1
|
Qiu J, Hu Y, Li L, Erzurumluoglu AM, Braenne I, Whitehurst C, Schmitz J, Arora J, Bartholdy BA, Gandhi S, Khoueiry P, Mueller S, Noyvert B, Ding Z, Jensen JN, de Jong J. Deep representation learning for clustering longitudinal survival data from electronic health records. Nat Commun 2025; 16:2534. [PMID: 40087274 PMCID: PMC11909183 DOI: 10.1038/s41467-025-56625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/21/2025] [Indexed: 03/17/2025] Open
Abstract
Precision medicine requires accurate identification of clinically relevant patient subgroups. Electronic health records provide major opportunities for leveraging machine learning approaches to uncover novel patient subgroups. However, many existing approaches fail to adequately capture complex interactions between diagnosis trajectories and disease-relevant risk events, leading to subgroups that can still display great heterogeneity in event risk and underlying molecular mechanisms. To address this challenge, we implemented VaDeSC-EHR, a transformer-based variational autoencoder for clustering longitudinal survival data as extracted from electronic health records. We show that VaDeSC-EHR outperforms baseline methods on both synthetic and real-world benchmark datasets with known ground-truth cluster labels. In an application to Crohn's disease, VaDeSC-EHR successfully identifies four distinct subgroups with divergent diagnosis trajectories and risk profiles, revealing clinically and genetically relevant factors in Crohn's disease. Our results show that VaDeSC-EHR can be a powerful tool for discovering novel patient subgroups in the development of precision medicine approaches.
Collapse
Affiliation(s)
- Jiajun Qiu
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Yao Hu
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Li Li
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Abdullah Mesut Erzurumluoglu
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Ingrid Braenne
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Charles Whitehurst
- Immunology & Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, USA
| | - Jochen Schmitz
- Immunology & Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, USA
| | - Jatin Arora
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Boris Alexander Bartholdy
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Shrey Gandhi
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Pierre Khoueiry
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Stefanie Mueller
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Boris Noyvert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Zhihao Ding
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Jan Nygaard Jensen
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Johann de Jong
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| |
Collapse
|
2
|
Ballesta-López O, Gil-Candel M, Centelles-Oria M, Megías-Vericat JE, Solana-Altabella A, Ribes-Artero H, Nos-Mateu P, García-Pellicer J, Poveda-Andrés JL. Pharmacogenetics in Response to Biological Agents in Inflammatory Bowel Disease: A Systematic Review. Int J Mol Sci 2025; 26:1760. [PMID: 40004223 PMCID: PMC11855474 DOI: 10.3390/ijms26041760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders influenced by microbial, environmental, genetic, and immune factors. The introduction of biological agents has transformed IBD therapy, improving symptoms, reducing complications, and enhancing patients' quality of life. However, approximately 30% of patients exhibit primary non-response, and 50% experience a loss of response over time. Genetic and non-genetic factors contribute to variability in treatment outcomes. This systematic review aims to thoroughly analyze and assess existing studies exploring the relationships between genetic variations and individual responses to biologic drugs, in order to identify genetic markers that are predictive of treatment efficacy, risk of adverse effects, or drug toxicity, thereby informing clinical practice and guiding future research. PubMed and EMBASE papers were reviewed by three independent reviewers according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses [PRISMA] guidelines. Of the 883 records screened, 99 met the inclusion criteria. The findings of this review represent an initial step toward personalized medicine in IBD, with the potential to improve clinical outcomes in biological therapy.
Collapse
Affiliation(s)
- Octavio Ballesta-López
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Mayte Gil-Candel
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - María Centelles-Oria
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Juan Eduardo Megías-Vericat
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Antonio Solana-Altabella
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Accredited Research Group on Hematology, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Hugo Ribes-Artero
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Pilar Nos-Mateu
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Javier García-Pellicer
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - José Luis Poveda-Andrés
- Pharmacy Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (O.B.-L.)
- Accredited Research Group on Pharmacy, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Management Department, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
3
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
4
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A, Farjadfar A. Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol 2025; 144:113544. [PMID: 39571265 DOI: 10.1016/j.intimp.2024.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the gastrointestinal tract, primarily manifesting as ulcerative colitis (UC) or Crohn's disease (CD). Both inflammation and disruption of the intestinal epithelial barrier are key factors in IBD pathogenesis. Substantial evidence has revealed a significant association between aberrant immune responses and impairment of the intestinal epithelial barrier in IBD pathogenesis. The components of the intestinal epithelium, particularly goblet cells and Paneth cells, are crucial to gut homeostasis, as they secrete mucin, antimicrobial peptides (AMPs), and cytokines. Furthermore, impairment of epithelial integrity, which is regulated by tight junctions, is a hallmark of IBD pathology. While common treatments for IBD, such as anti-inflammatory drugs, target various signaling pathways with varying efficacies, therapeutic approaches focused on mucosal and epithelial barrier healing have been largely neglected. Moreover, high costs, side effects, and insufficient or inconsistent therapeutic outcomes remain major drawbacks of conventional anti-IBD drugs. Recent studies on epithelial barrier regeneration and permeability reduction have introduced promising therapeutic targets, including farnesoid X receptor (FXR), urokinase-type plasminogen activator (uPA)-urokinase-type plasminogen activator receptor (uPAR) interaction, fecal microbiota transplantation (FMT), and insulin receptor (INSR). Notably, the simultaneous targeting of intestinal inflammation and promotion of epithelial barrier healing shows promise for efficient IBD treatment. Future research should explore targeted therapies and combination treatments, including natural remedies, microbiota colonization, stem cell approaches, and computer-aided drug design. It is also crucial to focus on accurate prognosis and developing a thorough understanding of IBD development mechanisms.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| |
Collapse
|
5
|
Bauset C, Carda-Diéguez M, Cejudo-Garcés A, Buetas E, Seco-Cervera M, Macias-Ceja DC, Navarro-Vicente F, Esplugues JV, Calatayud S, Mira Á, Ortiz-Masiá D, Barrachina MD, Cosín-Roger J. A disturbed metabolite-GPCR axis is associated with microbial dysbiosis in IBD patients: Potential role of GPR109A in macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167489. [PMID: 39233260 DOI: 10.1016/j.bbadis.2024.167489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized by disrupted immune function. Indeed, gut microbiota dysbiosis and metabolomic profile alterations, are hallmarks of IBD. In this scenario, metabolite-sensing G-protein coupled receptors (GPCRs), involved in several biological processes, have emerged as pivotal players in the pathophysiology of IBD. The aim of this study was to characterize the axis microbiota-metabolite-GPCR in intestinal surgical resections from IBD patients. Results showed that UC patients had a lower microbiota richness and bacterial load, with a higher proportion of the genus Cellulosimicrobium and a reduced proportion of Escherichia, whereas CD patients showed a decreased abundance of Enterococcus. Furthermore, metabolomic analysis revealed alterations in carboxylic acids, fatty acids, and amino acids in UC and CD samples. These patients also exhibited upregulated expression of most metabolite-sensing GPCRs analysed, which positively correlated with pro-inflammatory and pro-fibrotic markers. The role of GPR109A was studied in depth and increased expression of this receptor was detected in epithelial cells and cells from lamina propria, including CD68+ macrophages, in IBD patients. The treatment with β-hydroxybutyrate increased gene expression of GPR109A, CD86, IL1B and NOS2 in U937-derived macrophages. Besides, when GPR109A was transiently silenced, the mRNA expression and secretion of IL-1β, IL-6 and TNF-α were impaired in M1 macrophages. Finally, the secretome from siGPR109A M1 macrophages reduced the gene and protein expression of COL1A1 and COL3A1 in intestinal fibroblasts. A better understanding of metabolite-sensing GPCRs, such as GPR109A, could establish their potential as therapeutic targets for managing IBD.
Collapse
Affiliation(s)
- Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Andrea Cejudo-Garcés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | | | | | | | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Álex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain; CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Dolores Ortiz-Masiá
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| | - María Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain.
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| |
Collapse
|
6
|
Cesaro N, Valvano M, Monaco S, Stefanelli G, Fabiani S, Vernia F, Necozione S, Viscido A, Latella G. The role of new inflammatory indices in the prediction of endoscopic and histological activity in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol 2024:00042737-990000000-00406. [PMID: 39292974 DOI: 10.1097/meg.0000000000002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIM Inflammatory indices are promising indicators that can be used to evaluate inflammation in inflammatory bowel diseases (IBDs). The present study aimed to investigate the test accuracy of several inflammatory indices to identify endoscopic, and histological activity in a cohort of IBD patients. STUDY All IBD patients who underwent colonoscopy and blood examination (within 4 weeks and without therapeutic change) were included. For these patients, 10 different inflammatory biomarkers were collected. Our primary outcome was the assessment of accuracy [evaluated with a receiver operating characteristics (ROC) analysis] of each inflammatory biomarker and indices. Furthermore, we tried to establish the optimal cutoff to identify patients with endoscopic and histologic activity among the inflammatory biomarkers and indices with higher performance. RESULTS Regarding endoscopic activity, at the ROC analysis, the systemic inflammation response index (SIRI) showed the best accuracy [area under the curve (AUC), 0.627; confidence interval (CI), 0.552-0.698]. Whereas the ROC analysis showed a suboptimal AUC for the neutrophil-to-lymphocytes ratio (NLR) and platelets-to-lymphocytes ratio; (AUC, 0.620; CI, 0.545-0.691 and AUC, 0.607; CI, 0.532-0.679, respectively). Concerning histological activity, the C-reactive protein albumin ratio (CAR) presented a higher accuracy among the calculated inflammatory biomarkers (AUC, 0.682; CI, 0.569-0.781) while SIRI and NLR presented a subdued diagnostic performance. CONCLUSION SIRI and CAR presented the best test accuracy in an IBD outpatient setting to identify endoscopic and histological activity. However, the test accuracy of all the evaluated Inflammatory indices appeared suboptimal. Fecal calprotectin has still the highest accuracy in predicting endoscopic and histological activity in patients with IBD.
