1
|
Rueda A, Serna N, Mangues R, Villaverde A, Unzueta U. Targeting the chemokine receptor CXCR4 for cancer therapies. Biomark Res 2025; 13:68. [PMID: 40307933 PMCID: PMC12044942 DOI: 10.1186/s40364-025-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) has emerged as a key molecular biomarker for cancer therapies due to its critical role in tumor progression and metastases by displaying a stem cells phenotype. Its overexpression has been observed in more than 20 types of cancers, including solid tumors and hematological malignancies, and it is often associated with tumor aggressiveness and poor prognosis. Being initially recognized as a co-receptor involved in HIV infection, numerous CXCR4-targeting ligands and antagonists, including small molecules, peptides and biologics have been identified over the past decades. While only few of them have been used in the context of cancer therapies, recent biotechnological advancements using CXCR4 as a molecular target are showing significant potential to revolutionize future cancer therapies. Therefore, this review highlights the biotechnological innovations developed for cancer therapy and diagnosis by targeting the chemokine receptor CXCR4. It also discusses future perspectives on emerging therapeutic strategies, ranging from the use of small molecule inhibitors that block receptor signaling to cutting-edge nanocarriers designed for the targeted delivery of innovative drugs and proteins into cancer stem cells, aiming at cell-selective precision nanomedicines.
Collapse
Affiliation(s)
- Ariana Rueda
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
2
|
Chowdhury A, Shrestha P, Jois SD. Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer. Int J Pept Res Ther 2025; 31:38. [PMID: 39974747 PMCID: PMC11832722 DOI: 10.1007/s10989-025-10690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/21/2025]
Abstract
Background Several cancer therapies are being developed, and given the variability of different cancer types, the goal of these therapies is to remove the invasive tumor from the body, kill the cancer cells, or else retard the growth. These include chemotherapeutic agents and targeted therapy using small molecules and antibodies. However, antibodies can generate an immune response upon repeated administration, and producing antibodies could be expensive. Purpose The purpose of this review is to describe different therapeutic approaches utilized for cancer therapy, the current therapeutic approaches, and their limitations. As a novel strategy to combat cancer, designing new stable peptide scaffolds such as cyclotides and sunflower trypsin inhibitors (SFTI) is described. Results Stable peptides that can target proteins can be used as therapeutic agents. Here, we review the utilization and amalgamation of plant-based peptides with biological epitopes in designing molecules called "Molecular Chimeras" using a grafted peptide strategy. These cyclic peptides can bind to target receptors or modulate protein-protein interactions as they bind with high affinity and selectivity. Grafted peptides also possess better serum stability owing to the head-to-tail cyclization and other structural modifications. Conclusion Stable cyclic peptides outweigh the other biologicals in terms of stability and manufacturing process. Peptides and peptidomimetics can be used as therapeutic agents, and these molecules provide alternatives for biologicals and small molecule inhibitors as drugs.
Collapse
Affiliation(s)
- Arpan Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Prajesh Shrestha
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| |
Collapse
|
3
|
Sanchis-Pascual D, Del Olmo-García MI, Prado-Wohlwend S, Zac-Romero C, Segura Huerta Á, Hernández-Gil J, Martí-Bonmatí L, Merino-Torres JF. CXCR4: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Cancers (Basel) 2024; 16:1799. [PMID: 38791878 PMCID: PMC11120359 DOI: 10.3390/cancers16101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
There are several well-described molecular mechanisms that influence cell growth and are related to the development of cancer. Chemokines constitute a fundamental element that is not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic disease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell membranes of CXCR4 has been shown to be associated with the development of different kinds of histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors, or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads to the interaction of G proteins and the activation of different intracellular signaling pathways in both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity for locoregional aggressiveness, the epithelial-mesenchymal transition (EMT), and the appearance of metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor. The aim of this review is to focus on current knowledge of the relationship between CXCR4 and NENs, with a special emphasis on diagnostic and therapeutic molecular targets.
Collapse
Affiliation(s)
- David Sanchis-Pascual
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
| | - María Isabel Del Olmo-García
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Carlos Zac-Romero
- Patholoy Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Ángel Segura Huerta
- Medical Oncology Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Javier Hernández-Gil
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Luis Martí-Bonmatí
- Medical Imaging Department, Biomedical Imaging Research Group, Health Research Institute, University and Politecnic Hospital La Fe, 46026 Valencia, Spain;
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Al Shaer D, Al Musaimi O, Albericio F, de la Torre BG. 2023 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2024; 17:243. [PMID: 38399458 PMCID: PMC10893093 DOI: 10.3390/ph17020243] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
A total of nine TIDES (pepTIDES and oligonucleoTIDES) were approved by the FDA during 2023. The four approved oligonucleotides are indicated for various types of disorders, including amyotrophic lateral sclerosis, geographic atrophy, primary hyperoxaluria type 1, and polyneuropathy of hereditary transthyretin-mediated amyloidosis. All oligonucleotides show chemically modified structures to enhance their stability and therapeutic effectiveness as antisense or aptamer oligomers. Some of them demonstrate various types of conjugation to driving ligands. The approved peptides comprise various structures, including linear, cyclic, and lipopeptides, and have diverse applications. Interestingly, the FDA has granted its first orphan drug designation for a peptide-based drug as a highly selective chemokine antagonist. Furthermore, Rett syndrome has found its first-ever core symptoms treatment, which is also peptide-based. Here, we analyze the TIDES approved in 2023 on the basis of their chemical structure, medical target, mode of action, administration route, and common adverse effects.
