1
|
Cai K, Wang F, Shi HQ, Shen AN, Zhao R, Geng HR, Lu JQ, Gui YH, Shi Y, Zhao JY. Maternal folic acid over-supplementation impairs cardiac function in mice offspring by inhibiting SOD1 expression. Cardiovasc Res 2024; 120:2092-2103. [PMID: 39253986 DOI: 10.1093/cvr/cvae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS Folic acid (FA) supplementation during pregnancy aims to protect foetal development. However, maternal over-supplementation of FA has been demonstrated to cause metabolic dysfunction and increase the risk of autism, retinoblastoma, and respiratory illness in the offspring. Moreover, FA supplementation reduces the risk of congenital heart disease. However, little is known about its possible adverse effects on cardiac health resulting from maternal over-supplementation. In this study, we assessed the detrimental effects of maternal FA over-supplementation on the cardiac health of the offspring. METHODS AND RESULTS Eight-week-old C57BL/6J pregnant mice were randomly divided into control and over-supplemented groups. The offspring cardiac function was assessed using echocardiography. Cardiac fibrosis was assessed in the left ventricular myocardium by histological analysis. Proteomic, protein, RNA, and DNA methylation analyses were performed by liquid chromatography-tandem mass spectrometry, western blotting, real-time quantitative PCR, and bisulfite sequencing, respectively. We found that maternal periconceptional FA over-supplementation impaired cardiac function with the decreased left ventricular ejection fraction in the offspring. Biochemical indices and tissue staining further confirmed impaired cardiac function in offspring caused by maternal FA over-supplementation. The combined proteomic, RNA expression, and DNA methylation analyses suggested that key genes involved in cardiac function were inhibited at the transcriptional level possibly due to increased DNA methylation. Among these, superoxide dismutase 1 was down-regulated, and reactive oxygen species (ROS) levels increased in the mouse heart. Inhibition of ROS generation using the antioxidant N-acetylcysteine rescued the impaired cardiac function resulting from maternal FA over-supplementation. CONCLUSIONS Our study revealed that over-supplementation with FA during mouse pregnancy is detrimental to cardiac function with the decreased left ventricular ejection fraction in the offspring and provides insights into the mechanisms underlying the association between maternal FA status and health outcomes in the offspring.
Collapse
MESH Headings
- Animals
- Pregnancy
- Female
- Folic Acid/pharmacology
- Mice, Inbred C57BL
- Ventricular Function, Left/drug effects
- Prenatal Exposure Delayed Effects
- DNA Methylation/drug effects
- Superoxide Dismutase-1/metabolism
- Superoxide Dismutase-1/genetics
- Fibrosis
- Dietary Supplements
- Stroke Volume/drug effects
- Male
- Maternal Nutritional Physiological Phenomena
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/pathology
- Oxidative Stress/drug effects
- Mice
- Proteomics
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Ke Cai
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Feng Wang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Hai-Qun Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - An-Na Shen
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Hao-Ran Geng
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Jia-Quan Lu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Yong-Hao Gui
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| |
Collapse
|
2
|
Su X, Hu B, Yi J, Zhao Q, Zhou Y, Zhu X, Wu D, Fan Y, Lin J, Cao C, Deng Z. Crosstalk between circBMI1 and miR-338-5p/ID4 inhibits acute myeloid leukemia progression. J Leukoc Biol 2024; 116:1080-1093. [PMID: 38864460 DOI: 10.1093/jleuko/qiae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
BMI1 polycomb ring finger proto-oncogene (BMI1) is involved in the pathogenesis of different cancers, including acute myeloid leukemia (AML). However, the role of the circular RNA of BMI1 (circBMI1) has not been studied. Our study aimed to investigate the role and mechanism of circBMI1 in AML. circBMI1 was significantly decreased in bone marrow mononuclear cells aspirated from patients with AML. Receiver operating characteristic curve analysis showed that circBMI1 could distinguish patients with AML from controls. By overexpressing and knocking down circBMI1 in HL-60 cells, we found that circBMI1 inhibited cell proliferation, promoted apoptosis, and increased chemotherapeutic drug sensitivity in AML. Experiments using severe combined immune-deficient mice and circBMI1 transgenic mice showed that mice with circBMI1 overexpression had lower white blood cell counts, which suggested less severe AML invasion. RNA immunoprecipitation and dual-luciferase reporter assay revealed binding sites among circBMI1, miR-338-5p, and inhibitor of DNA-binding protein 4 (ID4). Rescue experiments proved that circBMI1 inhibited AML progression by binding to miR-338-5p, which affected the expression of ID4. By coculturing exosomes extracted from circBMI1-HL-60 and small interfering circBMI1-HL-60 cells with HL-60 cells, we found that exosomes from circBMI1-HL-60 cells showed tumor-suppressive effects, namely inhibiting HL-60 proliferation, promoting apoptosis, and increasing chemotherapeutic drug sensitivity. Exosomes from small interfering circBMI1-HL-60 cells showed the opposite effects. circBMI1 may act as an exosome-dependent tumor inhibitor. circBMI1, a potential biomarker for clinical diagnosis, acts as a tumor suppressor in AML by regulating miR-338-5p/ID4 and might affect the pathogenesis of AML by exosome secretion.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Biwen Hu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Jing Yi