Collapse
Affiliation(s)
- Nicola Cesaro
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
| | - Marco Valvano
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
- Division of Gastroenterology, Galliera Hospital, Genoa, Italy
| | - Sabrina Monaco
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
| | | | - Stefano Fabiani
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
| | - Filippo Vernia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
| | - Stefano Necozione
- Epidemiology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, italy
| | - Angelo Viscido
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
| | - Giovanni Latella
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi, L'Aquila, Italy
| |
Collapse
|
7
|
Qing F, Sui L, He W, Chen Y, Xu L, He L, Xiao Q, Guo T, Liu Z. IRF7 Exacerbates Candida albicans Infection by Compromising CD209-Mediated Phagocytosis and Autophagy-Mediated Killing in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1932-1944. [PMID: 38709167 DOI: 10.4049/jimmunol.2300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.
Collapse
Affiliation(s)
- Furong Qing
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Lina Sui
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Wenji He
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Yayun Chen
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Li Xu
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Gastroenterology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Zhiping Liu
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Liu M, Zhang Y, Liu J, Xiang C, Lu Q, Lu H, Yang T, Wang X, Zhang Q, Fan C, Feng C, Zou D, Li H, Tang W. Revisiting the Role of Valeric Acid in Manipulating Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:617-628. [PMID: 38206334 DOI: 10.1093/ibd/izad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by a complicated interaction between mucosal inflammation, epithelial dysfunction, abnormal activation of innate immune responses, and gut microbiota dysbiosis. Though valeric acid (VA), one type of short-chain fatty acids (SCFAs), has been identified in other inflammatory disorders and cancer development, the pathological role of VA and underlying mechanism of VA in UC remain under further investigation. METHODS Studies of human clinical specimens and experimental colitis models were conducted to confirm the pathological manifestations of the level of SCFAs from human fecal samples and murine colonic homogenates. Valeric acid-intervened murine colitis and a macrophage adoptive transfer were applied to identify the underlying mechanisms. RESULTS In line with gut microbiota dysfunction in UC, alteration of SCFAs from gut microbes were identified in human UC patients and dextran sodium sulfate -induced murine colitis models. Notably, VA was consistently negatively related to the disease severity of UC, the population of monocytes, and the level of interluekin-6. Moreover, VA treatment showed direct suppressive effects on lipopolysaccharides (LPS)-activated human peripheral blood mononuclear cells and murine macrophages in the dependent manner of upregulation of GPR41 and GPR43. Therapeutically, replenishment of VA or adoptive transfer with VA-modulated macrophages showed resistance to dextran sodium sulfate-driven murine colitis though modulating the production of inflammatory cytokine interleukin-6. CONCLUSIONS In summary, the research uncovered the pathological role of VA in modulating the activation of macrophages in UC and suggested that VA might be a potential effective agent for UC patients.
Collapse
Affiliation(s)
- Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Liu
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Zhang
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Kumar M, Murugesan S, Ibrahim N, Elawad M, Al Khodor S. Predictive biomarkers for anti-TNF alpha therapy in IBD patients. J Transl Med 2024; 22:284. [PMID: 38493113 PMCID: PMC10943853 DOI: 10.1186/s12967-024-05058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition characterized by severe gut inflammation, commonly presenting as Crohn's disease, ulcerative colitis or categorized as IBD- unclassified. While various treatments have demonstrated efficacy in adult IBD patients, the advent of anti-TNF therapies has significantly revolutionized treatment outcomes and clinical management. These therapies have played a pivotal role in achieving clinical and endoscopic remission, promoting mucosal healing, averting disease progression, and diminishing the necessity for surgery. Nevertheless, not all patients exhibit positive responses to these therapies, and some may experience a loss of responsiveness over time. This review aims to present a comprehensive examination of predictive biomarkers for monitoring the therapeutic response to anti-TNF therapy in IBD patients. It will explore their limitations and clinical utilities, paving the way for a more personalized and effective therapeutic approach.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Nazira Ibrahim
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
10
|
Miglioretto C, Beck E, Lambert K. A scoping review of the dietary information needs of people with inflammatory bowel disease. Nutr Diet 2024; 81:79-93. [PMID: 37806663 DOI: 10.1111/1747-0080.12843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
AIMS This review aimed to explore and describe the dietary information needs of individuals with inflammatory bowel disease and sources of information. METHODS A scoping review of English language articles and grey literature, using electronic databases with a predefined search strategy was undertaken. Data were synthesised based on the identified variables (e.g. dietary information needs and sources of dietary information) corresponding to the aims of this review. RESULTS Forty-six studies were included, reporting data from 7557 people with inflammatory bowel disease, of which 58.6% had Crohn's disease and 60.1% were males. Dietary information was rated very important and appeared to be influenced by the disease course. The need to discuss it is heightened at important stages, namely diagnosis and relapse. Dietary information was described broadly and included advice about foods to avoid and dietary advice for symptoms management. No major differences were noted in the dietary information needs of people with Crohn's disease compared to ulcerative colitis. The main sources of dietary information were the gastroenterologist (36%-98%), the internet (9%-60%) and non-dietetic professionals (84.7%). CONCLUSION This review highlights limited literature describing the dietary information needs of people with inflammatory bowel disease. Importantly, the limited access to specialised dietary advice for this cohort is concerning. Future studies are required to explore not only the nuances in the needs of those with active disease and in remission, but to further understand issues of access to specialised dietary advice to provide holistic person-centred care desired by this cohort.
Collapse
Affiliation(s)
- Chiara Miglioretto
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Eleanor Beck
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- School of Health Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kelly Lambert
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
11
|
Sun X, Lin Z, Xu N, Chen Y, Bian S, Zheng W. Identifying Dental Pulp Stem Cell as a Novel Therapeutic trategy for Digestive Diseases. Curr Stem Cell Res Ther 2024; 19:1293-1302. [PMID: 38018204 DOI: 10.2174/011574888x275737231120045815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Mesenchymal stem cells (MSCs) have been identified as potential therapeutics for various diseases. In contrast to other sources of MSCs, dental stem cells (DSCs) have received increased attention due to their high activity and easy accessibility. Among them, dental pulp stem cells (DPSCs) exhibit superior self-renewal, multipotency, immunomodulatory, and regenerative capacities. Following their inspiring performance in animal models and clinical trials, DPSCs show pharmacological potential in regenerative medicine. In this review, we have generalized the sources, heterogeneity, and biological characteristics of DPSCs, as well as compared them with other types of dental stem cells. In addition, we summarized the application of DPSCs in digestive diseases (such as liver, esophageal, and intestinal diseases), highlighting their regenerative and pharmacological potential based on the existing preclinical and clinical evidence. Specifically, DPSCs can be home to injured or inflamed tissues and exert repair and regeneration functions by facilitating immune regulation, anti-inflammation, and directional differentiation. Although DPSCs have a rosy prospect, future studies should handle the underlying drawbacks and pave the way for the identification of DPSCs as novel regenerative medicine.
Collapse
Affiliation(s)
- Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Zhaoyi Lin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Yinqi Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
- Research Institute of Stem Cells, Center of Clinical Trials, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| |
Collapse
|
12
|
Banoth D, Wali MH, Bekova K, Abdulla N, Gurugubelli S, Lin YM, Khan S. The Role of Oral Probiotics in Alleviating Inflammation, Symptom Relief, and Postoperative Recurrence and Their Side Effects in Adults With Crohn's Disease: A Systematic Review. Cureus 2023; 15:e50901. [PMID: 38259373 PMCID: PMC10801111 DOI: 10.7759/cureus.50901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Crohn's disease (CD) is a lifelong problem for patients, despite having multiple pharmacological options and surgeries for treatment. In order to achieve best results, probiotics are being used even though their efficacy is still debatable. This systematic review analyzes the safety and efficacy of several probiotics in CD. PubMed, the Cochrane Library, and ScienceDirect are the databases searched for randomized controlled trials (RCTs), animal studies, in vitro studies, and reviews. After quality appraisal and cross checking the literature, this systematic review is carried out grounded on Preferred Reporting Items for Systematic Review and Meta-Analysis 2020 (PRISMA 2020) guidelines. A study of 16 papers in total which include nearly 2023 subjects showed that only very few probiotics are efficient in furnishing remission in CD complaints. Kefir, an inexpensive fermented milk product, significantly reduced the inflammation and drastically bettered the quality of life and hence can be considered as an asset for CD patients. Lactobacillus thermophilus, Bifidobacterium longum, Enterococcus faecalis, and Bacillus licheniformis can control diarrhea in patients of 22-54-year age group and improve cognitive reactivity in sad mood with short-term consumption. VSL#3 (VSL Pharmaceuticals, Gaithersburg, Maryland, United States) has good efficacy in precluding recurrence and easing side effects after ileocecal resection in adults. Animal models and lab studies have proved that Lactobacillus plantarum CBT LP3, Saccharomyces cerevisiae CNCM I-3856 (yeast), few strains of Lactobacillus plantarum, Bifidobacterium animalis spp., Lactobacillus acidophilus LA1, Lactobacillus paracasei 101/37, and especially Bifidobacterium breve Bbr8 are significant enough to ameliorate the disease condition. In conclusion, probiotics are safe in CD with very few modifiable side effects. Some probiotics are proven to be significant in animal and lab studies; hence, these should be studied in human RCTs, to check their efficiency in human beings. There are limited observational and interventional studies in this regard. Large population-sizes trials are highly demanded in the areas of prognosticated positive results that are mentioned in this systematic review.
