeryMater Domini Hospital of CatanzaroCatanzaroItaly
| | - Rita Gervasi
- Unit of Endocrinological surgeryMater Domini Hospital of CatanzaroCatanzaroItaly
| | - Teresa Ferrazzo
- Department of Medical and Surgical ScienceUniversity “Magna Græcia” CatanzaroCatanzaroItaly
| | - Nastassia C. Garo
- Department of Health SciencesUniversity “Magna Græcia” CatanzaroCatanzaroItaly
| | - Lucia S. Curto
- Unit of Endocrinological surgeryMater Domini Hospital of CatanzaroCatanzaroItaly
| | | | - Isabella Aquila
- Department of Health SciencesUniversity “Magna Græcia” CatanzaroCatanzaroItaly
| | - Giuseppe Donato
- Department of Health SciencesUniversity “Magna Græcia” CatanzaroCatanzaroItaly
| | - Natalia Malara
- BioNEM Laboratory and Nanotechnology Research Center, Department of Experimental and Clinical MedicineUniversity "Magna Graecia" of CatanzaroCatanzaroItaly
| |
Collapse
|
9
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
10
|
Cell Lines of Circulating Tumor Cells: What Is Known and What Needs to Be Resolved. J Pers Med 2022; 12:jpm12050666. [PMID: 35629089 PMCID: PMC9148030 DOI: 10.3390/jpm12050666] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
The importance of circulating tumor cells (CTC) is well recognized. However, the biological characteristics of CTC in the bloodstream have not yet been examined in detail, due to the limited number of CTC cell lines currently available. Thirty-nine CTC cell lines were reported by 2021. For successful cell culturing, these CTC cell lines were reviewed. Previous studies on short-term cultures of CTC also analyzed approaches for establishing the long-term culture of CTC. Negative selection, hypoxic conditions, three-dimensional conditions, and careful management are preferable for the long-term culture of CTC. However, the establishment of CTC cell lines is dependent on the specific characteristics of each cell type. Therefore, a method to establish CTC cell lines has not yet been developed. Further efforts are needed to resolve this issue.
Collapse
|
11
|
Volpentesta G, Donato G, Ferraro E, Mignogna C, Radaelli R, Sabatini U, La Torre D, Malara N. Pilocytic Astrocytoma-Derived Cells in Peripheral Blood: A Case Report. Front Oncol 2021; 11:737730. [PMID: 34778052 PMCID: PMC8579051 DOI: 10.3389/fonc.2021.737730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Imaging limitations, invasive tissue biopsies and poor information over the course of treatment to evaluate ‘real-time’ tumor dynamics justify the emerging use of liquid biopsies in the field of brain tumors. Circulating tumor cells (CTCs) from high-grade astrocytomas might reach the circulation by crossing the blood–brain barrier. Here, for the first time, CTCs cytology in a case of pylocitic astrocytoma is described. An obstructive hydrocephalous due to a lateral mesencephalic tectum mass occluding the Silvio Aqueduct was diagnosed in a young, 18 years old, male. Considering the location of the tumor and the rapid deterioration of the neurological status, it has been decided to urgency treat the patient with ventriculoperitoneal shunting. Magnetic resonance imaging showed a nodular shaped lesion localized within the left lateral mesencephalic tectum. Stereotactic biopsy was not approachable due significant risk of neurological consequences. The diagnosis was performed by blood sampling, a non-invasive procedure for the patient, in order to provide tumor information. Cytopathological features on detected circulating atypical GFAP positive cells led to pilocytic diagnosis confirmed by the patient’s 68 months outcome.
Collapse
Affiliation(s)
- Giorgio Volpentesta
- Department of Medical and Surgical Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Chiara Mignogna
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Riccardo Radaelli
- Department of Medical and Surgical Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Umberto Sabatini
- Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, University "Magna Græcia", Catanzaro, Italy
| | - Natalia Malara
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
12
|
Methylglyoxal Adducts Levels in Blood Measured on Dried Spot by Portable Near-Infrared Spectroscopy. NANOMATERIALS 2021; 11:nano11092432. [PMID: 34578748 PMCID: PMC8472697 DOI: 10.3390/nano11092432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
The altered glucose metabolism characterising cancer cells determines an increased amount of methylglyoxal in their secretome. Previous studies have demonstrated that the methylglyoxal, in turn, modifies the protonation state (PS) of soluble proteins contained in the secretomes of cultivated circulating tumour cells (CTCs). In this study, we describe a method to assess the content of methylglyoxal adducts (MAs) in the secretome by near-infrared (NIR) portable handheld spectroscopy and the extreme learning machine (ELM) algorithm. By measuring the vibration absorption functional groups containing hydrogen, such as C-H, O-H and N-H, NIR generates specific spectra. These spectra reflect alterations of the energy frequency of a sample bringing information about its MAs concentration levels. The algorithm deciphers the information encoded in the spectra and yields a quantitative estimate of the concentration of MAs in the sample. This procedure was used for the comparative analysis of different biological fluids extracted from patients suspected of having cancer (secretome, plasma, serum, interstitial fluid and whole blood) measured directly on the solute left on a surface upon a sample-drop cast and evaporation, without any sample pretreatment. Qualitative and quantitative regression models were built and tested to characterise the different levels of MAs by ELM. The final model we selected was able to automatically segregate tumour from non-tumour patients. The method is simple, rapid and repeatable; moreover, it can be integrated in portable electronic devices for point-of-care and remote testing of patients.