- Department of Respiratory and Critical Care Medicine, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Shaoxina, Zhejiang 312000, China
| | - Qian Zhao
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Yongqing Zhou
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Xin Zhu
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Delong Wu
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Yaohua Fan
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Jiang Lin
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Chenxi Cao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Zhaoqun Deng
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| |
Collapse
|
3
|
Siamoglou S, Boers R, Koromina M, Boers J, Tsironi A, Chatzilygeroudi T, Lazaris V, Verigou E, Kourakli A, van IJcken WFJ, Gribnau J, Symeonidis A, Patrinos GP. Genome-wide analysis toward the epigenetic aetiology of myelodysplastic syndrome disease progression and pharmacoepigenomic basis of hypomethylating agents drug treatment response. Hum Genomics 2023; 17:37. [PMID: 37098643 PMCID: PMC10127336 DOI: 10.1186/s40246-023-00483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.
Collapse
Affiliation(s)
- Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Ruben Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Joachim Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anna Tsironi
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Vasileios Lazaris
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Evgenia Verigou
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Alexandra Kourakli
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | | | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece.
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Zhao Q, Wang Y, Yu D, Leng JY, Zhao Y, Chu M, Xu Z, Ding H, Zhou J, Zhang T. Comprehensive analysis of ID genes reveals the clinical and prognostic value of ID3 expression in acute myeloid leukemia using bioinformatics identification and experimental validation. BMC Cancer 2022; 22:1229. [PMID: 36443709 PMCID: PMC9707109 DOI: 10.1186/s12885-022-10352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Dysregulation of inhibitor of differentiation/DNA binding (ID) genes is linked to cancer growth, angiogenesis, invasiveness, metastasis and patient survival. Nevertheless, few investigations have systematically determined the expression and prognostic value of ID genes in acute myeloid leukemia (AML). METHODS The expression and clinical prognostic value of ID genes in AML were first identified by public databases and further validated by our research cohort. RESULTS Using public data, the expression of ID1/ID3 was markedly downregulated in AML, and the expression of ID2 was greatly upregulated in AML, whereas ID4 showed no significant difference. Among the ID genes, only ID3 expression may be the most valuable prognostic biomarker in both total AML and cytogenetically normal AML (CN-AML) and especially in CN-AML. Clinically, reduced ID3 expression was greatly associated with higher white blood cell counts, peripheral blood/bone marrow blasts, normal karyotypes and intermediate cytogenetic risk. In addition, low ID3 expression was markedly related to FLT3 and NPM1 mutations as well as wild-type TP53. Despite these associations, multivariate Cox regression analysis revealed that ID3 expression was an independent risk factor affecting overall survival (OS) and disease free survival (DFS) in CN-AML patients. Biologically, a total of 839 mRNAs/lncRNAs and 72 microRNAs were found to be associated with ID3 expression in AML. Importantly, the expression of ID3 with discriminative value in AML was further confirmed in our research cohort. CONCLUSION The bioinformatics analysis and experimental verification demonstrate that low ID3 expression independently affects OS and DFS in patients with CN-AML, which might be seen as a potential prognostic indicator in CN-AML.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China.,Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Yun Wang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Di Yu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Yangjing Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China
| | - Mingqiang Chu
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China.,Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Zijun Xu
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.