Collapse
Affiliation(s)
- Devendar Banoth
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Muhammad Hassaan Wali
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Khava Bekova
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Noor Abdulla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Simhachalam Gurugubelli
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Yi Mon Lin
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
13
|
Li Y, Lin Y, Zheng X, Zheng X, Yan M, Wang H, Liu C. Echinacea purpurea (L.) Moench Polysaccharide Alleviates DSS-Induced Colitis in Rats by Restoring Th17/Treg Balance and Regulating Intestinal Flora. Foods 2023; 12:4265. [PMID: 38231750 DOI: 10.3390/foods12234265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Echinacea purpurea is popularly used as a food supplement or nutritional supplement for its immune regulatory function against various threats. As one of its promising components, Echinacea purpurea (L.) Moench polysaccharide (EPP) has a wide range of biological activities. To evaluate the effect of EPP as a dietary supplement on ulcerative colitis (UC), this study used sodium dextran sulfate (DSS) to induce a UC model, extracted EPP using the ethanol subsiding method, and then supplemented with EPP by gavage for 7 days. Then, we evaluated the efficacy of EPP on DSS rats in terms of immunity, anti-inflammation, and intestinal flora. The result showed that EPP could alleviate colonic shortening and intestinal injury in rats with DSS-induced colitis, decrease the disease activity index (DAI) score, downregulate serum levels of inflammatory cytokines, and contribute to the restoration of the balance between the T helper cells 17 (Th17) and the regulatory T cells (Treg) in the spleen and mesenteric lymph nodes (MLNs). Meanwhile, EPP could downregulate the expression of Toll-like receptors 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) in colon tissue. In addition, the results of 16SrRNA sequencing showed that EPP also had a regulatory effect on intestinal flora of UC rats. These results indicate that EPP might achieve a beneficial effect on UC rats as a dietary supplement through restoring Th17/Treg balance, inhibiting the TLR4 signaling pathway and regulating intestinal flora, suggesting its possible application as a potential functional food ingredient alleviating UC.
Collapse
Affiliation(s)
- Yaoxing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongshi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xirui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingen Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huiting Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| |
Collapse
|
14
|
Siebert S, Pennington SR, Raychaudhuri SP, Chaudhari AJ, Jin JQ, Liao W, Chandran V, FitzGerald O. Novel Insights From Basic Science in Psoriatic Disease at the GRAPPA 2022 Annual Meeting. J Rheumatol 2023; 50:66-70. [PMID: 37527860 DOI: 10.3899/jrheum.2023-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
Recent basic science advances in psoriatic disease (PsD) were presented and discussed at the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2022 annual meeting. Topics included clinical applications of biomarkers, what the future of biomarkers for PsD may hold, the challenges of developing biomarker research to the point of clinical utility, advances in total-body positron emission tomography/computed tomography imaging, and emerging concepts from single-cell studies in PsD.
Collapse
Affiliation(s)
- Stefan Siebert
- S. Siebert, MD, PhD, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stephen R Pennington
- S.R. Pennington, PhD, O. FitzGerald, MD, School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Siba P Raychaudhuri
- S.P. Raychaudhuri, MD, Department of Internal Medicine-Rheumatology, UC Davis School of Medicine and Northern California Veterans Affairs Medical Center, Mather, California, USA
| | - Abhijit J Chaudhari
- A.J. Chaudhari, PhD, Department of Radiology, UC Davis School of Medicine, Sacramento, California, USA
| | - Joy Q Jin
- J.Q. Jin, AB, School of Medicine, and Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Wilson Liao
- W. Liao, MD, Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Vinod Chandran
- V. Chandran, DM, PhD, Departments of Medicine, Laboratory Medicine, and Pathobiology and Institute of Medical Science, University of Toronto, and Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Oliver FitzGerald
- S.R. Pennington, PhD, O. FitzGerald, MD, School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, Dublin, Ireland;
| |
Collapse
|
15
|
Wu X, Li P, Wang W, Xu J, Ai R, Wen Q, Cui B, Zhang F. The Underlying Changes in Serum Metabolic Profiles and Efficacy Prediction in Patients with Extensive Ulcerative Colitis Undergoing Fecal Microbiota Transplantation. Nutrients 2023; 15:3340. [PMID: 37571277 PMCID: PMC10421017 DOI: 10.3390/nu15153340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Fecal microbiota transplantation (FMT) is an effective treatment for ulcerative colitis (UC). Metabolomic techniques would assist physicians in clinical decision-making. (2) Methods: Patients with active UC undergoing FMT were enrolled in the study and monitored for 3 months. We explored short-term changes in the serum metabolic signatures of groups and the association between baseline serum metabolomic profiles and patient outcomes. (3) Results: Forty-four eligible patients were included in the analysis. Of them, 50.0% and 29.5% achieved clinical response and clinical remission, respectively, 3 months post-FMT. The top two significantly altered pathways in the response group were vitamin B6 metabolism and aminoacyl-tRNA biosynthesis. Both the remission and response groups exhibited an altered and enriched pathway for the biosynthesis of primary bile acid. We found a clear separation between the remission and non-remission groups at baseline, characterized by the higher levels of glycerophosphocholines, glycerophospholipids, and glycerophosphoethanolamines in the remission group. A random forest (RF) classifier was constructed with 20 metabolic markers selected by the Boruta method to predict clinical remission 3 months post-FMT, with an area under the curve of 0.963. (4) Conclusions: FMT effectively induced a response in patients with active UC, with metabolites partially improving post-FMT in the responsive group. A promising role of serum metabolites in the non-invasive prediction of FMT efficacy for UC demonstrated the value of metabolome-informed FMT in managing UC.
Collapse
Affiliation(s)
- Xia Wu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Jie Xu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rujun Ai
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Bota Cui
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
16
|
Qing F, Liu Z. Interferon regulatory factor 7 in inflammation, cancer and infection. Front Immunol 2023; 14:1190841. [PMID: 37251373 PMCID: PMC10213216 DOI: 10.3389/fimmu.2023.1190841] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factors (IRFs) family, is located downstream of the pattern recognition receptors (PRRs)-mediated signaling pathway and is essential for the production of type I interferon (IFN-I). Activation of IRF7 inhibits various viral and bacterial infections and suppresses the growth and metastasis of some cancers, but it may also affect the tumor microenvironment and promote the development of other cancers. Here, we summarize recent advances in the role of IRF7 as a multifunctional transcription factor in inflammation, cancer and infection by regulating IFN-I production or IFN-I-independent signaling pathways.
Collapse
|
17
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
18
|
Suzuki G, Iwakiri R, Udagawa E, Ma S, Takayama R, Nishiura H, Nakamura K, Burns SP, D’Alessandro PM, Fernandez J. Computational Simulation Model to Predict Behavior Changes in Inflammatory Bowel Disease Patients during the COVID-19 Pandemic: Analysis of Two Regional Japanese Populations. J Clin Med 2023; 12:jcm12030757. [PMID: 36769406 PMCID: PMC9917920 DOI: 10.3390/jcm12030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Managing inflammatory bowel disease (IBD) is a major challenge for physicians and patients during the COVID-19 pandemic. To understand the impact of the pandemic on patient behaviors and disruptions in medical care, we used a combination of population-based modeling, system dynamics simulation, and linear optimization. Synthetic IBD populations in Tokyo and Hokkaido were created by localizing an existing US-based synthetic IBD population using data from the Ministry of Health, Labor, and Welfare in Japan. A clinical pathway of IBD-specific disease progression was constructed and calibrated using longitudinal claims data from JMDC Inc for patients with IBD before and during the COVID-19 pandemic. Key points considered for disruptions in patient behavior (demand) and medical care (supply) were diagnosis of new patients, clinic visits for new patients seeking care and diagnosed patients receiving continuous care, number of procedures, and the interval between procedures or biologic prescriptions. COVID-19 had a large initial impact and subsequent smaller impacts on demand and supply despite higher infection rates. Our population model (Behavior Predictor) and patient treatment simulation model (Demand Simulator) represent the dynamics of clinical care demand among patients with IBD in Japan, both in recapitulating historical demand curves and simulating future demand during disruption scenarios, such as pandemic, earthquake, and economic crisis.