Collapse
|
13
|
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021; 22:ijms22169007. [PMID: 34445710 PMCID: PMC8396502 DOI: 10.3390/ijms22169007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Collapse
Affiliation(s)
- Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| | - Elisabetta Ferraro
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| |
Collapse
|
14
|
Mollace A, Coluccio ML, Donato G, Mollace V, Malara N. Cross-talks in colon cancer between RAGE/AGEs axis and inflammation/immunotherapy. Oncotarget 2021; 12:1281-1295. [PMID: 34194625 PMCID: PMC8238251 DOI: 10.18632/oncotarget.27990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
The tumour microenvironment is the result of the activity of many types of cells in various metabolic states, whose metabolites are shared between cells. This cellular complexity results in an availability profile of nutrients and reactive metabolites such as advanced glycation end products (AGE). The tumour microenvironment is not favourable to immune cells due to hypoxia and for the existence of significant competition between various types of cells for a limited nutrient pool. However, it is now known that cancer cells can influence the host's immune reaction through the expression and secretion of numerous molecules. The microenvironment can therefore present itself in different patterns that contribute to shaping immune surveillance. Colorectal cancer (CRC) is one of the most important causes of death in cancer patients. Recently, immunotherapy has begun to give encouraging results in some groups of patients suffering from this neoplasm. The analysis of literature data shows that the RAGE (Receptor for advanced glycation end products) and its numerous ligands contribute to connect the energy metabolic pathway, which appears prevalently disconnected by mitochondrial running, with the immune reaction, conditioned by local microbiota and influencing tumour growth. Understanding how metabolism in cancer and immune cells shapes response and resistance to therapy, will provide novel potential strategies to increase both the number of tumour types treated by immunotherapy and the rate of immunotherapy response. The analysis of literature data shows that an immunotherapy approach based on the knowledge of RAGE and its ligands is not only possible, but also desirable in the treatment of CRC.
Collapse
Affiliation(s)
- Annachiara Mollace
- Department of Health Sciences, Research Centre IRC-FSH, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, Bionem Laboratory, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Research Centre IRC-FSH, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.,These authors contributed equally to this work
| | - Natalia Malara
- Department of Experimental and Clinical Medicine, Bionem Laboratory, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy.,These authors contributed equally to this work
| |
Collapse
|
15
|
Smit DJ, Pantel K, Jücker M. Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy. Biochem Pharmacol 2021; 188:114589. [PMID: 33932470 DOI: 10.1016/j.bcp.2021.114589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) play a crucial role in metastasis and became an emerging topic in today's cancer research. In addition, the analysis of CTCs in liquid biopsies will be a valuable tool for prognosis prediction and real time therapy monitoring. The characterization of CTCs may open up a new field of treatment strategy to prevent metastasis or maintain a stable disease. In 2013, the first cell cultures of CTCs have been established in vitro. Additionally, functional studies have been successfully performed over the last years. Meanwhile, more than 300 short-term CTC cultures and 42 long-term CTC cultures from a variety of tumor entities have been described. More than 45 inhibitors have already been tested for their efficacy to target CTCs in several studies in vitro as well as in xenograft mouse models in vivo. Here, we summarize the currently available data of these inhibition experiments and their effects in targeting CTCs. The results suggest that CTCs may be useful for individualized drug susceptibility testing.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021; 22:ijms22020913. [PMID: 33477599 PMCID: PMC7831300 DOI: 10.3390/ijms22020913] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived "matrix vesicles" and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.
Collapse
|
17
|
Assessment of circulating tumor cells in peripheral blood using flow cytometry in patients with surgery for colorectal cancer – review. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Colorectal cancer (CRC) is the third most common neoplasia in the world. Circulating tumor cells (CTC) have a prognostic value and can be useful in monitoring solid neoplasia. Only one method for CTC identification has received the approval and this is the CellSearch® system based on the immunomagnetic separation. Multiple markers are used in CTC identification, as epithelial markers and cytokeratines. CTC identification in peripheral blood is associated with a worse prognostic and reduced free survival in CRC.
Material and methods: We performed a systematic search in PubMed database for articles that reports the circulating tumor cells in CRC until July 2019. We selected studies in English and French and the main words used for search were ‘circulating tumor cells’, ‘colorectal cancer’, ‘colon cancer’, ‘rectal cancer’, ‘flow cytometry’, ‘peripheral blood’. We included studies with more than 10 patients, where samples were collected from the blood in relation with surgery and flow cytometry was used as analyzing technique.