| | - Jingdong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China. .,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.
| | - Tingjuan Zhang
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.
| |
Collapse
|
5
|
Xu ZJ, Zhang XL, Jin Y, Wang SS, Gu Y, Ma JC, Wen XM, Leng JY, Mao ZW, Lin J, Qian J. Pan-cancer analysis reveals distinct clinical, genomic, and immunological features of the LILRB immune checkpoint family in acute myeloid leukemia. Mol Ther Oncolytics 2022; 26:88-104. [PMID: 35795094 PMCID: PMC9233190 DOI: 10.1016/j.omto.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 10/28/2022] Open
|
6
|
Han H, Zhu B, Xie J, Huang Y, Geng Y, Chen K, Wang W. Expression level and prognostic potential of beta-catenin-interacting protein in acute myeloid leukemia. Medicine (Baltimore) 2022; 101:e30022. [PMID: 35984200 PMCID: PMC9387945 DOI: 10.1097/md.0000000000030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibitor of beta-catenin and TCF (ICAT) is a key protein in the Wnt-β-catenin signaling pathway. However, its role in acute myeloid leukemia (AML) remains unknown. In this study, we evaluated its expression level as well as its prognostic value in AML patients. A total of 72 patients with AML and 30 control subjects were enrolled in this study during the period of January 2017 and December 2019 at Zhongshan Hospital of SunYat-sen University. ICAT and β-catenin expression levels in peripheral blood were determined via enzyme-linked immunosorbent assays. ICAT levels in AML patients were significantly lower and β-catenin levels were higher than those of the control group. After the first course of standard chemotherapy, the concentration of ICAT in the partial remission group (93.79 ng/mL) was significantly higher than that in the initial diagnosis group (49.38 ng/mL) and the no response group (39.94 ng/mL). AML subtypes had lower ICAT expression levels than controls, and ICAT levels were significantly correlated with body mass index, bone marrow/peripheral blood blast cell proportions, and white blood cell and red blood cell counts at initial diagnosis. Furthermore, low ICAT expression was found to be associated with poor disease-free survival and overall survival in AML. ICAT is closely associated with AML progression and can be used as an indicator to monitor AML treatment efficacy.
Collapse
Affiliation(s)
- Hui Han
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Baofang Zhu
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Yunxiu Huang
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Yiyun Geng
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
| | - Weijia Wang
- Department of Laboratory Medicine, Zhongshan Hospital of SunYat-sen University, Zhongshan, GuangdongChina
- *Correspondence: Weijia Wang, Department of Laboratory Medicine Zhongshan Hospital of Sun Yat-sen University, 2 East of Sun Wen Road, Shi Qi District, Zhongshan 528403, Guangdong Province, China (e-mail: )
| |
Collapse
|
7
|
Reduced expression of lncRNA DLEU7-AS1 is a novel favorable prognostic factor in acute myeloid leukemia. Biosci Rep 2022; 42:231264. [PMID: 35506368 PMCID: PMC9118369 DOI: 10.1042/bsr20212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
The objective of our study was to measure DLEU7-AS1 expression in de novo acute myeloid leukemia (AML) whilst also analyzing its clinical relevance. We used gene expression data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression project (GTEx) to assess the expression profile of DLEU7-AS1 in pan-cancers, cancer cell lines and normal tissues. Reverse transcription-quantitative PCR was used to measure DLEU7-AS1 expression in bone marrow from 30 normal individuals and 110 patients with de novo AML. DLEU7-AS1 expression was found to be markedly reduced in the AML samples of the TCGA pan-cancer datasets. In our PCR validation, DLEU7-AS1 expression was significantly decreased in the AML samples compared with that in controls (P<0.001). Low DLEU7-AS1 expression (DLEU7-AS1low) correlated positively with lower blood platelet counts (P=0.029). In addition, low DLEU7-AS1 expression was more frequently observed in the intermediate (58%; 44/76) and favorable karyotypes (65%; 15/23) compared with that in the poor karyotype (10%; 1/10; P=0.005). In particular, patients with high expression levels of DLEU7-AS1 (DLEU7-AS1high) showed lower complete remission rates (P=0.002) than patients with DLEU7-AS1low. Survival analysis revealed that patients with DLEU7-AS1low had longer overall survival (OS) than patients with DLEU7-AS1high (P<0.05). Multivariate Cox analysis demonstrated that in patients with non-acute promyelocytic leukemia (non-M3) who were ≤60 years old, DLEU7-AS1 expression was an independent prognostic factor for OS. Furthermore, we found distinct correlations among the expression of DLEU7-AS1, infiltration by immune cells and immune checkpoint genes in AML.