Collapse
Affiliation(s)
- Gen Suzuki
- Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
- Correspondence: ; Tel.: +81-03-3278-2111
| | - Ryuichi Iwakiri
- Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Eri Udagawa
- Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Sindy Ma
- PricewaterhouseCoopers Advisory Services LLC, Philadelphia, PA 19103, USA
| | - Ryoko Takayama
- PricewaterhouseCoopers Consulting LLC, Tokyo 100-0004, Japan
| | - Hiroshi Nishiura
- Health & Environment Science, Kyoto University, Kyoto 606-8601, Japan
| | - Koshi Nakamura
- Department of Public Health and Hygiene, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Samuel P. Burns
- PricewaterhouseCoopers Advisory Services LLC, Philadelphia, PA 19103, USA
| | | | - Jovelle Fernandez
- Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| |
Collapse
|
19
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
20
|
Pytrus W, Akutko K, Pytrus T, Turno-Kręcicka A. A Review of Ophthalmic Complications in Inflammatory Bowel Diseases. J Clin Med 2022; 11:7457. [PMID: 36556071 PMCID: PMC9781961 DOI: 10.3390/jcm11247457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated conditions caused by various polygenic and environmental factors. Clinical manifestations of IBD primarily occur in the gastrointestinal tract, but many patients are affected by extraintestinal complications, including eye diseases. Ocular disorders are the third most common extraintestinal manifestation (EIM), following musculoskeletal and mucocutaneous involvement. Episcleritis, frequently occurring in IBD patients, may be associated with exacerbation of the intestinal disease. Uveitis does not correlate with IBD activity but may be related to the presence of other EIMs, particularly erythema nodosum and peripheral arthritis. Early detection and specific therapy of ocular manifestations of IBD are fundamental to avoiding sight-threatening complications. Therefore, ophthalmic evaluation should be performed in all IBD patients. Systemic corticosteroids or immunosuppressants may be inevitable in severe cases to control ocular inflammation. Persistent and relapsing conditions usually respond well to TNF-α-inhibitors. Interdisciplinary cooperation between gastroenterologists and ophthalmologists is fundamental in initiating the appropriate treatment for patients.
Collapse
Affiliation(s)
- Wiktoria Pytrus
- Ophthalmonology Clinical Centre SPEKTRUM, 53-334 Wroclaw, Poland
| | - Katarzyna Akutko
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Tomasz Pytrus
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Anna Turno-Kręcicka
- Clinical Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
21
|
Gomez-Nguyen A, Gupta N, Sanaka H, Gruszka D, Pizarro A, DiMartino L, Basson A, Menghini P, Osme A, DeSalvo C, Pizarro T, Cominelli F. Chronic stress induces colonic tertiary lymphoid organ formation and protection against secondary injury through IL-23/IL-22 signaling. Proc Natl Acad Sci U S A 2022; 119:e2208160119. [PMID: 36161939 PMCID: PMC9546604 DOI: 10.1073/pnas.2208160119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Psychological stress has been previously reported to worsen symptoms of inflammatory bowel disease (IBD). Similarly, intestinal tertiary lymphoid organs (TLOs) are associated with more severe inflammation. While there is active debate about the role of TLOs and stress in IBD pathogenesis, there are no studies investigating TLO formation in the context of psychological stress. Our mouse model of Crohn's disease-like ileitis, the SAMP1/YitFc (SAMP) mouse, was subjected to 56 consecutive days of restraint stress (RS). Stressed mice had significantly increased colonic TLO formation. However, stress did not significantly increase small or large intestinal inflammation in the SAMP mice. Additionally, 16S analysis of the stressed SAMP microbiome revealed no genus-level changes. Fecal microbiome transplantation into germ-free SAMP mice using stool from unstressed and stressed mice replicated the behavioral phenotype seen in donor mice. However, there was no difference in TLO formation between recipient mice. Stress increased the TLO formation cytokines interleukin-23 (IL-23) and IL-22 followed by up-regulation of antimicrobial peptides. SAMP × IL-23r-/- (knockout [KO]) mice subjected to chronic RS did not have increased TLO formation. Furthermore, IL-23, but not IL-22, production was increased in KO mice, and administration of recombinant IL-22 rescued TLO formation. Following secondary colonic insult with dextran sodium sulfate, stressed mice had reduced colitis on both histology and colonoscopy. Our findings demonstrate that psychological stress induces colonic TLOs through intrinsic alterations in IL-23 signaling, not through extrinsic influence from the microbiome. Furthermore, chronic stress is protective against secondary insult from colitis, suggesting that TLOs may function to improve the mucosal barrier.
Collapse
Affiliation(s)
- Adrian Gomez-Nguyen
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Nikhilesh Gupta
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Harsha Sanaka
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Dennis Gruszka
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Alaina Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Luca DiMartino
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Paola Menghini
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Abdullah Osme
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Carlo DeSalvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Theresa Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
22
|
Kang YH, Tucker SA, Quevedo SF, Inal A, Korzenik JR, Haigis MC. Metabolic analyses reveal dysregulated NAD+ metabolism and altered mitochondrial state in ulcerative colitis. PLoS One 2022; 17:e0273080. [PMID: 35976971 PMCID: PMC9385040 DOI: 10.1371/journal.pone.0273080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Ulcerative colitis (UC) is a complex, multifactorial disease driven by a dysregulated immune response against host commensal microbes. Despite rapid advances in our understanding of host genomics and transcriptomics, the metabolic changes in UC remain poorly understood. We thus sought to investigate distinguishing metabolic features of the UC colon (14 controls and 19 patients). Metabolomics analyses revealed inflammation state as the primary driver of metabolic variation rather than diagnosis, with multiple metabolites differentially regulated between inflamed and uninflamed tissues. Specifically, inflamed tissues were characterized by reduced levels of nicotinamide adenine dinucleotide (NAD+) and enhanced levels of nicotinamide (NAM) and adenosine diphosphate ribose (ADPr). The NAD+/NAM ratio, which was reduced in inflamed patients, served as an effective classifier for inflammation in UC. Mitochondria were also structurally altered in UC, with UC patient colonocytes displaying reduced mitochondrial density and number. Together, these findings suggest a link between mitochondrial dysfunction, inflammation, and NAD+ metabolism in UC.
Collapse
Affiliation(s)
- Yu Hui Kang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States of America
| | - Sarah A. Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
| | - Silvia F. Quevedo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
| | - Joshua R. Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Park SH, Park SH. Personalized medicine in inflammatory bowel disease: Perspectives on Asia. J Gastroenterol Hepatol 2022; 37:1434-1445. [PMID: 35726657 DOI: 10.1111/jgh.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel diseases are chronic, relapsing inflammatory disorders of the gastrointestinal tract with variable disease courses and complications, which in some cases can result in significant morbidities and disabilities. Etiologies remain unclear due to complex interactions between genetic and environmental factors. Considering the heterogeneity of inflammatory bowel diseases, personalized approaches in diagnosing and managing affected patients would be beneficial in maximizing treatment efficacies and minimizing adverse events. Personalized medicine may also help to stratify patients with a high risk of progression and inflammatory bowel disease-related complications and identify sub-phenotypic mechanisms to facilitate drug discovery and the development of new treatments. In Asia, with a rapidly increasing incidence and prevalence of inflammatory bowel diseases, studies have shown that patients of Asian ethnicity differ from their Western counterparts in terms of genetic and clinical aspects of inflammatory bowel diseases. Therefore, personalized medicine may differ for patients of Asian ethnicity with inflammatory bowel diseases. We reviewed and summarized current evidence concerning personalized medicine for the diagnosis and management of patients with inflammatory bowel diseases and its possible role from an Asian perspective.
Collapse
Affiliation(s)
- Su Hyun Park
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
24
|
Chen H, Zhang J, Zhou H, Zhu Y, Liang Y, Zhu P, Zhang Q. UHPLC-HRMS–based serum lipisdomics reveals novel biomarkers to assist in the discrimination between colorectal adenoma and cancer. Front Oncol 2022; 12:934145. [PMID: 35965551 PMCID: PMC9366052 DOI: 10.3389/fonc.2022.934145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The development of a colorectal adenoma (CA) into carcinoma (CRC) is a long and stealthy process. There remains a lack of reliable biomarkers to distinguish CA from CRC. To effectively explore underlying molecular mechanisms and identify novel lipid biomarkers promising for early diagnosis of CRC, an ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS) method was employed to comprehensively measure lipid species in human serum samples of patients with CA and CRC. Results showed significant differences in serum lipid profiles between CA and CRC groups, and 85 differential lipid species (P < 0.05 and fold change > 1.50 or < 0.67) were discovered. These significantly altered lipid species were mainly involved in fatty acid (FA), phosphatidylcholine (PC), and triacylglycerol (TAG) metabolism with the constituent ratio > 63.50%. After performance evaluation by the receiver operating characteristic (ROC) curve analysis, seven lipid species were ultimately proposed as potential biomarkers with the area under the curve (AUC) > 0.800. Of particular value, a lipid panel containing docosanamide, SM d36:0, PC 36:1e, and triheptanoin was selected as a composite candidate biomarker with excellent performance (AUC = 0.971), and the highest selected frequency to distinguish patients with CA from patients with CRC based on the support vector machine (SVM) classification model. To our knowledge, this study was the first to undertake a lipidomics profile using serum intended to identify screening lipid biomarkers to discriminate between CA and CRC. The lipid panel could potentially serve as a composite biomarker aiding the early diagnosis of CRC. Metabolic dysregulation of FAs, PCs, and TAGs seems likely involved in malignant transformation of CA, which hopefully will provide new clues to understand its underlying mechanism.