Results: We included 7 studies in final analysis, that showed in flow cytometry analysis a cut-off value of CTC that can vary from 2-4 CTC/ 7.5 ml peripheral blood with a sensitivity of 50.8% and specificity of 95%. Patients with positive CTC were associated with higher T stage and positive lymph nodes, with a worse overall survival (OS) and disease free survival (DFS) comparing with negative patients.
Conclusion: CTC are considered to be a prognostic factor who needs more validation studies in order to be included in the clinical practice.
Collapse
|
18
|
Gonzalez-Villarreal CA, Quiroz-Reyes AG, Islas JF, Garza-Treviño EN. Colorectal Cancer Stem Cells in the Progression to Liver Metastasis. Front Oncol 2020; 10:1511. [PMID: 32974184 PMCID: PMC7468493 DOI: 10.3389/fonc.2020.01511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is a leading cause of cancer mortality. Tumorigenesis is a dynamic process wherein cancer stem cells (CSCs) and their microenvironment promote initiation, progression, and metastasis. Metastatic colonization is an inefficient process that is very complex and is poorly understood; however, in most cases, metastatic disease is not curable, and resistance mechanisms tend to develop against conventional treatments. An understanding of the underlying mechanisms and factors that contribute to the development of metastasis in CRC can aid in the search for specific therapeutic targets for improving standard treatments. In this review, we summarize current knowledge regarding tumor biology and the use of stroma cells as prognostic factors and inflammatory inducers associated with the use of tumor microenvironments as a promoter of cancer metastasis. Moreover, we look into the importance of CSC, pericytes, and circulating tumor cells as mechanisms that lead to liver metastasis, and we also focus on the cellular and molecular pathways that modulate and regulate epithelial–mesenchymal transition. Finally, we discuss a novel therapeutic target that can potentially eliminate CSCs as a CRC treatment.
Collapse
Affiliation(s)
| | - Adriana G Quiroz-Reyes
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Jose F Islas
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Elsa N Garza-Treviño
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| |
Collapse
|
19
|
Coluccio ML, Presta I, Greco M, Gervasi R, La Torre D, Renne M, Voci CP, Lunelli L, Donato G, Malara N. Microenvironment Molecular Profile Combining Glycation Adducts and Cytokines Patterns on Secretome of Short-term Blood-derived Cultures during Tumour Progression. Int J Mol Sci 2020; 21:E4711. [PMID: 32630302 PMCID: PMC7369824 DOI: 10.3390/ijms21134711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer cells are known to secrete many bioactive factors acting both with paracrine and autocrine mechanisms by which they condition the surrounding microenvironment. At the same time, the intracytoplasmic metabolic activities microenvironment influences the profile of this secretion. It is well known that cancer cells exhibit prevalent glycolytic metabolism and a more oxidative atmosphere compared to their healthy counterparts; this metabolic phenotype promotes glycate adducts formation and secretion. Considering the exacerbation of metabolic changes during the cancer progression, it is suggestive to explore the potential correlation between the increasing rate of glycan adducts and the specific pattern of secreted cytokines in different phases of cancer disease. We analyzed the secretomes of blood-derived cancer cell cultures from cancer patients and healthy subjects. The relative glycate adducts content in cancer secretomes was higher in comparison to that of healthy samples. Moreover, the stratification based on different phases of cancer disease correlated with a specific cytokines panel. The results obtained open a new perspective of observation of the intricate relationship between metabolome and inflammation in cancer. By using the analysis of secretome combined with a standardized protocol of liquid biopsy, it would be possible to identify specific profiles of molecular markers useful to arrange alternative and personalized medicine strategies.
Collapse
Affiliation(s)
- Maria Laura Coluccio
- University of Magna Graecia, 88100 Catanzaro, Italy; (M.L.C.); (I.P.); (M.G.); (D.L.T.); (G.D.)
| | - Ivan Presta
- University of Magna Graecia, 88100 Catanzaro, Italy; (M.L.C.); (I.P.); (M.G.); (D.L.T.); (G.D.)
| | - Marta Greco
- University of Magna Graecia, 88100 Catanzaro, Italy; (M.L.C.); (I.P.); (M.G.); (D.L.T.); (G.D.)
| | - Rita Gervasi
- Mater Domini Hospital, 88100 Catanzaro, Italy; (R.G.); (M.R.); (C.P.V.)
| | - Domenico La Torre
- University of Magna Graecia, 88100 Catanzaro, Italy; (M.L.C.); (I.P.); (M.G.); (D.L.T.); (G.D.)
| | - Maria Renne
- Mater Domini Hospital, 88100 Catanzaro, Italy; (R.G.); (M.R.); (C.P.V.)
| | - Carlo Pietro Voci
- Mater Domini Hospital, 88100 Catanzaro, Italy; (R.G.); (M.R.); (C.P.V.)