Collapse
|
8
|
Gu Y, Chu MQ, Xu ZJ, Yuan Q, Zhang TJ, Lin J, Zhou JD. Comprehensive analysis of SPAG1 expression as a prognostic and predictive biomarker in acute myeloid leukemia by integrative bioinformatics and clinical validation. BMC Med Genomics 2022; 15:38. [PMID: 35227274 PMCID: PMC8886923 DOI: 10.1186/s12920-022-01193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recently, an increasing number of studies have reported that sperm-associated antigen (SPAG) proteins play crucial roles in solid tumorigenesis, and may serve as potentially helpful biomarkers for cancer diagnosis and prognosis. However, very few studies systematically investigated the expression of SPAG family members and their clinical significance in acute myeloid leukemia (AML). Methods The expression of SPAGs and their prognostic significance in AML were determined by a systematic analysis on data gathered from public databases, and the results were validated in clinical samples. Results Using public data, we identified only increased SPAG1 expression negatively associated with survival in AML by Cox regression (P < 0.001) and Kaplan–Meier analysis (P < 0.001). The prognostic value of SPAG1 expression was further confirmed in other independent cohorts. Clinically, higher SPAG1 expression was significantly correlated with white blood cell counts (P = 0.014) and French–American–British (FAB) subtypes (P = 0.024). Moreover, higher SPAG1 expression was more common in + 8 patients (P = 0.034), rarely found with t(8;21) (P = 0.014), and correlated with FLT3 (P < 0.001) and DNMT3A mutations (P = 0.001). Despite these associations, multivariate analysis confirmed the independent prognostic value of SPAG1 expression in AML (P < 0.001). Notably, AML patients with higher SPAG1 expression may benefit from hematopoietic stem cell transplantation (HSCT), whereas patients with lower SPAG1 expression appeared less likely to benefit. Finally, we further validated that SPAG1 expression was significantly increased in newly diagnosed AML patients compared with normal controls (P < 0.001) and with AML patients who achieved complete remission (P < 0.001). Additionally, SPAG1 expression could act as a potentially helpful biomarker for the diagnosis and prognosis of AML (P < 0.001 and = 0.034, respectively). Conclusions Our findings demonstrated that SPAG1 overexpression may serve as an independent prognostic biomarker and may guide the choice between HSCT and chemotherapy in patients with AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01193-0.