Collapse
Affiliation(s)
- Hongwei Chen
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Jiahao Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Hailin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Yifan Zhu
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Yunxiao Liang
- Department of Gastroenterology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qisong Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, China
- *Correspondence: Qisong Zhang,
| |
Collapse
|
25
|
Elhag DA, Kumar M, Saadaoui M, Akobeng AK, Al-Mudahka F, Elawad M, Al Khodor S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int J Mol Sci 2022; 23:ijms23136966. [PMID: 35805965 PMCID: PMC9266456 DOI: 10.3390/ijms23136966] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammation of the gastrointestinal tract with a highly heterogeneous presentation. It has a relapsing and remitting clinical course that necessitates lifelong monitoring and treatment. Although the availability of a variety of effective therapeutic options including immunomodulators and biologics (such as TNF, CAM inhibitors) has led to a paradigm shift in the treatment outcomes and clinical management of IBD patients, some patients still either fail to respond or lose their responsiveness to therapy over time. Therefore, according to the recent Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE-II) recommendations, continuous disease monitoring from symptomatic relief to endoscopic healing along with short- and long-term therapeutic responses are critical for providing IBD patients with a tailored therapy algorithm. Moreover, considering the high unmet need for novel therapeutic approaches for IBD patients, various new modulators of cytokine signaling events (for example, JAK/TYK inhibitors), inhibitors of cytokines (for example IL-12/IL-23, IL-22, IL-36, and IL-6 inhibitors), anti-adhesion and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors, and stem cells), as well as microbial-based therapeutics to decolonize the bed buds (for example, fecal microbiota transplantation and bacterial inhibitors) are currently being evaluated in different phases of controlled clinical trials. This review aims to offer a comprehensive overview of available treatment options and emerging therapeutic approaches for IBD patients. Furthermore, predictive biomarkers for monitoring the therapeutic response to different IBD therapies are also discussed.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Marwa Saadaoui
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Anthony K. Akobeng
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Fatma Al-Mudahka
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Souhaila Al Khodor
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
- Correspondence:
| |
Collapse
|
26
|
Augustine T, Kumar M, Al Khodor S, van Panhuys N. Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08939-9. [PMID: 35648372 DOI: 10.1007/s12016-022-08939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis has been popularized as an explanation for the rapid increase in allergic disease observed over the past 50 years. Subsequent epidemiological studies have described the protective effects that in utero and early life exposures to an environment high in microbial diversity have in conferring protective benefits against the development of allergic diseases. The rapid advancement in next generation sequencing technology has allowed for analysis of the diverse nature of microbial communities present in the barrier organs and a determination of their role in the induction of allergic disease. Here, we discuss the recent literature describing how colonization of barrier organs during early life by the microbiota influences the development of the adaptive immune system. In parallel, mechanistic studies have delivered insight into the pathogenesis of disease, by demonstrating the comparative effects of protective T regulatory (Treg) cells, with inflammatory T helper 2 (Th2) cells in the development of immune tolerance or induction of an allergic response. More recently, a significant advancement in our understanding into how interactions between the adaptive immune system and microbially derived factors play a central role in the development of allergic disease has emerged. Providing a deeper understanding of the symbiotic relationship between our microbiome and immune system, which explains key observations made by the hygiene hypothesis. By studying how perturbations that drive dysbiosis of the microbiome can cause allergic disease, we stand to benefit by delineating the protective versus pathogenic aspects of human interactions with our microbial companions, allowing us to better harness the use of microbial agents in the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Tracy Augustine
- Laboratory of Immunoregulation, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Manoj Kumar
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
27
|
Gao S, Li Y, Wu D, Jiao N, Yang L, Zhao R, Xu Z, Chen W, Lin X, Cheng S, Zhu L, Lan P, Zhu R. IBD Subtype-Regulators IFNG and GBP5 Identified by Causal Inference Drive More Intense Innate Immunity and Inflammatory Responses in CD Than Those in UC. Front Pharmacol 2022; 13:869200. [PMID: 35462887 PMCID: PMC9020454 DOI: 10.3389/fphar.2022.869200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The pathological differences between Crohn's disease (CD) and ulcerative colitis (UC) are substantial and unexplained yet. Here, we aimed to identify potential regulators that drive different pathogenesis of CD and UC by causal inference analysis of transcriptome data. Methods: Kruskal-Wallis and Dunnett's tests were performed to identify differentially expressed genes (DEGs) among CD patients, UC patients, and controls. Subsequently, differentially expressed pathways (DEPs) between CD and UC were identified and used to construct the interaction network of DEPs. Causal inference was performed to identify IBD subtype-regulators. The expression of the subtype-regulators and their downstream genes was validated by qRT-PCR with an independent cohort. Results: Compared with the control group, we identified 1,352 and 2,081 DEGs in CD and UC groups, respectively. Multiple DEPs between CD and UC were closely related to inflammation-related pathways, such as NOD-like receptor signaling, IL-17 signaling, and chemokine signaling pathways. Based on the priori interaction network of DEPs, causal inference analysis identified IFNG and GBP5 as IBD subtype-regulators. The results with the discovery cohort showed that the expression level of IFNG, GBP5, and NLRP3 was significantly higher in the CD group than that in the UC group. The regulation relationships among IFNG, GBP5, and NLRP3 were confirmed with transcriptome data from an independent cohort and validated by qRT-PCR. Conclusion: Our study suggests that IFNG and GBP5 were IBD subtype-regulators that trigger more intense innate immunity and inflammatory responses in CD than those in UC. Our findings reveal pathomechanical differences between CD and UC that may contribute to personalized treatment for CD and UC.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Bioinformatics, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Jiao
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Rui Zhao
- Department of Bioinformatics, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Zhifeng Xu
- Department of Bioinformatics, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Wanning Chen
- Department of Bioinformatics, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Xutao Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lixin Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ruixin Zhu
- Department of Bioinformatics, Putuo People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Erdmann A, Rehmann-Sutter C, Bozzaro C. Clinicians’ and Researchers’ Views on Precision Medicine in Chronic Inflammation: Practices, Benefits and Challenges. J Pers Med 2022; 12:jpm12040574. [PMID: 35455690 PMCID: PMC9031131 DOI: 10.3390/jpm12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Due to the high burden of diseases with chronic inflammation as an underlying condition, great expectations are placed in the development of precision medicine (PM). Our research explores the benefits and possible risks of this development from the perspective of clinicians and researchers in the field. We have asked these professionals about the current state of their research and their expectations, concerns, values and attitudes regarding PM. (2) Methods: Following a grounded theory approach, we conducted qualitative interviews with 17 clinicians and researchers. For respondent validation, we discussed the findings with the participants in a validation workshop. (3) Results: Professionals expect multiple benefits from PM in chronic inflammation. They provided their concepts of professionals’ and patients’ work in the development of PM in chronic inflammatory diseases. Ethical, process-related and economic challenges were raised regarding the lack of integration of data from minority groups, the risk of data misuse and discrimination, the potential risk of no therapy being available for small strata, the lack of professional support and political measures in developing a healthy lifestyle, the problem of difficult access to the inflammation clinic for some populations and the difficulty of financing PM for all. (4) Conclusions: In the further research, development and implementation of PM, these ethical challenges need to be adequately addressed.
Collapse
Affiliation(s)
- Anke Erdmann
- Institute for Experimental Medicine, Medical Ethics Working Group, Kiel University, 24105 Kiel, Germany;
- Correspondence: ; Tel.: +49-431-500-30332
| | - Christoph Rehmann-Sutter
- Institute for History of Medicine and Science Studies, University of Lübeck, 23552 Lübeck, Germany;
| | - Claudia Bozzaro
- Institute for Experimental Medicine, Medical Ethics Working Group, Kiel University, 24105 Kiel, Germany;
| |
Collapse
|
29
|
Feakins R, Torres J, Borralho-Nunes P, Burisch J, Cúrdia Gonçalves T, De Ridder L, Driessen A, Lobatón T, Menchén L, Mookhoek A, Noor N, Svrcek M, Villanacci V, Zidar N, Tripathi M. ECCO Topical Review on Clinicopathological Spectrum and Differential Diagnosis of Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:343-368. [PMID: 34346490 DOI: 10.1093/ecco-jcc/jjab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Many diseases can imitate inflammatory bowel disease [IBD] clinically and pathologically. This review outlines the differential diagnosis of IBD and discusses morphological pointers and ancillary techniques that assist with the distinction between IBD and its mimics. METHODS European Crohn's and Colitis Organisation [ECCO] Topical Reviews are the result of an expert consensus. For this review, ECCO announced an open call to its members and formed three working groups [WGs] to study clinical aspects, pathological considerations, and the value of ancillary techniques. All WGs performed a systematic literature search. RESULTS Each WG produced a draft text and drew up provisional Current Practice Position [CPP] statements that highlighted the most important conclusions. Discussions and a preliminary voting round took place, with subsequent revision of CPP statements and text and a further meeting to agree on final statements. CONCLUSIONS Clinicians and pathologists encounter a wide variety of mimics of IBD, including infection, drug-induced disease, vascular disorders, diverticular disease, diversion proctocolitis, radiation damage, and immune disorders. Reliable distinction requires a multidisciplinary approach.