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler, 38123 Trento, Italy;
- CNR Institute of Biophysics, 38123 Trento, Italy
| | - Giuseppe Donato
- University of Magna Graecia, 88100 Catanzaro, Italy; (M.L.C.); (I.P.); (M.G.); (D.L.T.); (G.D.)
| | - Natalia Malara
- University of Magna Graecia, 88100 Catanzaro, Italy; (M.L.C.); (I.P.); (M.G.); (D.L.T.); (G.D.)
| |
Collapse
|
20
|
Tailoring Chemometric Models on Blood-Derived Cultures Secretome to Assess Personalized Cancer Risk Score. Cancers (Basel) 2020; 12:cancers12061362. [PMID: 32466587 PMCID: PMC7352557 DOI: 10.3390/cancers12061362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
The molecular protonation profiles obtained by means of an organic electrochemical transistor, which is used for analysis of molecular products released by blood-derived cultures, contain a large amount of information The transistor is based on the conductive polymer PEDOT:PSS comprising super hydrophobic SU8 pillars positioned on the substrate to form a non-periodic square lattice to measure the state of protonation on secretomes derived from liquid biopsies. In the extracellular space of cultured cells, the number of glycation products increase, driven both by a glycolysis metabolism and by a compromised function of the glutathione redox system. Glycation products are a consequence of the interaction of the reactive aldehydes and side glycolytic products with other molecules. As a result, the amount of the glycation products reflects the anti-oxidative cellular reserves, counteracting the reactive aldehyde production of which both the secretome protonation profile and cancer risk are related. The protonation profiles can be profitably exploited through the use of mathematical techniques and multivariate statistics. This study provides a novel chemometric approach for molecular analysis of protonation and discusses the possibility of constructing a predictive cancer risk model based on the exploration of data collected by conventional analysis techniques and novel nanotechnological devices.
Collapse
|
21
|
Innate and Adaptive Immunity Linked to Recognition of Antigens Shared by Neural Crest-Derived Tumors. Cancers (Basel) 2020; 12:cancers12040840. [PMID: 32244473 PMCID: PMC7226441 DOI: 10.3390/cancers12040840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
In the adult, many embryologic processes can be co-opted by during cancer progression. The mechanisms of divisions, migration, and the ability to escape immunity recognition linked to specific embryo antigens are also expressed by malignant cells. In particular, cells derived from neural crests (NC) contribute to the development of multiple cell types including melanocytes, craniofacial cartilage, glia, neurons, peripheral and enteric nervous systems, and the adrenal medulla. This plastic performance is due to an accurate program of gene expression orchestrated with cellular/extracellular signals finalized to regulate long-distance migration, proliferation, differentiation, apoptosis, and survival. During neurulation, prior to initiating their migration, NC cells must undergo an epithelial–mesenchymal transition (EMT) in which they alter their actin cytoskeleton, lose their cell–cell junctions, apicobasal polarity, and acquire a motile phenotype. Similarly, during the development of the tumors derived from neural crests, comprising a heterogeneous group of neoplasms (Neural crest-derived tumors (NCDTs)), a group of genes responsible for the EMT pathway is activated. Here, retracing the molecular pathways performed by pluripotent cells at the boundary between neural and non-neural ectoderm in relation to the natural history of NCDT, points of contact or interposition are highlighted to better explain the intricate interplay between cancer cells and the innate and adaptive immune response.
Collapse
|
22
|
Presta I, Novellino F, Donato A, La Torre D, Palleria C, Russo E, Malara N, Donato G. UbcH10 a Major Actor in Cancerogenesis and a Potential Tool for Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2041. [PMID: 32192022 PMCID: PMC7139792 DOI: 10.3390/ijms21062041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/22/2023] Open
Abstract
Malignant transformation is a multistep process in which several molecular entities become dysregulated and result in dysfunction in the regulation of cell proliferation. In past years, scientists have gradually dissected the pathways involved in the regulation of the cell cycle. The mitotic ubiquitin-conjugating enzymes UbcH10, has been extensively studied since its cloning and characterization and it has been identified as a constantly overexpressed factor in many types of cancer. In this paper, we have reviewed the literature about UbcH10 in human cancer, pointing out the association between its overexpression and exacerbation of cancer phenotype. Moreover, many recalled studied demonstrated how immunohistochemistry or RT-PCR analysis can distinguish normal tissues and benign lesions from malignant neoplasms. In other experimental studies, many of the consequences of UbcH10 overexpression, such as increased proliferation, metastasizing, cancer progression and resistance to anticancer drugs are reversed through gene silencing techniques. In recent years, many authors have defined UbcH10 evaluation in cancer patients as a useful tool for diagnosis and therapy. This opinion is shared by the authors who advertise how it would be useful to start using in clinical practice the notions acquired about this important moleculein the carcinogenesis of many human malignancies.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Fabiana Novellino
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR) Viale Europa, 88100 Catanzaro, Italy;
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Caterina Palleria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Emilio Russo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Donato
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| |
Collapse
|
23
|
Advances in the Characterization of Circulating Tumor Cells in Metastatic Breast Cancer: Single Cell Analyses and Interactions, and Patient-Derived Models for Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:61-80. [PMID: 32304080 DOI: 10.1007/978-3-030-35805-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is the major cause of breast cancer death worldwide. In metastatic breast cancer, circulating tumor cells (CTCs) can be captured from patient blood samples sequentially over time and thereby serve as surrogates to assess the biology of surviving cancer cells that may still persist in solitary or multiple metastatic sites following treatment. CTCs may thus function as potential real-time decision-making guides for selecting appropriate therapies during the course of disease or for the development and testing of new treatments. The heterogeneous nature of CTCs warrants the use of single cell platforms to better inform our understanding of these cancer cells. Current techniques for single cell analyses and techniques for investigating interactions between cancer and immune cells are discussed. In addition, methodologies for growing patient-derived CTCs in vitro or propagating them in vivo to facilitate CTC drug testing are reviewed. We advocate the use of CTCs in appropriate microenvironments to appraise the effectiveness of cancer chemotherapies, immunotherapies, and for the development of new cancer treatments, fundamental to personalizing and improving the clinical management of metastatic breast cancer.