Collapse
Affiliation(s)
- Danah Al Shaer
- Department of Medicinal Chemistry, Evotec (UK) Ltd., Abingdon OX14 4R, UK
| | - Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
5
|
Robinson T, Escara-Wilke J, Dai J, Zimmermann J, Keller ET. A CXCR4 inhibitor (balixafortide) enhances docetaxel-mediated antitumor activity in a murine model of prostate cancer bone metastasis. Prostate 2023; 83:1247-1254. [PMID: 37244751 PMCID: PMC10576997 DOI: 10.1002/pros.24584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Prostate cancer (PCa) bone metastases have been shown to be more resistant to docetaxel than soft tissue metastases. The proinflammatory chemokine receptor CXCR4 has been shown to confer resistance to docetaxel (DOC) in PCa cells. Balixafortide (BLX) is a protein epitope mimetic inhibitor of CXCR4. Accordingly, we hypothesized that BLX would enhance DOC-mediated antitumor activity in PCa bone metastases. METHODS PC-3 luciferase-labeled cells were injected into the tibia of mice to model bone metastases. Four treatment groups were created: vehicle, DOC (5 mg/kg), BLX (20 mg/kg), and combo (receiving both DOC and BLX). Mice were injected twice daily subcutaneously with either vehicle or BLX starting on Day 1 and weekly intraperitoneally with DOC starting on Day 1. Tumor burden was measured weekly via bioluminescent imaging. At end of study (29 days), radiographs were taken of the tibiae and blood was collected. Serum levels of TRAcP, IL-2, and IFNγ levels were measured using ELISA. Harvested tibiae were decalcified and stained for Ki67, cleaved caspase-3, and CD34 positive cells or microvessels were quantified. RESULTS Tumor burden was lower in the combo group compared to the DOC alone group. Treatment with the combination had no impact on the number of mice with osteolytic lesions, however the area of osteolytic lesions was lower in the combo group compared to the vehicle and BLX groups, but not the DOC group. Serum TRAcP levels were lower in the combo compared to vehicle group, but not the other groups. No significant difference in Ki67 staining was found among the groups; whereas, cleaved caspase-3 staining was lowest in the Combo group and highest in the BLX group. The DOC and combo groups had more CD34+ microvessels than the control and BLX groups. There was no difference between the treatment groups for IL-2, but the combo group had increased levels of IFNγ compared to the DOC group. CONCLUSIONS Our data demonstrate that a combination of BAL and DOC has greater antitumor activity in a model of PCa bone metastases than either drug alone. These data support further evaluation of this combination in metastatic PCa.
Collapse
Affiliation(s)
- Tyler Robinson
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| | | | - Jinlu Dai
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| | | | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Single Cell Spatial Analysis Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Ma B, Dai H, Dai X, Qian S, Sha X, Sun X. Cimigenol depresses acute myeloid leukemia cells protected by breaking bone marrow stromal cells via CXCR4/SDF‑1α. Exp Ther Med 2022; 25:80. [PMID: 36684661 PMCID: PMC9842948 DOI: 10.3892/etm.2022.11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023] Open
Abstract
The purpose of the present study was to evaluate cimigenol (Cim) treatment effects to cell proliferation by breaking bone marrow stromal cells (BMSCs) through C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor-1α (SDF-1α) pathway. MV-4-11 and U937 cell lines were used. The present study was divided into two parts. First, the cell lines were divided into normal control (NC), BMSC (cells co-cultured with BMSCs), BMSC + DMSO, BMSC + Low (treated with 5 mg/ml Cim), BMSC + Middle (treated with 10 mg/ml Cim), BMSC + High (treated with 20 mg/ml Cim). In the second step, the cell lines were divided into NC, BMSC, BMSC + BL8040 (treated with BL8040 which inhibits CXCR4), BMSC + Cim and BMSC + Cim + BL8040. EdU positive cell numbers were measured by EdU assay and apoptosis rate by flow cytometry and TUNEL assay. Relative gene and protein expression was measured by reverse transcription-quantitative PCR and western blotting assay. BMSCs were able to protect proliferation of cancer cells and decreased cell apoptosis compared with the NC group (P<0.001, respectively). With Cim supplement, the cell proliferation was decreased with cell apoptosis increasing compared with NC group (P<0.001 respectively). However, the anti-tumor effects of Cim were not significantly different from the BL8040 treated groups (P<0.001, respectively). In conclusion Cim decreased acute myeloid leukemia cells protected by BMSCs through the CXCR4/SDF-1α pathway.
Collapse
Affiliation(s)
- Bangyun Ma
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Huibo Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xingbin Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shushu Qian
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaocao Sha
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xuemei Sun
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China,Correspondence to: Dr Xuemei Sun, Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
7
|
Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Front Oncol 2022; 12:992171. [PMID: 36465350 PMCID: PMC9714258 DOI: 10.3389/fonc.2022.992171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Protein-protein interactions (PPIs) play vital roles in normal cellular processes. Dysregulated PPIs are involved in the process of various diseases, including cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer treatment. However, despite rapid advances in small-molecule drugs and biologics, it is still hard to target PPIs, especially for those intracellular PPIs. Macrocyclic peptides have gained growing attention for their therapeutic properties in targeting dysregulated PPIs. Macrocyclic peptides have some unique features, such as moderate sizes, high selectivity, and high binding affinities, which make them good drug candidates. In addition, some oncology macrocyclic peptide drugs have been approved by the US Food and Drug Administration (FDA) for clinical use. Here, we reviewed the recent development of macrocyclic peptides in cancer treatment. The opportunities and challenges were also discussed to inspire new perspectives.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Radanovic I, Klarenbeek N, Rissmann R, Groeneveld GJ, van Brummelen EMJ, Moerland M, Bosch JJ. Integration of healthy volunteers in early phase clinical trials with immuno-oncological compounds. Front Oncol 2022; 12:954806. [PMID: 36106110 PMCID: PMC9465458 DOI: 10.3389/fonc.2022.954806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Aim Traditionally, early phase clinical trials in oncology have been performed in patients based on safety risk-benefit assessment. Therapeutic transition to immuno-oncology may open new opportunities for studies in healthy volunteers, which are conducted faster and are less susceptible to confounders. Aim of this study was to investigate to what extent this approach is utilized and whether pharmacodynamic endpoints are evaluated in these early phase trials. We conducted a comprehensive review of clinical trials with healthy volunteers using immunotherapies potentially relevant for oncology. Methods Literature searches according to PRISMA guidelines and after registration in PROSPERO were conducted in PubMed, Embase, Web of Science and Cochrane databases with the cut-off date 20 October 2020, using search terms of relevant targets in immuno-oncology. Articles describing clinical trials with immunotherapeutics in healthy volunteers with a mechanism relevant for oncology were included. “Immunotherapeutic” was defined as compounds exhibiting effects through immunological targets. Data including study design and endpoints were extracted, with specific attention to pharmacodynamic endpoints and safety. Results In total, we found 38 relevant immunotherapeutic compounds tested in HVs, with 86% of studies investigating safety, 82% investigating the pharmacokinetics (PK) and 57% including at least one pharmacodynamic (PD) endpoint. Most of the observed adverse events (AEs) were Grade 1 and 2, consisting mostly of gastrointestinal, cutaneous and flu-like symptoms. Severe AEs were leukopenia, asthenia, syncope, headache, flu-like reaction and liver enzymes increase. PD endpoints investigated comprised of cytokines, immune and inflammatory biomarkers, cell counts, phenotyping circulating immune cells and ex vivo challenge assays. Discussion Healthy volunteer studies with immuno-oncology compounds have been performed, although not to a large extent. The integration of healthy volunteers in well-designed proof-of-mechanism oriented drug development programs has advantages and could be pursued more in the future, since integrative clinical trial protocols may facilitate early dose selection and prevent cancer patients to be exposed to non-therapeutic dosing regimens. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=210861, identifier CRD42020210861