Collapse
Affiliation(s)
- Roger Feakins
- Department of Cellular Pathology, Royal Free Hospital, London, and University College London, UK
| | - Joana Torres
- Department of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Paula Borralho-Nunes
- Department of Pathology, Hospital Cuf Descobertas, Lisboa and Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Johan Burisch
- Gastrounit, Medical Division, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Tiago Cúrdia Gonçalves
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal.,School of Medicine, University of Minho, Braga/Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lissy De Ridder
- Department of Paediatric Gastroenterology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | - Ann Driessen
- Department of Pathology, University Hospital Antwerp, University Antwerp, Edegem, Belgium
| | - Triana Lobatón
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Luis Menchén
- Department of Digestive System Medicine, Hospital General Universitario-Insitituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| | - Aart Mookhoek
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nurulamin Noor
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Magali Svrcek
- Department of Pathology, Sorbonne Université, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Vincenzo Villanacci
- Department of Histopathology, Spedali Civili and University of Brescia, Brescia, Italy
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Tripathi
- Department of Histopathology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
30
|
Mukhopadhyay S, Saha S, Chakraborty S, Prasad P, Ghosh A, Aich P. Differential colitis susceptibility of Th1- and Th2-biased mice: A multi-omics approach. PLoS One 2022; 17:e0264400. [PMID: 35263357 PMCID: PMC8906622 DOI: 10.1371/journal.pone.0264400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
The health and economic burden of colitis is increasing globally. Understanding the role of host genetics and metagenomics is essential to establish the molecular basis of colitis pathogenesis. In the present study, we have used a common composite dose of DSS to compare the differential disease severity response in C57BL/6 (Th1 biased) and BALB/c (Th2 biased) mice with zero mortality rates. We employed multi-omics approaches and developed a newer vector analysis approach to understand the molecular basis of the disease pathogenesis. In the current report, comparative transcriptomics, metabonomics, and metagenomics analyses revealed that the Th1 background of C57BL/6 induced intense inflammatory responses throughout the treatment period. On the contrary, the Th2 background of BALB/c resisted severe inflammatory responses by modulating the host’s inflammatory, metabolic, and gut microbial profile. The multi-omics approach also helped us discover some unique metabolic and microbial markers associated with the disease severity. These biomarkers could be used in diagnostics.
Collapse
Affiliation(s)
- Sohini Mukhopadhyay
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Subha Saha
- Institute of Life Sciences, NALCO Square, Bhubaneswar, Odisha, India
| | - Subhayan Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| | - Punit Prasad
- Institute of Life Sciences, NALCO Square, Bhubaneswar, Odisha, India
| | - Arindam Ghosh
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
31
|
Gardiner LJ, Carrieri AP, Bingham K, Macluskie G, Bunton D, McNeil M, Pyzer-Knapp EO. Combining explainable machine learning, demographic and multi-omic data to inform precision medicine strategies for inflammatory bowel disease. PLoS One 2022; 17:e0263248. [PMID: 35196350 PMCID: PMC8865677 DOI: 10.1371/journal.pone.0263248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, affect several million individuals worldwide. These diseases are heterogeneous at the clinical, immunological and genetic levels and result from complex host and environmental interactions. Investigating drug efficacy for IBD can improve our understanding of why treatment response can vary between patients. We propose an explainable machine learning (ML) approach that combines bioinformatics and domain insight, to integrate multi-modal data and predict inter-patient variation in drug response. Using explanation of our models, we interpret the ML models’ predictions to infer unique combinations of important features associated with pharmacological responses obtained during preclinical testing of drug candidates in ex vivo patient-derived fresh tissues. Our inferred multi-modal features that are predictive of drug efficacy include multi-omic data (genomic and transcriptomic), demographic, medicinal and pharmacological data. Our aim is to understand variation in patient responses before a drug candidate moves forward to clinical trials. As a pharmacological measure of drug efficacy, we measured the reduction in the release of the inflammatory cytokine TNFα from the fresh IBD tissues in the presence/absence of test drugs. We initially explored the effects of a mitogen-activated protein kinase (MAPK) inhibitor; however, we later showed our approach can be applied to other targets, test drugs or mechanisms of interest. Our best model predicted TNFα levels from demographic, medicinal and genomic features with an error of only 4.98% on unseen patients. We incorporated transcriptomic data to validate insights from genomic features. Our results showed variations in drug effectiveness (measured by ex vivo assays) between patients that differed in gender, age or condition and linked new genetic polymorphisms to patient response variation to the anti-inflammatory treatment BIRB796 (Doramapimod). Our approach models IBD drug response while also identifying its most predictive features as part of a transparent ML precision medicine strategy.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- IBM Research Europe—Daresbury, The Hartree Centre, Warrington, United Kingdom
- * E-mail: (APC); (LJG)
| | - Anna Paola Carrieri
- IBM Research Europe—Daresbury, The Hartree Centre, Warrington, United Kingdom
- * E-mail: (APC); (LJG)
| | - Karen Bingham
- REPROCELL Europe Ltd, Glasgow, Scotland, United Kingdom
| | | | - David Bunton
- REPROCELL Europe Ltd, Glasgow, Scotland, United Kingdom
| | - Marian McNeil
- Precision Medicine Scotland Innovation Centre, Teaching and Learning Building, Queen Elizabeth University Hospital, Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
32
|
Beck EA, Healey HM, Small CM, Currey MC, Desvignes T, Cresko WA, Postlethwait JH. Advancing human disease research with fish evolutionary mutant models. Trends Genet 2022; 38:22-44. [PMID: 34334238 PMCID: PMC8678158 DOI: 10.1016/j.tig.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.
Collapse
Affiliation(s)
- Emily A Beck
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Clayton M Small
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - William A Cresko
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
33
|
Schupack DA, Mars RAT, Voelker DH, Abeykoon JP, Kashyap PC. The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol 2022; 19:7-25. [PMID: 34453142 PMCID: PMC8712374 DOI: 10.1038/s41575-021-00499-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Variability in disease presentation, progression and treatment response has been a central challenge in medicine. Although variability in host factors and genetics are important, it has become evident that the gut microbiome, with its vast genetic and metabolic diversity, must be considered in moving towards individualized treatment. In this Review, we discuss six broad disease groups: infectious disease, cancer, metabolic disease, cardiovascular disease, autoimmune or inflammatory disease, and allergic and atopic diseases. We highlight current knowledge on the gut microbiome in disease pathogenesis and prognosis, efficacy, and treatment-related adverse events and its promise for stratifying existing treatments and as a source of novel therapies. The Review is not meant to be comprehensive for each disease state but rather highlights the potential implications of the microbiome as a tool to individualize treatment strategies in clinical practice. Although early, the outlook is optimistic but challenges need to be overcome before clinical implementation, including improved understanding of underlying mechanisms, longitudinal studies with multiple data layers reflecting gut microbiome and host response, standardized approaches to testing and reporting, and validation in larger cohorts. Given progress in the microbiome field with concurrent basic and clinical studies, the microbiome will likely become an integral part of clinical care within the next decade.
Collapse
Affiliation(s)
- Daniel A Schupack
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Dayne H Voelker
- Division of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jithma P Abeykoon
- Division of Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Adegbola SO, Sarafian M, Sahnan K, Ding NS, Faiz OD, Warusavitarne J, Phillips RKS, Tozer PJ, Holmes E, Hart AL. Differences in amino acid and lipid metabolism distinguish Crohn's from idiopathic/cryptoglandular perianal fistulas by tissue metabonomic profiling and may offer clues to underlying pathogenesis. Eur J Gastroenterol Hepatol 2021; 33:1469-1479. [PMID: 33337668 DOI: 10.1097/meg.0000000000001976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Few studies have investigated perianal fistula etiopathogenesis, and although the cryptoglandular theory is widely accepted in idiopathic cases, in Crohn's disease, it is thought to involve the interplay between microbiological, immunological and genetic factors. A pilot study was conducted to assess for metabolic variations in Crohn's perianal fistula tissue that might differ from that of idiopathic (cryptoglandular) perianal fistula tissue as a comparator. The goal was to identify any potential biomarkers of disease, which may improve the understanding of pathogenesis. AIMS AND METHODS Fistula tract biopsies were obtained from 30 patients with idiopathic perianal fistula and 20 patients with Crohn's anal fistula. Two different assays were used in an ultra-high-performance liquid chromatography system coupled with a mass spectrometric detector to achieve broad metabolome coverage. Univariate and multivariate statistical data analyses were used to identify differentiating metabolic features corresponding to the perianal fistula phenotype (i.e. Crohn's disease vs. idiopathic). RESULTS Significant orthogonal partial least squares discriminant analysis predictive models (validated with cross-validated-analysis of variance P value <0.05) differentiated metabolites from tissue samples from Crohn's vs. idiopathic anal fistula patients using both metabolic profiling platforms. A total of 41 metabolites were identified, suggesting alterations in pathways, including amino acid, carnitine and lipid metabolism. CONCLUSION Metabonomics may reveal biomarkers of Crohn's perianal fistula. Further work in larger numbers is required to validate the findings of these studies as well as cross-correlation with microbiome work to better understand the impact of host-gut/environment interactions in the pathophysiology of Crohn's and idiopathic perianal fistulas and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel O Adegbola
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Magali Sarafian
- Computational Systems Division, Imperial College London, South Kensington Campus, London, UK
| | - Kapil Sahnan
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Nik S Ding
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
| | - Omar D Faiz
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Janindra Warusavitarne
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Robin K S Phillips
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Phil J Tozer
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Elaine Holmes
- Computational Systems Division, Imperial College London, South Kensington Campus, London, UK
| | - Ailsa L Hart
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| |
Collapse
|
35
|
Gut Microbial Metabolite-Mediated Regulation of the Intestinal Barrier in the Pathogenesis of Inflammatory Bowel Disease. Nutrients 2021; 13:nu13124259. [PMID: 34959809 PMCID: PMC8704337 DOI: 10.3390/nu13124259] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease. The disease has a multifactorial aetiology, involving genetic, microbial as well as environmental factors. The disease pathogenesis operates at the host-microbe interface in the gut. The intestinal epithelium plays a central role in IBD disease pathogenesis. Apart from being a physical barrier, the epithelium acts as a node that integrates environmental, dietary, and microbial cues to calibrate host immune response and maintain homeostasis in the gut. IBD patients display microbial dysbiosis in the gut, combined with an increased barrier permeability that contributes to disease pathogenesis. Metabolites produced by microbes in the gut are dynamic indicators of diet, host, and microbial interplay in the gut. Microbial metabolites are actively absorbed or diffused across the intestinal lining to affect the host response in the intestine as well as at systemic sites via the engagement of cognate receptors. In this review, we summarize insights from metabolomics studies, uncovering the dynamic changes in gut metabolite profiles in IBD and their importance as potential diagnostic and prognostic biomarkers of disease. We focus on gut microbial metabolites as key regulators of the intestinal barrier and their role in the pathogenesis of IBD.