Collapse
|
24
|
Lee CH, Hsieh JCH, Wu TMH, Yeh TS, Wang HM, Lin YC, Chen JS, Lee CL, Huang WK, Hung TM, Yen TT, Chan SC, Chou WC, Kuan FC, Hu CC, Chang PH. Baseline circulating stem-like cells predict survival in patients with metastatic breast Cancer. BMC Cancer 2019; 19:1167. [PMID: 31791269 PMCID: PMC6889331 DOI: 10.1186/s12885-019-6370-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are associated with breast cancer prognosis. Research is limited regarding the role of circulating cancer stem-like cells (cCSCs) considering the treatment response and survival among patients with metastatic breast cancer. Accordingly, we performed this prospective study to clarify the prognostic significance of baseline cCSCs for metastatic breast cancer in terms of first-line chemotherapy. Methods Between April 2014 and January 2016, we prospectively enrolled 48 patients with stage IV breast invasive ductal carcinoma who underwent first-line chemotherapy. We identified and analyzed CTCs and cCSCs by using a protocol based on negative selection and flow cytometry before chemotherapy. CTCs were identified as EpCAM+Hoechst+CD45– cells and cCSCs as CD133+EpCAM+Hoechst+CD45– cells. cCSCs were expressed as a percentage of CTCs. The associations between CTCs, cCSCs, and the clinicopathological variables that were predictive of the treatment response and survival outcome were analyzed using univariate and multivariate analyses. Results We identified CTCs in all the enrolled patients, with a median number of 33.9/mL CTCs. CSCs were isolated in 97.9% of the patients; the median percentage of cCSCs was 14.7%. A high baseline level of cCSCs was correlated with an inferior tumor response rate (54.2% vs. 95.8%, p < 0.001), overall survival (OS; median: 27.7 months vs. not reached, p < 0.001), and progression-free survival (PFS; median: 5.7 vs. 18.0 months, p < 0.001). Multivariate analysis revealed that along with other clinical variables, baseline cCSCs remained an independent prognostic factor for OS and PFS. Conclusions Baseline cCSCs predict the treatment response as well as survival in patients with metastatic breast cancer undergoing first-line chemotherapy. Therefore, the measurement of cCSCs may assist in identifying early cancer treatment response and prognosis.
Collapse
Affiliation(s)
- Chun-Hui Lee
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jason Chia-Hsun Hsieh
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Tyler Min-Hsien Wu
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Ting-Shiuan Yeh
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chan Lin
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Shi Chen
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Kuan Huang
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, Cancer Center Karolinska, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Tsung-Min Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Tsen Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sheng-Chieh Chan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Department of Medicine, Chang-Gung Memorial Hospital, Chiayi, 61363, Taiwan
| | - Ching-Chih Hu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Pei-Hung Chang
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
25
|
Todenhöfer T, Pantel K, Stenzl A, Werner S. Pathophysiology of Tumor Cell Release into the Circulation and Characterization of CTC. Recent Results Cancer Res 2019; 215:3-24. [PMID: 31605221 DOI: 10.1007/978-3-030-26439-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional model of metastatic progression postulates that the ability to form distant metastases is driven by random mutations in cells of the primary tumor.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Zhuang K, Zhang Y, Zhou L, Qi X, Xu X, Meng F, Xu Z, Liu J, Shao L, Liu H, Liu H, Fang J, Deng D, Peng J, Zhou F, Liu L, Tang H, Xiong Y, Ho W, Guo D, Ke H, Gui X. Isolation and characterization of spontaneously immortalized B-lymphocyte lines from HIV-infected patients with and without non-Hodgkin's Lymphoma. Cancer Med 2019; 8:6741-6755. [PMID: 31538749 PMCID: PMC6825990 DOI: 10.1002/cam4.2508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023] Open
Abstract
Isolation of viable circulating tumor cells (CTC) holds the promise for improving screening, early diagnosis, and personalized treatment of lymphoma. In this study, we isolated and characterized spontaneously immortalized B‐lymphocyte (SIBC) lines from HIV‐infected patients with and without Non‐Hodgkin's Lymphoma (AIDS‐NHL). A total of 22 SIBC lines was isolated from peripheral blood mononuclear cells (PBMC) of HIV‐infected patients with (n = 40) and without (n = 77) clinically detectable NHL, but not from healthy individuals (n = 34). Of these, 8 SIBC lines named HIV‐SIBC were generated from HIV‐infected patients without AIDS‐NHL (10%, 8/77), while 14 SIBCs named AIDS‐NHL‐SIBC were from 13 of the AIDS‐NHL patients (32.5%, 13/40). Among the 14 AIDS‐NHL‐SIBCs, 12 were derived from AIDS‐NHL patients with poor prognoses (survival time less than 1 year). SIBCs displayed markers typical of memory B cells (CD3‐CD20+CD27+) with EBV infection. Moreover, AIDS‐NHL‐SIBCs were representative of CTC as evidenced by monoclonal Ig gene rearrangement, abnormal chromosomal karyotype, and the formation of xenograft tumors, while HIV‐SIBCs generated harbored some features of tumor cells, none had the capacity of xenograft tumor formation, suggesting HIV‐SIBC present the precursor of CTC. These results indicate that SIBCs is associated with poor prognosis in AIDS‐NHL patients and can be isolated from HIV‐infected patients with NHL and without NHL. This findings point to the need for further molecular characterization and functional studies of SIBCs, which may prove the value of SIBCs in the diagnosis, prognoses, and screening for NHL among HIV‐infected patients.