Collapse
Affiliation(s)
- Igor Radanovic
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Robert Rissmann
- Centre for Human Drug Research, Leiden, Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| | - Jacobus J. Bosch
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Jacobus J. Bosch,
| |
Collapse
|
9
|
Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081541. [PMID: 35893797 PMCID: PMC9332179 DOI: 10.3390/pharmaceutics14081541] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Chemokines can induce chemotactic cell migration by interacting with G protein-coupled receptors to play a significant regulatory role in the development of cancer. CXC chemokine-12 (CXCL12) can specifically bind to CXC chemokine receptor 4 (CXCR4) and is closely associated with the progression of cancer via multiple signaling pathways. Over recent years, many CXCR4 antagonists have been tested in clinical trials; however, Plerixafor (AMD3100) is the only drug that has been approved for marketing thus far. In this review, we first summarize the mechanisms that mediate the physiological effects of the CXCL12/CXCR4 axis. Then, we describe the use of CXCL12/CXCR4 antagonists. Finally, we discuss the use of nano-based drug delivery systems that exert action on the CXCL12/CXCR4 biological axis.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| | - Bo Zhang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| |
Collapse
|
10
|
Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells 2022; 11:cells11111843. [PMID: 35681538 PMCID: PMC9180595 DOI: 10.3390/cells11111843] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Autologous hematopoietic stem cell (HSC)-targeted gene therapy provides a one-time cure for various genetic diseases including sickle cell disease (SCD) and β-thalassemia. SCD is caused by a point mutation (20A > T) in the β-globin gene. Since SCD is the most common single-gene disorder, curing SCD is a primary goal in HSC gene therapy. β-thalassemia results from either the absence or the reduction of β-globin expression, and it can be cured using similar strategies. In HSC gene-addition therapy, patient CD34+ HSCs are genetically modified by adding a therapeutic β-globin gene with lentiviral transduction, followed by autologous transplantation. Alternatively, novel gene-editing therapies allow for the correction of the mutated β-globin gene, instead of addition. Furthermore, these diseases can be cured by γ-globin induction based on gene addition/editing in HSCs. In this review, we discuss HSC-targeted gene therapy in SCD with gene addition as well as gene editing.
Collapse
|
11
|
A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. Eur J Med Chem 2022; 231:114150. [DOI: 10.1016/j.ejmech.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
12
|
Porfyriou E, Letsa S, Kosmas C. Hematopoietic stem cell mobilization strategies to support high-dose chemotherapy: A focus on relapsed/refractory germ cell tumors. World J Clin Oncol 2021; 12:746-766. [PMID: 34631440 PMCID: PMC8479351 DOI: 10.5306/wjco.v12.i9.746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/19/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
High-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation has been explored and has played an important role in the management of patients with high-risk germ cell tumors (GCTs) who failed to be cured by conventional chemotherapy. Hematopoietic stem cells (HSCs) collected from the peripheral blood, after appropriate pharmacologic mobilization, have largely replaced bone marrow as the principal source of HSCs in transplants. As it is currently common practice to perform tandem or multiple sequential cycles of HDCT, it is anticipated that collection of large numbers of HSCs from the peripheral blood is a prerequisite for the success of the procedure. Moreover, the CD34+ cell dose/kg of body weight infused after HDCT has proven to be a major determinant of hematopoietic engraftment, with patients who receive > 2 × 106 CD34+ cells/kg having consistent, rapid, and sustained hematopoietic recovery. However, many patients with relapsed/refractory GCTs have been exposed to multiple cycles of myelosuppressive chemotherapy, which compromises the efficacy of HSC mobilization with granulocyte colony-stimulating factor with or without chemotherapy. Therefore, alternative strategies that use novel agents in combination with traditional mobilizing regimens are required. Herein, after an overview of the mechanisms of HSCs mobilization, we review the existing literature regarding studies reporting various HSC mobilization approaches in patients with relapsed/refractory GCTs, and finally report newer experimental mobilization strategies employing novel agents that have been applied in other hematologic or solid malignancies.
Collapse
Affiliation(s)
- Eleni Porfyriou
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Sylvia Letsa
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Christos Kosmas
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
13
|
Su L, Hu Z, Yang YG. Role of CXCR4 in the progression and therapy of acute leukaemia. Cell Prolif 2021; 54:e13076. [PMID: 34050566 PMCID: PMC8249790 DOI: 10.1111/cpr.13076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
CXCR4 is expressed on leukaemia cells and haematopoietic stem cells (HSCs), and its ligand stromal-derived factor 1 (SDF-1) is produced abundantly by stromal cells in the bone marrow (BM). The SDF-1/CXCR4 axis plays important roles in homing to and retention in the protective BM microenvironment of malignant leukaemia cells and normal HSCs. CXCR4 expression is regulated by multiple mechanisms and the level of CXCR4 expression on leukaemia cells has prognostic indications in patients with acute leukaemia. CXCR4 antagonists can mobilize leukaemia cells from BM to circulation, which render them effectively eradicated by chemotherapeutic agents, small molecular inhibitors or hypomethylating agents. Therefore, such combinational therapies have been tested in clinical trials. However, new evidence emerged that drug-resistant leukaemia cells were not affected by CXCR4 antagonists, and the migration of certain leukaemia cells to the leukaemia niche was independent of SDF-1/CXCR4 axis. In this review, we summarize the role of CXCR4 in progression and treatment of acute leukaemia, with a focus on the potential of CXCR4 as a therapeutic target for acute leukaemia. We also discuss the potential value of using CXCR4 antagonists as chemosensitizer for conditioning regimens and immunosensitizer for graft-vs-leukaemia effects of allogeneic haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
15
|
Doerfler PA, Sharma A, Porter JS, Zheng Y, Tisdale JF, Weiss MJ. Genetic therapies for the first molecular disease. J Clin Invest 2021; 131:146394. [PMID: 33855970 PMCID: PMC8262557 DOI: 10.1172/jci146394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder characterized by recurrent episodes of severe bone pain, multi-organ failure, and early mortality. Although medical progress over the past several decades has improved clinical outcomes and offered cures for many affected individuals living in high-income countries, most SCD patients still experience substantial morbidity and premature death. Emerging technologies to manipulate somatic cell genomes and insights into the mechanisms of developmental globin gene regulation are generating potentially transformative approaches to cure SCD by autologous hematopoietic stem cell (HSC) transplantation. Key components of current approaches include ethical informed consent, isolation of patient HSCs, in vitro genetic modification of HSCs to correct the SCD mutation or circumvent its damaging effects, and reinfusion of the modified HSCs following myelotoxic bone marrow conditioning. Successful integration of these components into effective therapies requires interdisciplinary collaborations between laboratory researchers, clinical caregivers, and patients. Here we summarize current knowledge and research challenges for each key component, emphasizing that the best approaches have yet to be developed.