Collapse
Affiliation(s)
- Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ming-Qiang Chu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Qian Yuan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Zhang LY, Jin Y, Xia PH, Lin J, Ma JC, Li T, Liu ZQ, Xiang HL, Cheng C, Xu ZJ, Zhou H, Qian J. Integrated analysis reveals distinct molecular, clinical, and immunological features of B7-H3 in acute myeloid leukemia. Cancer Med 2021; 10:7831-7846. [PMID: 34562306 PMCID: PMC8559480 DOI: 10.1002/cam4.4284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
The role of B7‐H3 in acute myeloid leukemia (AML) is not fully understood. Two previous studies investigating its expression and significances in AML are partially different. In this study, we aimed to systematically characterize the genomic and immune landscape in AML patients with altered B7‐H3 expression using multi‐omics data in the public domain. We found significantly increased B7‐H3 expression in AML compared to either other hematological malignancies or healthy controls. Clinically, high B7‐H3 expression was associated with old age, TP53 mutations, wild‐type WT1 and CEBPA, and the M3 and M5 FAB subtypes. Moreover, we observed that increased B7‐H3 expression correlated significantly with a poor outcome of AML patients in four independent datasets. Gene set enrichment analysis (GSEA) revealed the enrichment of the “EMT” oncogenic gene signatures in high B7‐H3 expressers. Further investigation suggested that B7‐H3 was more likely to be associated with immune‐suppressive cells (macrophages, neutrophils, dendritic cells, and Th17 cells). B7‐H3 was also positively associated with a number of checkpoint genes, such as VISTA (B7‐H5), CD80 (B7‐1), CD86 (B7‐2), and CD70. In summary, we uncovered distinct genomic and immunologic features associated with B7‐H3 expression in AML. This may lead to a better understanding of the molecular mechanisms underlying B7‐H3 dysregulation in AML and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling-Yi Zhang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Pei-Hui Xia
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ting Li
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Zi-Qi Liu
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - He-Lin Xiang
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Chen Cheng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Hong Zhou
- School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| |
Collapse
|
10
|
Wang SS, Xu ZJ, Jin Y, Ma JC, Xia PH, Wen X, Mao ZW, Lin J, Qian J. Clinical and prognostic relevance of CXCL12 expression in acute myeloid leukemia. PeerJ 2021; 9:e11820. [PMID: 34327063 PMCID: PMC8300536 DOI: 10.7717/peerj.11820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating studies have been made to understand the association between CXC chemokine ligand-12 (CXCL12)/CXC chemokine receptor 4 (CXCR4) and acute myeloid leukemia (AML). However, large-scale data analysis of potential relationship between CXCL12 and AML remains insufficient. Methods We collected abundant CXCL12 expression data and AML samples from several publicly available datasets. The CIBERSORT algorithm was used to quantify immune cell fractions and the online website of STRING was utilized for gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The statistical analysis and graphical work were mainly performed via the R software. Results CXCL12 expression was extremely down-regulated in AML. Clinically, low CXCL12 expression was correlated with higher white blood cells (WBCs) (P < 0.0001), more blasts in bone marrow (BM) (P < 0.001) and peripheral blood (PB) (P < 0.0001), FLT3-internal tandem duplications (FLT3-ITD) (P = 0.010) and NPM1 mutations (P = 0.015). More importantly, reduced CXCL12 expression predicted worse overall survival (OS) and event-free survival (EFS) in all AML, non-M3-AML, and cytogenetically normal (CN)-AML patients in three independent cohorts. As for immune cell infiltration, high CXCL12 expressed groups tended to harbor more memory B cells and plasma cells infiltration while low CXCL12 expressed groups exhibited more eosinophils infiltration. GO enrichment and KEGG pathways analysis revealed the potential biological progress the gene participating in. Conclusions CXCL12 is significantly down-regulated in AML and low CXCL12 expression is an independent and poor predictor of AML prognosis. CXCL12 expression level correlates with clinical and immune characteristics of AML, which could provide potential assistance for treatment. Prospective studies are needed to further validate the impact of CXCL12 expression before routine clinical application in AML.