Collapse
Affiliation(s)
- Ke Zhuang
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yongxi Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zhou
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Xiaoying Qi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiqiu Xu
- Basic Medical College of Wuhan University, Wuhan, China
| | - Fengzhen Meng
- Basic Medical College of Wuhan University, Wuhan, China
| | - Zhigao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinbiao Liu
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Liu
- Basic Medical College of Wuhan University, Wuhan, China
| | - Jun Fang
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Deng
- Department of Radiation Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianhong Peng
- Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Liu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hongbin Tang
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhe Ho
- Basic Medical College of Wuhan University, Wuhan, China
| | - Deying Guo
- School of Basic Medicine (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Hengning Ke
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xien Gui
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Visioli A, Giani F, Trivieri N, Pracella R, Miccinilli E, Cariglia MG, Palumbo O, Arleo A, Dezi F, Copetti M, Cajola L, Restelli S, Papa V, Sciuto A, Latiano TP, Carella M, Amadori D, Gallerani G, Ricci R, Alfieri S, Pesole G, Vescovi AL, Binda E. Stemness underpinning all steps of human colorectal cancer defines the core of effective therapeutic strategies. EBioMedicine 2019; 44:346-360. [PMID: 31056474 PMCID: PMC6603803 DOI: 10.1016/j.ebiom.2019.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite their lethality and ensuing clinical and therapeutic relevance, circulating tumor cells (CTCs) from colorectal carcinoma (CRC) remain elusive, poorly characterized biological entities. METHODS AND FINDINGS We perfected a cell system of stable, primary lines from human CRC showing that they possess the full complement of ex- and in-vivo, in xenogeneic models, characteristics of CRC stem cells (CCSCs). Here we show how tumor-initiating, CCSCs cells can establish faithful orthotopic phenocopies of the original disease, which contain cells that spread into the circulatory system. While in the vascular bed, these cells retain stemness, thus qualifying as circulating CCSCs (cCCSCs). This is followed by the establishment of lesions in distant organs, which also contain resident metastatic CCSCs (mCCSCs). INTERPRETATION Our results support the concept that throughout all the stages of CRC, stemness is retained as a continuous property by some of their tumor cells. Importantly, we describe a useful standardized model that can enable isolation and stable perpetuation of human CRC's CCSCs, cCCSCs and mCCSCs, providing a useful platform for studies of CRC initiation and progression that is suitable for the discovery of reliable stage-specific biomarkers and the refinement of new patient-tailored therapies. FUND: This work was financially supported by grants from "Ministero della Salute Italiano"(GR-2011-02351534, RC1703IC36 and RC1803IC35) to Elena Binda and from "Associazione Italiana Cancro" (IG-14368) Angelo L. Vescovi. None of the above funders have any role in study design, data collection, data analysis, interpretation, writing the project.