Collapse
Affiliation(s)
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy
| | | | - Yan Zheng
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
16
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Chen J, Lazarus HM, Dahi PB, Avecilla S, Giralt SA. Getting blood out of a stone: Identification and management of patients with poor hematopoietic cell mobilization. Blood Rev 2020; 47:100771. [PMID: 33213986 DOI: 10.1016/j.blre.2020.100771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic cell transplantation (HCT) has become a primary treatment for many cancers. Nowadays, the primary source of hematopoietic cells is by leukapheresis collection of these cells from peripheral blood, after a forced egress of hematopoietic cells from marrow into blood circulation, a process known as "mobilization". In this process, mobilizing agents disrupt binding interactions between hematopoietic cells and marrow microenvironment to facilitate collection. As the first essential step of HCT, poor mobilization, i.e. failure to obtain a desired or required number of hematopoietic cell, is one of the major factors affecting engraftment or even precluding transplantation. This review summarizes the available mobilization regimens using granulocyte-colony stimulating factor (G-CSF) and plerixafor, as well as the current understanding of the factors that are associated with poor mobilization. Strategies to mobilize patients or healthy donors who failed previous mobilization are discussed. Multiple novel agents are under investigation and some of them have shown the potential to enhance the mobilization response to G-CSF and/or plerixafor. Further investigation of the risk factors including genetic factors will offer an opportunity to better understand the molecular mechanism of mobilization and help develop new therapeutic strategies for successful mobilizations.
Collapse
Affiliation(s)
- Jian Chen
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Parastoo B Dahi
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott Avecilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sergio A Giralt
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
18
|
Martin M, Mayer IA, Walenkamp AME, Lapa C, Andreeff M, Bobirca A. At the Bedside: Profiling and treating patients with CXCR4-expressing cancers. J Leukoc Biol 2020; 109:953-967. [PMID: 33089889 DOI: 10.1002/jlb.5bt1219-714r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) and its ligand, C-X-C motif chemokine 12, are key mediators of hematopoietic cell trafficking. Their roles in the proliferation and metastasis of tumor cells, induction of angiogenesis, and invasive tumor growth have been recognized for over 2 decades. CXCR4 is a promising target for imaging and therapy of both hematologic and solid tumors. To date, Sanofi Genzyme's plerixafor is the only marketed CXCR4 inhibitor (i.e., Food and Drug Administration-approved in 2008 for stem cell mobilization). However, several new CXCR4 inhibitors are now being investigated as potential therapies for a variety of fluid and solid tumors. These small molecules, peptides, and Abs include balixafortide (POL6326, Polyphor), mavorixafor (X4P-001, X4 Pharmaceuticals), motixafortide (BL-8040, BioLineRx), LY2510924 (Eli Lilly), and ulocuplumab (Bristol-Myers Squibb). Early clinical evidence has been encouraging, for example, with motixafortide and balixafortide, and the CXCR4 inhibitors appear to be generally safe and well tolerated. Molecular imaging is increasingly being used for effective patient selection before, or early during CXCR4 inhibitor treatment. The use of radiolabeled theranostics that combine diagnostics and therapeutics is an additional intriguing approach. The current status and future directions for radioimaging and treating patients with CXCR4-expressing hematologic and solid malignancies are reviewed. See related review - At the Bench: Pre-Clinical Evidence for Multiple Functions of CXCR4 in Cancer. J. Leukoc. Biol. xx: xx-xx; 2020.
Collapse
Affiliation(s)
- Miguel Martin
- Oncology Department, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Ingrid A Mayer
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annemiek M E Walenkamp
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas, Maryland Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
19
|
Hölig K, Schmidt H, Hütter G, Kramer M, Teipel R, Heidrich K, Zimmer K, Heidenreich F, Blechschmidt M, Torosian T, Ordemann R, Kroschinsky F, Rücker-Braun E, Gopsca L, Wagner-Drouet EM, Oelschlaegel U, Schmidt AH, Bornhäuser M, Ehninger G, Schetelig J. Salvage treatment with plerixafor in poor mobilizing allogeneic stem cell donors: results of a prospective phase II-trial. Bone Marrow Transplant 2020; 56:635-645. [PMID: 33028987 PMCID: PMC8589660 DOI: 10.1038/s41409-020-01053-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
We conducted a prospective clinical trial to investigate the safety and efficacy of plerixafor (P) in allogeneic peripheral blood stem cells (PBSC) donors with poor mobilization response to standard-dose granulocyte colony-stimulating factor (G-CSF), defined by <2 × 106 CD34 + cells/kg recipient body-weight (CD34+/kg RBW) after 1st apheresis. A single dose of 240 µg/kg P was injected subcutaneously at 10 p.m. on the day of the 1st apheresis. Thirty-seven allogeneic PBSC donors underwent study treatment. The median CD34+ count in peripheral blood was 15/µl on Day 1 after G-CSF alone, versus 44/µl on Day 2 after G-CSF plus P (p < 0.001). The median yield of CD34+ cells was 1.1 × 108 on Day 1 and 2.8 × 108 on Day 2. In contrast to a median yield of only 1.31 × 106 CD CD34+/kg RBW on Day 1, triggering study inclusion, a median of 3.74 × 106 CD CD34+/kg RBW were collected with G-CSF plus P on Day 2. Of 37 donors, 21 reached the target cell count of >4.5 × 106 CD34+/kg RBW (57%, 95%CI 40-73%). No donor experienced a severe adverse event requiring treatment. In conclusion, P might be considered on a case-by-case basis for healthy allogeneic donors with very poor stem cell mobilization success after G-CSF.