Collapse
Affiliation(s)
- Shi-Sen Wang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Pei-Hui Xia
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Xiangmei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Zhen-Wei Mao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| |
Collapse
|
11
|
El-Benhawy SA, Ebeid SA, Abd El Moneim NA, Arab ARR, Ramadan R. Repression of protocadherin 17 is correlated with elevated angiogenesis and hypoxia markers in female patients with breast cancer. Cancer Biomark 2021; 31:139-148. [PMID: 33896826 DOI: 10.3233/cbm-201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Altered cadherin expression plays a vital role in tumorigenesis, angiogenesis and tumor progression. However, the function of protocadherin 17 (PCDH17) in breast cancer remains unclear. OBJECTIVE Our target is to explore PCDH17 gene expression in breast carcinoma tissues and its relation to serum angiopoietin-2 (Ang-2), carbonic anhydrase IX (CAIX) and % of circulating CD34+ cells in breast cancer patients (BCPs). METHODS This study included Fifty female BCPs and 50 healthy females as control group. Cancerous and neighboring normal breast tissues were collected from BCPs as well as blood samples at diagnosis. PCDH17 gene expression was evaluated by RT-PCR. Serum Ang-2, CAIX levels were measured by ELISA and % CD34+ cells were assessed by flow cytometry. RESULTS PCDH17 was downregulated in cancerous breast tissues and its repression was significantly correlated with advanced stage and larger tumor size. Low PCDH17 was significantly correlated with serum Ang-2, % CD34+ cells and serum CAIX levels. Serum CAIX, Ang-2 and % CD34+ cells levels were highly elevated in BCPs and significantly correlated with clinical stage. CONCLUSIONS PCDH17 downregulation correlated significantly with increased angiogenic and hypoxia biomarkers. These results explore the role of PCDH17 as a tumor suppressor gene inhibiting tumor growth and proliferation.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Samia A Ebeid
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia A Abd El Moneim
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal R R Arab
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rabie Ramadan
- Experimental and Clinical Surgery Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Depreter B, De Moerloose B, Vandepoele K, Uyttebroeck A, Van Damme A, Terras E, Denys B, Dedeken L, Dresse MF, Van der Werff Ten Bosch J, Hofmans M, Philippé J, Lammens T. Deciphering molecular heterogeneity in pediatric AML using a cancer vs. normal transcriptomic approach. Pediatr Res 2021; 89:1695-1705. [PMID: 33069162 DOI: 10.1038/s41390-020-01199-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Still 30-40% of pediatric acute myeloid leukemia (pedAML) patients relapse. Delineation of the transcriptomic profile of leukemic subpopulations could aid in a better understanding of molecular biology and provide novel biomarkers. METHODS Using microarray profiling and quantitative PCR validation, transcript expression was measured in leukemic stem cells (LSC, n = 24) and leukemic blasts (L-blast, n = 25) from pedAML patients in comparison to hematopoietic stem cells (HSCs, n = 19) and control myeloblasts (C-blast, n = 20) sorted from healthy subjects. Gene set enrichment analysis was performed to identify relevant gene set enrichment signatures, and functional protein associations were identified by STRING analysis. RESULTS Highly significantly overexpressed genes in LSC and L-blast were identified with a vast majority not studied in AML. CDKN1A, CFP, and CFD (LSC) and HOMER3, CTSA, and GADD45B (L-blast) represent potentially interesting biomarkers and therapeutic targets. Eleven LSC downregulated targets were identified that potentially qualify as tumor suppressor genes, with MYCT1, PBX1, and PTPRD of highest interest. Inflammatory and immune dysregulation appeared to be perturbed biological networks in LSC, whereas dysregulated metabolic profiles were observed in L-blast. CONCLUSION Our study illustrates the power of taking into account cell population heterogeneity and reveals novel targets eligible for functional evaluation and therapy in pedAML. IMPACT Novel transcriptional targets were discovered showing a significant differential expression in LSCs and blasts from pedAML patients compared to their normal counterparts from healthy controls. Deregulated pathways, including immune and metabolic dysregulation, were addressed for the first time in children, offering a deeper understanding of the molecular pathogenesis. These novel targets have the potential of acting as biomarkers for risk stratification, follow-up, and targeted therapy. Multiple LSC-downregulated targets endow tumor suppressor roles in other cancer entities, and further investigation whether hypomethylating therapy could result into LSC eradication in pedAML is warranted.