Collapse
|
36
|
Popa IV, Burlacu A, Gavrilescu O, Dranga M, Prelipcean CC, Mihai C. A new approach to predict ulcerative colitis activity through standard clinical–biological parameters using a robust neural network model. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Chen D, Fulmer C, Gordon IO, Syed S, Stidham RW, Vande Casteele N, Qin Y, Falloon K, Cohen BL, Wyllie R, Rieder F. Application of Artificial Intelligence to Clinical Practice in Inflammatory Bowel Disease - What the Clinician Needs to Know. J Crohns Colitis 2021; 16:460-471. [PMID: 34558619 PMCID: PMC8919817 DOI: 10.1093/ecco-jcc/jjab169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artificial intelligence [AI] techniques are quickly spreading across medicine as an analytical method to tackle challenging clinical questions. What were previously thought of as highly complex data sources, such as images or free text, are now becoming manageable. Novel analytical methods merge the latest developments in information technology infrastructure with advances in computer science. Once primarily associated with Silicon Valley, AI techniques are now making their way into medicine, including in the field of inflammatory bowel diseases [IBD]. Understanding potential applications and limitations of these techniques can be difficult, in particular for busy clinicians. In this article, we explain the basic terminologies and provide a particular focus on the foundations behind state-of-the-art AI methodologies in both imaging and text. We explore the growing applications of AI in medicine, with a specific focus on IBD to inform the practising gastroenterologist and IBD specialist. Finally, we outline possible future uses of these technologies in daily clinical practice.
Collapse
Affiliation(s)
- David Chen
- Medical Operations, Cleveland Clinic Foundation, Cleveland, OH, USA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Clifton Fulmer
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sana Syed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA, USA,School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Ryan W Stidham
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Yi Qin
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Katherine Falloon
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Benjamin L Cohen
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert Wyllie
- Medical Operations, Cleveland Clinic Foundation, Cleveland, OH, USA,Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Corresponding author: Florian Rieder, MD, Department of Inflammation and Immunity, and Department of Gastroenterology, Hepatology, & Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA. Tel: (216) 445-5631; Fax: (216) 636-0104; E-mail:
| |
Collapse
|
38
|
Erdmann A, Rehmann-Sutter C, Bozzaro C. Patients' and professionals' views related to ethical issues in precision medicine: a mixed research synthesis. BMC Med Ethics 2021; 22:116. [PMID: 34465328 PMCID: PMC8406914 DOI: 10.1186/s12910-021-00682-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Precision medicine development is driven by the possibilities of next generation sequencing, information technology and artificial intelligence and thus, raises a number of ethical questions. Empirical studies have investigated such issues from the perspectives of health care professionals, researchers and patients. We synthesize the results from these studies in this review. METHODS We used a systematic strategy to search, screen and assess the literature for eligibility related to our research question. The initial search for empirical studies in five data bases provided 665 different records and we selected 92 of these publications for inclusion in this review. Data were extracted in a spreadsheet and categorized into different topics representing the views on ethical issues in precision medicine. RESULTS Many patients and professionals expect high benefits from precision medicine and have a positive attitude towards it. However, patients and professionals also perceive some risks. Commonly perceived risks include: lack of evidence for accuracy of tests and efficacy of treatments; limited knowledge of patients, which makes informed consent more difficult; possible unavailability of access to precision medicine for underprivileged people and ethnic minorities; misuse of data by insurance companies and employers, potential of racial stigmatization due to genetic information; unwanted communication of incidental findings; changes in doctor-patient-relationship through focusing on data; and the problem that patients could feel under pressure to optimize their health. CONCLUSIONS National legislation and guidelines already minimize many risks associated with precision medicine. However, from our perspective some problems require more attention. Should hopes for precision medicine's benefits be fulfilled, then the ethical principle of justice would require an unlimited access to precision medicine for all people. The potential for autonomous patients' decisions must be greatly enhanced by improvements in patient education. Harm from test results must be avoided in any case by the highest possible data security level and communication guidelines. Changes in the doctor-patient relationship and the impact of precision medicine on the quality of life should be further investigated. Additionally, the cost-effectiveness of precision medicine should be further examined, in order to avoid malinvestment.
Collapse
Affiliation(s)
- Anke Erdmann
- Institute for Experimental Medicine, Medical Ethics Working Group, Kiel University (CAU), Kiel, Germany.
| | | | - Claudia Bozzaro
- Institute for Experimental Medicine, Medical Ethics Working Group, Kiel University (CAU), Kiel, Germany
| |
Collapse
|
39
|
Javaid A, Shahab O, Adorno W, Fernandes P, May E, Syed S. Machine Learning Predictive Outcomes Modeling in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 28:819-829. [PMID: 34417815 PMCID: PMC9165557 DOI: 10.1093/ibd/izab187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/14/2022]
Abstract
There is a rising interest in use of big data approaches to personalize treatment of inflammatory bowel diseases (IBDs) and to predict and prevent outcomes such as disease flares and therapeutic nonresponse. Machine learning (ML) provides an avenue to identify and quantify features across vast quantities of data to produce novel insights in disease management. In this review, we cover current approaches in ML-driven predictive outcomes modeling for IBD and relate how advances in other fields of medicine may be applied to improve future IBD predictive models. Numerous studies have incorporated clinical, laboratory, or omics data to predict significant outcomes in IBD, including hospitalizations, outpatient corticosteroid use, biologic response, and refractory disease after colectomy, among others, with considerable health care dollars saved as a result. Encouraging results in other fields of medicine support efforts to use ML image analysis-including analysis of histopathology, endoscopy, and radiology-to further advance outcome predictions in IBD. Though obstacles to clinical implementation include technical barriers, bias within data sets, and incongruence between limited data sets preventing model validation in larger cohorts, ML-predictive analytics have the potential to transform the clinical management of IBD. Future directions include the development of models that synthesize all aforementioned approaches to produce more robust predictive metrics.