Collapse
Affiliation(s)
| | | | - Nadia Trivieri
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Riccardo Pracella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Elide Miccinilli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Maria Grazia Cariglia
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Orazio Palumbo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Medical Genetics Unit, Foggia, Italy
| | - Andrea Arleo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Fabio Dezi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Biostatistic Unit, Foggia, Italy
| | | | | | - Valerio Papa
- Digestive Surgery Unit, IRCCS "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Sciuto
- IRCCS Casa Sollievo della Sofferenza, Abdominal Surgery Unit, Foggia, Italy
| | | | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Medical Genetics Unit, Foggia, Italy
| | - Dino Amadori
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Meldola, Italy
| | - Giulia Gallerani
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Meldola, Biosciences Laboratory, Italy
| | - Riccardo Ricci
- Department of Pathology, IRCCS "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Sergio Alfieri
- Department of Pathology, IRCCS "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari del Consiglio Nazionale delle Ricerche, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica dell'Università di Bari "A. Moro". Bari, Italy
| | - Angelo L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy; Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISBReMIT, Foggia, Italy.
| |
Collapse
|
28
|
Chang PH, Wu MH, Liu SY, Wang HM, Huang WK, Liao CT, Yen TC, Ng SH, Chen JS, Lin YC, Lin HC, Hsieh JCH. The Prognostic Roles of Pretreatment Circulating Tumor Cells, Circulating Cancer Stem-Like Cells, and Programmed Cell Death-1 Expression on Peripheral Lymphocytes in Patients with Initially Unresectable, Recurrent or Metastatic Head and Neck Cancer: An Exploratory Study of Three Biomarkers in One-time Blood Drawing. Cancers (Basel) 2019; 11:cancers11040540. [PMID: 30991692 PMCID: PMC6521270 DOI: 10.3390/cancers11040540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTCs) and immune status are strongly related to cancer prognosis, although few studies have examined both factors. This prospective observational study (ClinicalTrials.gov: NCT02420600) evaluated whether CTCs, circulating cancer stem-like cells (cCSCs), and peripheral lymphocytes with/without Programmed cell death protein 1 (PD-1) expression were associated with prognosis among patients receiving palliative chemotherapy for initially unresectable, recurrent/metastatic head and neck squamous cell carcinoma (rmHNSCC). Thirty-four patients were enrolled between January 2015 and June 2016. Overall survival (OS) was associated with a higher CTC number (hazard ratio [HR]: 1.01, p = 0.0004) and cCSC ratio (HR: 29.903, p < 0.0001). Progression-free survival (PFS) was also associated with CTC number (HR: 1.013, p = 0.002) and cCSC ratio (HR: 10.92, p = 0.003). A CD8+ proportion of ≥ 17% was associated with improved OS (HR: 0.242, p = 0.004). A CD4: CD8 ratio of >1.2 was associated with poorer trend of PFS (HR: 2.12, p = 0.064). PD-1 expression was not associated with survival outcomes. Baseline CTCs, cCSC ratio, and CD8+ ratio may predict prognosis in rmHNSCC.
Collapse
Affiliation(s)
- Pei-Hung Chang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Cancer Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Min-Hsien Wu
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| | - Sen-Yu Liu
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Hung-Ming Wang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Wen-Kuan Huang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Department of Oncology⁻Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Chun-Ta Liao
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
| | - Tzu-Chen Yen
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
| | - Shu-Hang Ng
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jen-Shi Chen
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Yung-Chang Lin
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Hung-Chih Lin
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Jason Chia-Hsun Hsieh
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| |
Collapse
|
29
|
Superhydrophobic lab-on-chip measures secretome protonation state and provides a personalized risk assessment of sporadic tumour. NPJ Precis Oncol 2018; 2:26. [PMID: 30480095 PMCID: PMC6242957 DOI: 10.1038/s41698-018-0069-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022] Open
Abstract
Secretome of primary cultures is an accessible source of biological markers compared to more complex and less decipherable mixtures such as serum or plasma. The protonation state (PS) of secretome reflects the metabolism of cells and can be used for cancer early detection. Here, we demonstrate a superhydrophobic organic electrochemical device that measures PS in a drop of secretome derived from liquid biopsies. Using data from the sensor and principal component analysis (PCA), we developed algorithms able to efficiently discriminate tumour patients from non-tumour patients. We then validated the results using mass spectrometry and biochemical analysis of samples. For the 36 patients across three independent cohorts, the method identified tumour patients with high sensitivity and identification as high as 100% (no false positives) with declared subjects at-risk, for sporadic cancer onset, by intermediate values of PS. This assay could impact on cancer risk management, individual’s diagnosis and/or help clarify risk in healthy populations. A blood test that measures whether molecules secreted by cells contain titratable proton atoms can accurately discriminate between patients who have cancer and those who don’t. Titratable species may in turn influence the protonation state of a solution, i.e. the number of protons added to and the net charge of that solution. A team led by Natalia Malara from University Magna Graecia in Catanzaro, Italy and Enzo Di Fabrizio
from the King Abdullah University of Science and Technology in Thuwal, Saudi Arabia, Francesco Gentile from the University Federico II in Naples, Italy, and Nicola Coppedè from the Institute of Materials for Electronics and Magnetism in Parma, Italy, created an eletrochemical device that can detect faulty metabolism by quantifying the proportion of secreted proteins with and without extra protons—an indicator of abnormal cell division, proliferation and invasion. The researchers tested the device on blood samples from patients with solid tumors and healthy controls. The method identified cancer patients with a high degree of accuracy. If the findings are confirmed in larger trials, the test could help with the screening, diagnosis and management of cancer.