Collapse
Affiliation(s)
- Kristina Hölig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | | | - Gero Hütter
- Cellex Collection Center GmbH, Dresden, Germany
| | - Michael Kramer
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Raphael Teipel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Katharina Heidrich
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Kristin Zimmer
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Falk Heidenreich
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany.,DKMS gemeinnützige GmbH, Clinical Trials Unit, Dresden, Germany
| | - Matthias Blechschmidt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | | | | | - Frank Kroschinsky
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Elke Rücker-Braun
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Laszlo Gopsca
- National Institute of Hematology and Infectious Diseases, Department of Hematology and Stem Cell Transplantation, Budapest, Hungary
| | - Eva Maria Wagner-Drouet
- Medizinische Klinik und Poliklinik III, Hämatologie, Internistische Onkologie, Pneumologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Uta Oelschlaegel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | | | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany.,Center for Regenerative Therapies, Dresden, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU, Dresden, Germany. .,DKMS gemeinnützige GmbH, Clinical Trials Unit, Dresden, Germany.
| |
Collapse
|
20
|
Meng J, Ge Y, Xing H, Wei H, Xu S, Liu J, Yan D, Wen T, Wang M, Fang X, Ma L, Yang Y, Wang C, Wang J, Xu H. Synthetic CXCR4 Antagonistic Peptide Assembling with Nanoscaled Micelles Combat Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001890. [PMID: 32608185 DOI: 10.1002/smll.202001890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia with very low survival rate due to drug resistance and high relapse rate. The C-X-C chemokine receptor 4 (CXCR4) is highly expressed by AML cells, actively mediating chemoresistance and reoccurrence. Herein, a chemically synthesized CXCR4 antagonistic peptide E5 is fabricated to micelle formulation (M-E5) and applied to refractory AML mice, and its therapeutic effects and pharmacokinetics are investigated. Results show that M-E5 can effectively block the surface CXCR4 in leukemic cells separated from bone marrow (BM) and spleen, and inhibit the C-X-C chemokine ligand 12-mediated migration. Subcutaneous administration of M-E5 significantly inhibits the engraftment of leukemic cells in spleen and BM, and mobilizes residue leukemic cells into peripheral blood, reducing organs' burden and significantly prolonging the survival of AML mice. M-E5 can also increase the efficacy of combining regime of homoharringtonine and doxorubicin. Ribonucleic acid sequencing demonstrates that the therapeutic effect is contributed by inhibiting proliferation and enhancing apoptosis and differentiation, all related to the CXCR4 signaling blockade. M-E5 reaches the concentration peak at 2 h after administration with a half-life of 14.5 h in blood. In conclusion, M-E5 is a novel promising therapeutic candidate for refractory AML treatment.
Collapse
Affiliation(s)
- Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yangyang Ge
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shilin Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Doudou Yan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
21
|
Tomassi S, Trotta AM, Ieranò C, Merlino F, Messere A, Rea G, Santoro F, Brancaccio D, Carotenuto A, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Marinelli L, Scala S, Di Maro S. Disulfide Bond Replacement with 1,4‐ and 1,5‐Disubstituted [1,2,3]‐Triazole on C‐X‐C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry 2020; 26:10113-10125. [DOI: 10.1002/chem.202002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Maria Trotta
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Caterina Ieranò
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Messere
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Giuseppina Rea
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Federica Santoro
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Ettore Novellino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Luciana Marinelli
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Stefania Scala
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Salvatore Di Maro
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
22
|
New Insights on the Emerging Genomic Landscape of CXCR4 in Cancer: A Lesson from WHIM. Vaccines (Basel) 2020; 8:vaccines8020164. [PMID: 32260318 PMCID: PMC7349554 DOI: 10.3390/vaccines8020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread. At present, different cancer types have been shown to overexpress C-X-C chemokine receptor type 4 (CXCR4) and to respond to its ligand C-X-C motif chemokine 12 (CXCL12). The CXCL12/CXCR4 axis influences cancer biology, promoting survival, proliferation, and angiogenesis, and plays a pivotal role in directing migration of cancer cells to sites of metastases, making it a prognostic marker and a therapeutic target. More recently, mutations in the C-terminus of CXCR4 have been identified in the genomic landscape of patients affected by Waldenstrom's macroglobulinemia, a rare B cell neoplasm. These mutations closely resemble those occurring in Warts, Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis (WHIM) syndrome, an immunodeficiency associated with CXCR4 aberrant expression and activity and with chemotherapy resistance in clinical trials. In this review, we summarize the current knowledge on the relevance of CXCR4 mutations in cancer biology, focusing on its importance as predictors of clinical presentation and response to therapy.
Collapse
|
23
|
Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol 2020; 16:11-30. [PMID: 31903790 DOI: 10.1080/17425255.2020.1711884] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Chemokine receptors are important therapeutic targets for the treatment of many human diseases. This study will provide an overview of approved chemokine receptor antagonists and promising candidates in advanced clinical trials.Areas covered: We will describe clinical aspects of chemokine receptor antagonists regarding their clinical efficacy, mechanisms of action, and re-purposed applications.Expert opinion: Three chemokine antagonists have been approved: (i) plerixafor is a small-molecule CXCR4 antagonist that mobilizes hematopoietic stem cells; (ii) maraviroc is a small-molecule CCR5 antagonist for anti-HIV treatment; and (iii) mogamulizumab is a monoclonal-antibody CCR4 antagonist for the treatment of mycosis fungoides or Sézary syndrome. Moreover, phase 3 trials are ongoing to evaluate many potent candidates, including CCR5 antagonists (e.g. leronlimab), dual CCR2/CCR5 antagonists (e.g. cenicriviroc), and CXCR4 antagonists (e.g. balixafortide, mavorixafor, motixafortide). The success of chemokine receptor antagonists depends on the selective blockage of disease-relevant chemokine receptors which are indispensable for disease progression. Although clinical translation has been slow, antagonists targeting chemokine receptors with multifaced functions offer the potential to treat a broad spectrum of human diseases.