Collapse
Affiliation(s)
- Barbara Depreter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Karl Vandepoele
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, Brussels, Belgium
| | - Eva Terras
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara Denys
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | | | | | - Mattias Hofmans
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Zhang TJ, Xu ZJ, Gu Y, Ma JC, Wen XM, Zhang W, Deng ZQ, Qian J, Lin J, Zhou JD. Identification and validation of obesity-related gene LEP methylation as a prognostic indicator in patients with acute myeloid leukemia. Clin Epigenetics 2021; 13:16. [PMID: 33485366 PMCID: PMC7824952 DOI: 10.1186/s13148-021-01013-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity confers enhanced risk for multiple diseases including cancer. The DNA methylation alterations in obesity-related genes have been implicated in several human solid tumors. However, the underlying role and clinical implication of DNA methylation of obesity-related genes in acute myeloid leukemia (AML) has yet to be elucidated. RESULTS In the discovery stage, we identified that DNA methylation-associated LEP expression was correlated with prognosis among obesity-related genes from the databases of The Cancer Genome Atlas. In the validation stage, we verified that LEP hypermethylation was a frequent event in AML by both targeted bisulfite sequencing and real-time quantitative methylation-specific PCR. Moreover, LEP hypermethylation, correlated with reduced LEP expression, was found to be associated with higher bone marrow blasts, lower platelets, and lower complete remission (CR) rate in AML. Importantly, survival analysis showed that LEP hypermethylation was significantly associated with shorter overall survival (OS) in AML. Moreover, multivariate analysis disclosed that LEP hypermethylation was an independent risk factor affecting CR and OS among non-M3 AML. By clinical and bioinformatics analysis, LEP may be also regulated by miR-517a/b expression in AML. CONCLUSIONS Our findings indicated that the obesity-related gene LEP methylation is associated with LEP inactivation, and acts as an independent prognostic predictor in AML.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| | - Jiang Lin
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China.
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Zhou JD, Zhang TJ, Xu ZJ, Deng ZQ, Gu Y, Ma JC, Wen XM, Leng JY, Lin J, Chen SN, Qian J. Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes. Cell Death Dis 2020; 11:997. [PMID: 33219204 PMCID: PMC7679421 DOI: 10.1038/s41419-020-03213-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | - Su-Ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Zhang TJ, Xu ZJ, Gu Y, Wen XM, Ma JC, Zhang W, Deng ZQ, Leng JY, Qian J, Lin J, Zhou JD. Identification and validation of prognosis-related DLX5 methylation as an epigenetic driver in myeloid neoplasms. Clin Transl Med 2020; 10:e29. [PMID: 32508046 PMCID: PMC7403826 DOI: 10.1002/ctm2.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
The deregulated DLX gene family members DLX1/2/3/4/5/6 (DLXs) caused by DNA methylation has been demonstrated in various cancers with therapeutic target value. However, the potential role of DLXs methylation in myeloid neoplasms such as acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) remains to be elucidated. Clinical significance of DLXs methylation/expression was analyzed in patient with AML and MDS. The functional roles of DLXs were determined in vitro. In the identification stage, we found that lower DLX5 expression was correlated with prognosis in AML among all DLXs analyzed by The Cancer Genome Atlas datasets. In the validation stage, we revealed that reduced DLX5 expression was frequently occurred, and was also correlated with promoter hypermethylation in AML evaluated by targeted bisulfite sequencing. Epigenetic studies also showed that DLX5 promoter DNA methylation was associated with its expression. By quantitative polymerase chain reaction, we also validated that DLX5 hypermethylation was frequent event in both AML and MDS, and also correlated with MDS transformation to leukemia. Moreover, DLX5 hypermethylation was associated with lower rate of complete remission and shorter time of leukemia‐free/overall survival, and was also confirmed by Logistic/Cox regression analysis. Functional studies revealed the antiproliferative and pro‐apoptotic effects of DLX5 in MDS‐derived AML cell‐line SKM‐1. Finally, bioinformatics analysis demonstrated that DLX5 functioned in leukemogenesis may be through the association with PI3K/Akt signaling pathway. Collectively, our findings demonstrated that DLX5 methylation, negatively correlated DLX5 expression, was a potential prognostic and predictive indicator in patients with AML and MDS, which could also act as an epigenetic driver in myeloid neoplasms.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| |