Collapse
|
30
|
Luo YT, Cheng J, Feng X, He SJ, Wang YW, Huang Q. The viable circulating tumor cells with cancer stem cells feature, where is the way out? J Exp Clin Cancer Res 2018; 37:38. [PMID: 29482576 PMCID: PMC5828305 DOI: 10.1186/s13046-018-0685-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023] Open
Abstract
With cancer stem cells (CSCs) became the research hotspot, emerging studies attempt to reveal the functions of these special subsets in tumorigenesis. Although various approaches have been used in CSCs researches, only a few could really reflect or simulate the microenvironment in vivo. At present, CSCs theories are still difficult to apply for clinical remedy because CSCs subpopulations are always hard to identify and trace. Thus an ideal approach for clinicians and researchers is urgently needed. Circulating tumor cells (CTCs), as the method of noninvasive-liquid biopsy, could be detected in the peripheral blood (PB) from many tumors and even could be treated as procurators for CSCs deeper researches from patient-derived sample. However, CTCs, as a diagnostic marker, also raise much controversy over theirs clinical value. Mechanisms causing CTCs to shed from the tumor have not been fully characterized, thus it is unclear whether CTCs represent the entire makeup of cancer cells in the tumor or only a subset. The heterogeneity of CTCs also caused different clinical outcomes. To overcome these unsolved problems, recently, CTC researches are not just depend on enumerations, whereas those CTC subsets that could expand in vitro may play a pivotal role in the metastatic cascade. Here, we retrospect the CTC developmental history and discourse upon the enrichment of viable CTCs in functional assays, probe the further avenue at the crossroad.
Collapse
Affiliation(s)
- Y T Luo
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - J Cheng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - X Feng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - S J He
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Y W Wang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Q Huang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| |
Collapse
|
31
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
32
|
Latosinska A, Frantzi M, Vlahou A, Merseburger AS, Mischak H. Clinical Proteomics for Precision Medicine: The Bladder Cancer Case. Proteomics Clin Appl 2017; 12. [DOI: 10.1002/prca.201700074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/10/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Axel S. Merseburger
- Department of Urology; Campus Lübeck; University Hospital Schleswig-Holstein; Lübeck Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH; Hannover Germany
- BHF Glasgow Cardiovascular Research Centre; University of Glasgow; Glasgow UK
| |
Collapse
|
33
|
Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, Xue Z, Zhang B, Tian Z, Cao Y, Xing Z, Yin S, Wang K, Shi Q, He X. Isolation and identification of cancer stem cells from PC3 human prostate carcinoma cell line. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8377-8382. [PMID: 31966689 PMCID: PMC6965485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/30/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Morphological differences of PC3 clones were dynamically observed, and the expression of CD44 in different clones was detected to compare the tumorigenic ability of different clone cells in nude mice and identify the clones containing prostate cancer stem cells. MATERIALS AND METHODS Clone formation assay was used for observing and classifying PC3 clones and calculating the cloning efficiency and the proportion of each clone. CD44 expression in different clones was detected by immunofluorescence technique. In addition, different morphologies of clones were isolated to measure the ability of self-renewing, and inoculated into nude mice to observe the tumorigenic ability. RESULTS PC3 cells could form three morphologies of clones, namely holoclone, meroclone, and paraclone. The cloning efficiency was 10.23%±0.91%, and the proportion of the three clones was 11.7%, 50.0% and 38.3%, respectively. Immunofluorescence showed that the expression of CD44 in holoclone was significantly stronger than meroclone and paraclone. Holoclone had self-renewing ability and strong tumorigenic ability in nude mice. CONCLUSION There are differences in morphologies and differentiation of PC3 clones. Moreover, prostate cancer stem cells are abundant in holoclone.
Collapse
Affiliation(s)
- Yaojun Zhou
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Hongqiong Yang
- Department of Geriatric Medicine, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Wei Xia
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Li Cui
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Renfang Xu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Hao Lu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Zhong Xue
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Bo Zhang
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Zinong Tian
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Yunjie Cao
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Zhaoyu Xing
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Shuai Yin
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Kun Wang
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Qianqian Shi
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Xiaozhou He
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| |
Collapse
|
34
|
Werner S, Stenzl A, Pantel K, Todenhöfer T. Expression of Epithelial Mesenchymal Transition and Cancer Stem Cell Markers in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:205-228. [DOI: 10.1007/978-3-319-55947-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Wang R, Chu GCY, Mrdenovic S, Annamalai AA, Hendifar AE, Nissen NN, Tomlinson JS, Lewis M, Palanisamy N, Tseng HR, Posadas EM, Freeman MR, Pandol SJ, Zhau HE, Chung LWK. Cultured circulating tumor cells and their derived xenografts for personalized oncology. Asian J Urol 2016; 3:240-253. [PMID: 29264192 PMCID: PMC5730836 DOI: 10.1016/j.ajur.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gina C Y Chu
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan Mrdenovic
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alagappan A Annamalai
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew E Hendifar
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicholas N Nissen
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James S Tomlinson
- Department of Surgery, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Michael Lewis
- Department of Pathology, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | | | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|