Collapse
Affiliation(s)
- Miao Miao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| | - Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Guangdi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| |
Collapse
|
24
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
25
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
26
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019; 96:737-752. [PMID: 31548340 DOI: 10.1124/mol.119.117663] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/14/2019] [Indexed: 02/14/2025] Open
Abstract
The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for human immunodeficiency virus (HIV) infection, cancer, and inflammation diseases. CXCR4 is one of only three chemokine receptors with a US Food and Drug Administration approved therapeutic agent, the small-molecule modulator AMD3100. In this review, known modulators of the two receptors are discussed in detail. Initially, the structural relationship between receptors and ligands is reviewed on the basis of common structural motifs and available crystal structures. To date, no atypical chemokine receptor has been crystallized, which makes ligand design and predictions for these receptors more difficult. Next, the selectivity, receptor activation, and the resulting ligand-induced signaling output of chemokines and other peptide ligands are reviewed. Binding of pepducins, a class of lipid-peptides whose basis is the internal loop of a GPCR, to CXCR4 is also discussed. Finally, small-molecule modulators of CXCR4 and ACKR3 are reviewed. These modulators have led to the development of radio- and fluorescently labeled tool compounds, enabling the visualization of ligand binding and receptor characterization both in vitro and in vivo. SIGNIFICANCE STATEMENT: To investigate the pharmacological modulation of CXCR4 and ACKR3, significant effort has been focused on the discovery and development of a range of ligands, including small-molecule modulators, pepducins, and synthetic peptides. Imaging tools, such as fluorescent probes, also play a pivotal role in the field of drug discovery. This review aims to provide an overview of the aforementioned modulators that facilitate the study of CXCR4 and ACKR3 receptors.
Collapse
Affiliation(s)
- Ilze Adlere
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Birgit Caspar
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Marta Arimont
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Sebastian Dekkers
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Kirsten Visser
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Jeffrey Stuijt
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Chris de Graaf
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Michael Stocks
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Barrie Kellam
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Stephen Briddon
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Maikel Wijtmans
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Iwan de Esch
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Stephen Hill
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Rob Leurs
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| |
Collapse
|
27
|
Stenzinger M, Karpova D, Unterrainer C, Harenkamp S, Wiercinska E, Hoerster K, Pfeffer M, Maronde E, Bonig H. Hematopoietic-Extrinsic Cues Dictate Circadian Redistribution of Mature and Immature Hematopoietic Cells in Blood and Spleen. Cells 2019; 8:E1033. [PMID: 31491915 PMCID: PMC6769956 DOI: 10.3390/cells8091033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Circadian oscillations in circulating leukocyte subsets including immature hematopoietic cells have been appreciated; the origin and nature of these alterations remain elusive. Our analysis of wild-type C57BL/6 mice under constant darkness confirmed circadian fluctuations of circulating leukocytes and clonogenic cells in blood and spleen but not bone marrow. Clock gene deficient Bmal1-/- mice lacked this regulation. Cell cycle analyses in the different hematopoietic compartments excluded circadian changes in total cell numbers, rather favoring shifting hematopoietic cell redistribution as the underlying mechanism. Transplant chimeras demonstrate that circadian rhythms within the stroma mediate the oscillations independently of hematopoietic-intrinsic cues. We provide evidence of circadian CXCL12 regulation via clock genes in vitro and were able to confirm CXCL12 oscillation in bone marrow and blood in vivo. Our studies further implicate cortisol as the conveyor of circadian input to bone marrow stroma and mediator of the circadian leukocyte oscillation. In summary, we establish hematopoietic-extrinsic cues as causal for circadian redistribution of circulating mature/immature blood cells.
Collapse
Affiliation(s)
- Miriam Stenzinger
- Institute for Immunology, University Hospital Heidelberg and Institute for Clinical Transfusion Medicine and Cell Therapy, 69120 Heidelberg, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Darja Karpova
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian Unterrainer
- Institute for Immunology, University Hospital Heidelberg and Institute for Clinical Transfusion Medicine and Cell Therapy, 69120 Heidelberg, Germany
| | - Sabine Harenkamp
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Eliza Wiercinska
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Keven Hoerster
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Martina Pfeffer
- Institute for Anatomy II, Division of Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erik Maronde
- Institute for Anatomy III, Goethe University, 60596 Frankfurt a. M., Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany.
| |
Collapse
|
28
|
Golay H, Jurkovic Mlakar S, Mlakar V, Nava T, Ansari M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int J Mol Sci 2019; 20:E3889. [PMID: 31404983 PMCID: PMC6719093 DOI: 10.3390/ijms20163889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for several malignant and non-malignant diseases at the cost of serious treatment-related toxicities (TRTs). Recent research on extending the benefits of HSCT to more patients and indications has focused on limiting TRTs and improving immunological effects following proper mobilization and engraftment. Increasing numbers of studies report associations between HSCT outcomes and the expression or the manipulation of G protein-coupled receptors (GPCRs). This large family of cell surface receptors is involved in various human diseases. With ever-better knowledge of their crystal structures and signaling dynamics, GPCRs are already the targets for one third of the current therapeutic arsenal. The present paper assesses the current status of animal and human research on GPCRs in the context of selected HSCT outcomes via a systematized survey and analysis of the literature.