Collapse
Affiliation(s)
- Aamir Javaid
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Omer Shahab
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William Adorno
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Philip Fernandes
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Eve May
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
| | - Sana Syed
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA,School of Data Science, University of Virginia, Charlottesville, VA, USA,Address Correspondence to: Sana Syed, MD, MSCR, MSDS, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, 409 Lane Rd, Room 2035B, Charlottesville, VA, 22908, USA ()
| |
Collapse
|
40
|
Huang J, Yang Z, Li Y, Chai X, Liang Y, Lin B, Ye Z, Zhang S, Che Z, Zhang H, Zhang X, Zhang Z, Chen T, Yang W, Zeng J. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance. J Transl Med 2021; 19:356. [PMID: 34407839 PMCID: PMC8371868 DOI: 10.1186/s12967-021-02943-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Provincial Experimental Teaching Centre, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyan Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Department of Clinical Laboratories, Xi'an Daxing Hospital, Xi'an 710000, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xingxing Chai
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated To Medical College of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, 523905, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zhao Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535, Guangdong, China
| | - Tao Chen
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535, Guangdong, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
41
|
Huang J, Yang Z, Li Y, Chai X, Liang Y, Lin B, Ye Z, Zhang S, Che Z, Zhang H, Zhang X, Zhang Z, Chen T, Yang W, Zeng J. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance. J Transl Med 2021; 19:356. [PMID: 34407839 PMCID: PMC8371868 DOI: 10.1186/s12967-021-02943-x 10.1186/s12967-021-02943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Juan Huang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,grid.410560.60000 0004 1760 3078Provincial Experimental Teaching Centre, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyan Yang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,Department of Clinical Laboratories, Xi’an Daxing Hospital, Xi’an 710000, China
| | - Yanyun Li
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xingxing Chai
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Yanfang Liang
- grid.258164.c0000 0004 1790 3548Department of Pathology, Dongguan Hospital Affiliated To Medical College of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, 523905 China
| | - Bihua Lin
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyu Ye
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Shaobing Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhengping Che
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Hailiang Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xueying Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhao Zhang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Tao Chen
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Weiqing Yang
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China ,grid.410560.60000 0004 1760 3078Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Jincheng Zeng
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| |
Collapse
|
42
|
Huang J, Yang Z, Li Y, Chai X, Liang Y, Lin B, Ye Z, Zhang S, Che Z, Zhang H, Zhang X, Zhang Z, Chen T, Yang W, Zeng J. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance. J Transl Med 2021; 19:356. [PMID: 34407839 PMCID: PMC8371868 DOI: 10.1186/s12967-021-02943-x+10.1186/s12967-021-02943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2024] Open
Abstract
Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Provincial Experimental Teaching Centre, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyan Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Department of Clinical Laboratories, Xi’an Daxing Hospital, Xi’an 710000, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xingxing Chai
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated To Medical College of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, 523905 China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| | - Zhao Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Tao Chen
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, 510535 Guangdong China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
- Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808 China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808 China
| |
Collapse
|
43
|
Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247-259. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: At birth, the gastrointestinal (GI) tract is colonized by a complex community of microorganisms, forming the basis of the gut microbiome. The gut microbiome plays a fundamental role in host health, disorders of which can lead to an array of GI diseases, both short and long term. Pediatric GI diseases are responsible for significant morbidity and mortality, but many remain poorly understood. Recent advancements in high-throughput technologies have enabled deeper profiling of GI morbidities. Technologies, such as metagenomics, transcriptomics, proteomics and metabolomics, have already been used to identify associations with specific pathologies, and highlight an exciting area of research. However, since these diseases are often complex and multifactorial by nature, reliance on a single experimental approach may not capture the true biological complexity. Therefore, multi-omics aims to integrate singular omic data to further enhance our understanding of disease.Areas covered: This review will discuss and provide an overview of the main omic technologies that are used to study complex GI pathologies in early life.Expert opinion: Multi-omic technologies can help to unravel the complexities of several diseases during early life, aiding in biomarker discovery and enabling the development of novel therapeutics and augment predictive models.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Claire L Granger
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
44
|
Denaro M, Smeriglio A, Trombetta D. Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants (Basel) 2021; 10:antiox10020140. [PMID: 33498195 PMCID: PMC7908975 DOI: 10.3390/antiox10020140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, several studies have highlighted the role of Citrus flavanones in counteracting oxidative stress and inflammatory response in bowel diseases. The aim of study was to identify the most promising Citrus flavanones by a preliminary antioxidant and anti-inflammatory screening by in vitro cell-free assays, and then to mix the most powerful ones in equimolar ratio in order to investigate a potential synergistic activity. The obtained flavanones mix (FM) was then subjected to in vitro simulated digestion to evaluate the availability of the parent compounds at the intestinal level. Finally, the anti-inflammatory activity was investigated on a Caco-2 cell-based model stimulated with interleukin (IL)-1β. FM showed stronger antioxidant and anti-inflammatory activity with respect to the single flavanones, demonstrating the occurrence of synergistic activity. The LC-DAD-ESI-MS/MS analysis of gastric and duodenal digested FM (DFM) showed that all compounds remained unchanged at the end of digestion. As proof, a superimposable behavior was observed between FM and DFM in the anti-inflammatory assay carried out on Caco-2 cells. Indeed, it was observed that both FM and DFM decreased the IL-6, IL-8, and nitric oxide (NO) release similarly to the reference anti-inflammatory drug dexamethasone.
Collapse
|
45
|
Tarris G, de Rougemont A, Charkaoui M, Michiels C, Martin L, Belliot G. Enteric Viruses and Inflammatory Bowel Disease. Viruses 2021; 13:v13010104. [PMID: 33451106 PMCID: PMC7828589 DOI: 10.3390/v13010104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), is a multifactorial disease in which dietary, genetic, immunological, and microbial factors are at play. The role of enteric viruses in IBD remains only partially explored. To date, epidemiological studies have not fully described the role of enteric viruses in inflammatory flare-ups, especially that of human noroviruses and rotaviruses, which are the main causative agents of viral gastroenteritis. Genome-wide association studies have demonstrated the association between IBD, polymorphisms of the FUT2 and FUT3 genes (which drive the synthesis of histo-blood group antigens), and ligands for norovirus and rotavirus in the intestine. The role of autophagy in defensin-deficient Paneth cells and the perturbations of cytokine secretion in T-helper 1 and T-helper 17 inflammatory pathways following enteric virus infections have been demonstrated as well. Enteric virus interactions with commensal bacteria could play a significant role in the modulation of enteric virus infections in IBD. Based on the currently incomplete knowledge of the complex phenomena underlying IBD pathogenesis, future studies using multi-sampling and data integration combined with new techniques such as human intestinal enteroids could help to decipher the role of enteric viruses in IBD.
Collapse
Affiliation(s)
- Georges Tarris
- Department of Pathology, University Hospital of Dijon, F 21000 Dijon, France; (G.T.); (L.M.)
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France;
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France;
| | - Maëva Charkaoui
- Department of Hepatogastroenterology, University Hospital of Dijon, F 21000 Dijon, France; (M.C.); (C.M.)
| | - Christophe Michiels
- Department of Hepatogastroenterology, University Hospital of Dijon, F 21000 Dijon, France; (M.C.); (C.M.)
| | - Laurent Martin
- Department of Pathology, University Hospital of Dijon, F 21000 Dijon, France; (G.T.); (L.M.)
| | - Gaël Belliot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France;
- Correspondence: ; Tel.: +33-380-293-171; Fax: +33-380-293-280
| |
Collapse
|
46
|
Emmert H, Fonfara M, Rodriguez E, Weidinger S. NADPH oxidase inhibition rescues keratinocytes from elevated oxidative stress in a 2D atopic dermatitis and psoriasis model. Exp Dermatol 2020; 29:749-758. [DOI: 10.1111/exd.14148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hila Emmert
- Department of Dermatology, Allergology and Venereology University Hospital Schleswig‐Holstein Kiel Germany
| | - Melina Fonfara
- Department of Dermatology, Allergology and Venereology University Hospital Schleswig‐Holstein Kiel Germany
| | - Elke Rodriguez
- Department of Dermatology, Allergology and Venereology University Hospital Schleswig‐Holstein Kiel Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology University Hospital Schleswig‐Holstein Kiel Germany
| |
Collapse
|
47
|
Garand M, Kumar M, Huang SSY, Al Khodor S. A literature-based approach for curating gene signatures in multifaceted diseases. J Transl Med 2020; 18:279. [PMID: 32650786 PMCID: PMC7350750 DOI: 10.1186/s12967-020-02408-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS The task of identifying a representative and yet manageable target gene list for assessing the pathogenesis of complicated and multifaceted diseases is challenging. Using Inflammatory Bowel Disease (IBD) as an example, we conceived a bioinformatic approach to identify novel genes associated with the various disease subtypes, in combination with known clinical control genes. METHODS From the available literature, we used Acumenta Literature LabTM (LitLab), network analyses, and LitLab Gene Retriever to assemble a gene pool that has a high likelihood of representing immunity-related subtype-specific signatures of IBD. RESULTS We generated six relevant gene lists and 21 intersections that contain genes with unique literature associations to Crohn's Disease (n = 60), Ulcerative Colitis (n = 17), and unclassified (n = 45) subtypes of IBD. From this gene pool, we then filtered and constructed, using network analysis, a final list of 142 genes that are the most representative of the disease and its subtypes. CONCLUSIONS In this paper, we present the bioinformatic construction of a gene panel that putatively contains subtype signatures of IBD, a multifactorial disease. These gene signatures will be tested as biomarkers to classify patients with IBD, which has been a clinically challenging task. Such approach to diagnose and monitor complicated disease pathogenesis is a stepping-stone towards personalized care.
Collapse
Affiliation(s)
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | |
Collapse
|
48
|
What's new in IBD therapy: An "omics network" approach. Pharmacol Res 2020; 159:104886. [PMID: 32428668 DOI: 10.1016/j.phrs.2020.104886] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The industrial revolution that began in the late 1800s has resulted in dramatic changes in the environment, human lifestyle, dietary habits, social structure, and so on. Almost certainly because this rapid evolution has outpaced the ability of the body to adapt to a number of environmental and behavioral changes, there has been a parallel emergence of several chronic inflammatory diseases, among which are inflammatory bowel diseases (IBD), primarily ulcerative colitis and Crohn's disease. The ability to treat these conditions has progressively improved in the last 50 years, particularly in the last couple of decades with the introduction of biological therapy targeting primarily soluble mediators produced by inflammatory cells. A large number of biologics are now available, but all of them induce similarly unsatisfactory (<50%) rates of clinical response and remission, and most of them lose efficacy over time, requiring dose escalation or switching from one biologic to another. So, treatment of IBD still needs improvement that will occur only if different approaches are taken. A reason why even the most recent forms of IBD therapy are unsatisfactory is because they target only selected components of an exceedingly complex pathophysiological process, a reality that must be honestly considered if better IBD therapies are to be achieved. Brand new approaches must integrate all relevant factors in their totality - the "omes" - and identify the key controllers of biological responses. This can be accomplished by using systems biology-based approaches and advanced bioinformatics tools, which together represent the essence of network medicine. This review looks at the past and the present of IBD pathogenesis and therapy, and discusses how to develop new therapies based on a network medicine approach.
Collapse
|