Collapse
Affiliation(s)
- Hadrien Golay
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Vid Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Tiago Nava
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Marc Ansari
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| |
Collapse
|
29
|
Karpova D, Rettig MP, Ritchey J, Cancilla D, Christ S, Gehrs L, Chendamarai E, Evbuomwan MO, Holt M, Zhang J, Abou-Ezzi G, Celik H, Wiercinska E, Yang W, Gao F, Eissenberg LG, Heier RF, Arnett SD, Meyers MJ, Prinsen MJ, Griggs DW, Trumpp A, Ruminski PG, Morrow DM, Bonig HB, Link DC, DiPersio JF. Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 2019; 129:2745-2759. [PMID: 31085833 DOI: 10.1172/jci124738] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Cancilla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moses O Evbuomwan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Matthew Holt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grazia Abou-Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eliza Wiercinska
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany
| | - Wei Yang
- Genome Technology Access Center, Washington University, St. Louis, Missouri, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda G Eissenberg
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Stacy D Arnett
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter G Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Halvard B Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany.,University of Washington, Department of Medicine/Hematology, Seattle, Washington, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Wang Y, Dembowsky K, Chevalier E, Stüve P, Korf-Klingebiel M, Lochner M, Napp LC, Frank H, Brinkmann E, Kanwischer A, Bauersachs J, Gyöngyösi M, Sparwasser T, Wollert KC. C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function. Circulation 2019; 139:1798-1812. [PMID: 30696265 PMCID: PMC6467561 DOI: 10.1161/circulationaha.118.036053] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C-X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. METHODS We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphtheria toxin receptor-enhanced green fluorescent protein fusion protein under the control of the promoter/enhancer region of the regulatory T (Treg) cell-restricted Foxp3 transcription factor; and dendritic cell-depleted CD11c-Cre iDTR mice. Translational potential was explored in a porcine model of reperfused MI using serial contrast-enhanced magnetic resonance imaging. RESULTS Intraperitoneal POL5551 injections in wild-type mice (8 mg/kg at 2, 4, 6, and 8 days) enhanced angiogenesis in the infarct border zone, reduced scar size, and attenuated left ventricular remodeling and contractile dysfunction at 28 days. Treatment effects were absent in splenectomized wild-type mice, Rag1 knockout mice, and Treg cell-depleted DEREG mice. Conversely, treatment effects could be transferred into infarcted splenectomized wild-type mice by transplanting splenic Treg cells from POL5551-treated infarcted DEREG mice. Instructive cues provided by infarct-primed dendritic cells were required for POL5551 treatment effects. POL5551 injections mobilized Treg cells into the peripheral blood, followed by enhanced Treg cell accumulation in the infarcted region. Neutrophils, monocytes, and lymphocytes displayed similar mobilization kinetics, but their cardiac recruitment was not affected. POL5551, however, attenuated inflammatory gene expression in monocytes and macrophages in the infarcted region via Treg cells. Intravenous infusion of the clinical-stage POL5551 analogue POL6326 (3 mg/kg at 4, 6, 8, and 10 days) decreased infarct volume and improved left ventricular ejection fraction in pigs. CONCLUSIONS These data confirm CXCR4 blockade as a promising treatment strategy after MI. We identify dendritic cell-primed splenic Treg cells as the central arbiters of these therapeutic effects and thereby delineate a pharmacological strategy to promote infarct repair by augmenting Treg cell function in vivo.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Contraction/drug effects
- Myocardial Infarction/drug therapy
- Myocardial Infarction/immunology
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/immunology
- Myocardium/metabolism
- Myocardium/pathology
- Neovascularization, Physiologic/drug effects
- Proteins/pharmacology
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Recovery of Function
- Signal Transduction
- Sus scrofa
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Yong Wang
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | | | | | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Hannover, Germany (P.S., M.L., T.S.)
- The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Hannover, Germany (P.S., M.L., T.S.)
| | - L. Christian Napp
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Heike Frank
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Eva Brinkmann
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Anna Kanwischer
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Austria (M.G.)
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Hannover, Germany (P.S., M.L., T.S.)
- The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Kai C. Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| |
Collapse
|
31
|
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D, Huber SM. Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer. Front Immunol 2018; 9:3018. [PMID: 30622535 PMCID: PMC6308162 DOI: 10.3389/fimmu.2018.03018] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects-tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy-several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics/Pediatric Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Lilia Bardoscia
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | - Efe Cumhur Sezgin
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Hospital and University Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
32
|
Abstract
THE PURPOSE OF REVIEW Mobilized peripheral blood is the predominant source of stem and progenitor cells for hematologic transplantation. Successful transplant requires sufficient stem cells of high enough quality to recapitulate lifelong hematopoiesis, but in some patients and normal donors, reaching critical threshold stem cell numbers are difficult to achieve. Novel strategies, particularly those offering rapid mobilization and reduced costs, remains an area of interest.This review summarizes critical scientific underpinnings in understanding the process of stem cell mobilization, with a focus on new or improved strategies for their efficient collection and engraftment. RECENT FINDINGS Studies are described that provide new insights into the complexity of stem cell mobilization. Agents that target new pathways such HSC egress, identify strategies to collect more potent competing HSC and new methods to optimize stem cell collection and engraftment are being evaluated. SUMMARY Agents and more effective strategies that directly address the current shortcomings of hematopoietic stem cell mobilization and transplantation and offer the potential to facilitate collection and expand use of mobilized stem cells have been identified.
Collapse
Affiliation(s)
- Louis M. Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 W Walnut Street, R2-301, Indianapolis, IN 46202
| | - Hal E Broxmeyer
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 W Walnut Street, R2-301, Indianapolis, IN 46202
| |
Collapse
|
33
|
The case for plerixafor to replace filgrastim as the optimal agent to mobilize peripheral blood donors for allogeneic hematopoietic cell transplantation. Exp Hematol 2018; 70:1-9. [PMID: 30428338 DOI: 10.1016/j.exphem.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF)-stimulated peripheral blood progenitor cells (G-PBs) from either a related or unrelated donor continue to be the preferred donor source for most allogeneic hematopoietic cell transplantation (HCT). Recently, the American Society for Blood and Marrow Transplantation has recommended marrow instead of G-PBs as an unrelated graft source due to its lower rate of chronic graft-versus-host disease (cGVHD). However, the use of marrow is limited by both clinical considerations (slower rate of engraftment and increased donor morbidity) and logistical considerations (use of operating room resources and increased physician utilization), so this recommendation has not been widely adopted. An optimal donor source would include the rapid engraftment characteristic and the low donor morbidity associated with G-PBs and a rate of cGVHD similar to or lower than that of marrow. Recent data suggest that plerixafor mobilized PBs (P-PBs) have the rapid engraftment characteristics of G-PBs in allogeneic HCT with less cGVHD. The biologic mechanism of the lower rate of cGVHD appears to be through mobilization of regulator natural killer cells and plasmacytoid dendritic cell precursors that are associated with lower acute and chronic GVHD compared with G-PBs and rapid engraftment characterized by rapid myeloid-repopulating capacity. We suggest that, based on the experience of the two Phase II clinical trials and the unique biology of plerixafor-mobilized donor product, it should be evaluated in Phase III trials as an approach to replacing G-CSF mobilization for allogeneic HCT.
Collapse
|
34
|
Abstract
Transplants using peripheral blood hemopoietic stem/progenitor (PBHS) cells are widely performed for the treatment of patients with hematologic disorders in routine practice and clinical trials. Although the process from mobilization to infusion of PBHS cells has been mostly established, optimal conditions for each process remain undetermined. Adverse reactions caused by PBHS cell infusions have not been systematically recorded. In transplants using PBHS cells, a number of problems still exist. In this section, the current status of and future perspectives regarding PBHS cells are described.
Collapse
Affiliation(s)
- Kazuo Muroi
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
35
|
Pernas S, Martin M, Kaufman PA, Gil-Martin M, Gomez Pardo P, Lopez-Tarruella S, Manso L, Ciruelos E, Perez-Fidalgo JA, Hernando C, Ademuyiwa FO, Weilbaecher K, Mayer I, Pluard TJ, Martinez Garcia M, Vahdat L, Perez-Garcia J, Wach A, Barker D, Fung S, Romagnoli B, Cortes J. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol 2018; 19:812-824. [DOI: 10.1016/s1470-2045(18)30147-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
|
36
|
Li Z, Wang Y, Fu C, Wang X, Wang JJ, Zhang Y, Zhou D, Zhao Y, Luo L, Ma H, Lu W, Zheng J, Zhang X. Design, synthesis, and structure-activity-relationship of a novel series of CXCR4 antagonists. Eur J Med Chem 2018; 149:30-44. [PMID: 29494843 DOI: 10.1016/j.ejmech.2018.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 01/25/2023]
Abstract
The important roles of the CXCL12/CXCR4 axis in numerous pathogenic pathways involving HIV infection and cancer metastasis make the CXCR4 receptor an attractive target for the development of therapeutic agents. Through scaffold hybridization of a few known CXCR4 antagonists, a series of novel aminopyrimidine derivatives was developed. Compound 3 from this new scaffold demonstrates excellent binding affinity with CXCR4 receptor (IC50 = 54 nM) and inhibits CXCL12 induced cytosolic calcium increase (IC50 = 2.3 nM). Furthermore, compound 3 possesses good physicochemical properties (MW 353, clogP 2.0, PSA 48, pKa 6.7) and exhibits minimal hERG and CYP isozyme (e.g. 3A4, 2D6) inhibition. Collectively, these results strongly support further optimization of this novel scaffold to develop better CXCR4 antagonists.
Collapse
Affiliation(s)
- Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yujie Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Chunyan Fu
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China
| | - Xu Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jun Jun Wang
- Department of Oncology, The Third Affiliated Hospital, Soochow University, PR China
| | - Yi Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dongping Zhou
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China
| | - Yuan Zhao
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China
| | - Lusong Luo
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, PR China.
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wenfeng Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiyue Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
37
|
Duchartre Y, Bachl S, Kim HN, Gang EJ, Lee S, Liu HC, Shung K, Xu R, Kruse A, Tachas G, Bonig H, Kim YM. Effects of CD49d-targeted antisense-oligonucleotide on α4 integrin expression and function of acute lymphoblastic leukemia cells: Results of in vitro and in vivo studies. PLoS One 2017; 12:e0187684. [PMID: 29117236 PMCID: PMC5678723 DOI: 10.1371/journal.pone.0187684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into “clinical” benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.
Collapse
Affiliation(s)
- Yann Duchartre
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Stefanie Bachl
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- Institute for Transfusion Medicine and Immunohematology, Goethe University, and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Solah Lee
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Hsiao-chuan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Ruth Xu
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Aaron Kruse
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- Department of Pathology, University of Southern California, Los Angeles, United States of America
| | - George Tachas
- Antisense Therapeutics Limited, Toorak, Victoria, Australia
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt, Germany
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, United States of America
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sahin U, Demirer T. Current strategies for the management of autologous peripheral blood stem cell mobilization failures in patients with multiple myeloma. J Clin Apher 2017; 33:357-370. [DOI: 10.1002/jca.21591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Ugur Sahin
- Department of Hematology; Ankara University Medical School; Ankara Turkey
| | - Taner Demirer
- Department of Hematology; Ankara University Medical School; Ankara Turkey
| |
Collapse
|
39
|
Panch SR, Szymanski J, Savani BN, Stroncek DF. Sources of Hematopoietic Stem and Progenitor Cells and Methods to Optimize Yields for Clinical Cell Therapy. Biol Blood Marrow Transplant 2017; 23:1241-1249. [PMID: 28495640 DOI: 10.1016/j.bbmt.2017.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022]
Abstract
Bone marrow (BM) aspirates, mobilized peripheral blood, and umbilical cord blood (UCB) have developed as graft sources for hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation and other cellular therapeutics. Individualized techniques are necessary to enhance graft HSPC yields and cell quality from each graft source. BM aspirates yield adequate CD34+ cells but can result in relative delays in engraftment. Granulocyte colony-stimulating factor (G-CSF)-primed BM HSPCs may facilitate faster engraftment while minimizing graft-versus-host disease in certain patient subsets. The levels of circulating HSPCs are enhanced using mobilizing agents, such as G-CSF and/or plerixafor, which act via the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis. Alternate niche pathway mediators, including very late antigen-4/vascular cell adhesion molecule-1, heparan sulfate proteoglycans, parathyroid hormone, and coagulation cascade intermediates, may offer promising alternatives for graft enhancement. UCB grafts have been expanded ex vivo with cytokines, notch-ligand, or mesenchymal stromal cells, and most studies demonstrated greater quantities of CD34+ cells ex vivo and improved short-term engraftment. No significant changes were observed in long-term repopulating potential or in patient survival. Early phase clinical trials using nicotinamide and StemReginin1 may offer improved short- and long-term repopulating ability. Breakthroughs in genome editing and stem cell reprogramming technologies may hasten the generation of pooled, third-party HSPC grafts. This review elucidates past, present, and potential future approaches to HSPC graft optimization.
Collapse
Affiliation(s)
- Sandhya R Panch
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| | - James Szymanski
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Department of Hematology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|