Collapse
|
16
|
MiR-23a-3p promoted G1/S cell cycle transition by targeting protocadherin17 in hepatocellular carcinoma. J Physiol Biochem 2020; 76:123-134. [PMID: 31994011 DOI: 10.1007/s13105-020-00726-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
MiR-23a-3p has been shown to promote liver cancer cell growth and metastasis and regulate that of chemosensitivity. Protocadherin17 (PCDH17) is a tumor suppressor gene and plays an essential part in cell cycle of hepatocellular carcinoma (HCC). This study aimed at evaluating the effects of miR-23a-3p and PCDH17 on HCC cell cycle and underlining the mechanism. The level of miR-23a-3p was up-regulated, while PCDH17 level was down-regulated in HCC tissues compared to adjacent tissues. For the in vitro studies, high expression of miR-23a-3p down-regulated PCDH17 level; increased cell viability; promoted G1/S cell cycle transition; up-regulated cyclin D1, cyclin E, CDK2, CDK4, p-p27, and p-RB levels; and down-regulated the expression of p27. Dual luciferase reporter assay suggested PCDH17 was a target gene of miR-23a-3p. MiR-23a-3p inhibitor and PCDH17 siRNA led to an increase in cell viability and the number of cells in the S phase and up-regulated cyclin D1 and cyclin E levels, compared with miR-23a-3p inhibitor and NC siRNA group. For the in vivo experiments, high expression of miR-23a-3p promoted tumor growth and reduced PCDH17 level in the cytoplasm. These results indicated that high expression of miR-23a-3p might promote G1/S cell cycle transition by targeting PCDH17 in HCC cells. The miR-23a-3p could be considered as a molecular target for HCC detection.
Collapse
|
17
|
Thanh Nha Uyen L, Amano Y, Al-Kzayer LFY, Kubota N, Kobayashi J, Nakazawa Y, Koike K, Sakashita K. PCDH17 functions as a common tumor suppressor gene in acute leukemia and its transcriptional downregulation is mediated primarily by aberrant histone acetylation, not DNA methylation. Int J Hematol 2019; 111:451-462. [PMID: 31865541 DOI: 10.1007/s12185-019-02799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
We recently reported that methylation of PCDH17 gene is found in 30% of children with B-cell precursor acute lymphoblastic leukemia (ALL), and is significantly correlated to event-free or overall survival. We here evaluated PCDH17 mRNA expression in pediatric acute myeloid leukemia (AML) and ALL. PCDH17 mRNA expression levels in children with ALL/AML were lower than those in healthy counterparts. We next elucidated the mechanism underlying down-regulation of PCDH17 mRNA, using myeloid and lymphoid leukemic cell lines. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) resulted in restoration of PCDH17 mRNA expression and growth inhibition in K562, HL60, REH, and RCH-ACV cell lines. Upregulation of PCDH17 mRNA expression resulted from histone H3 acetylation. Knockdown of the PCDH17 gene, caused by transduction of PCDH17-targeted shRNA, significantly enhanced the proliferation of KU812 cells. Meanwhile, overexpression of PCDH17 via retroviral-particle transfection substantially inhibited the growth of Kasumi1 cells. The fold-increase in PCDH17 mRNA expression mediated by 5-azacytidine, an inhibitor of DNA methyltransferase, was fundamentally lower than that produced by TSA. In conclusion, our results suggest that PCDH17 gene functions as a common tumor suppressor gene in leukemic cells, and that histone deacetylase inhibitors re-express PCDH17 mRNA to a greater extent than demethylation reagents.
Collapse
Affiliation(s)
- Le Thanh Nha Uyen
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue, Vietnam.,Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan
| | - Yuji Amano
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | - Noriko Kubota
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Jun Kobayashi
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan.,Shinonoi General Hospital, Minami Nagano Center, Nagano, Japan
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan. .,Department of Hematology and Oncology, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano, Japan.
| |
Collapse
|
18
|
Wnt Signalling in Acute Myeloid Leukaemia. Cells 2019; 8:cells8111403. [PMID: 31703382 PMCID: PMC6912424 DOI: 10.3390/cells8111403] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a group of malignant diseases of the haematopoietic system. AML occurs as the result of mutations in haematopoietic stem/progenitor cells, which upregulate Wnt signalling through a variety of mechanisms. Other mechanisms of Wnt activation in AML have been described such as Wnt antagonist inactivation through promoter methylation. Wnt signalling is necessary for the maintenance of leukaemic stem cells. Several molecules involved in or modulating Wnt signalling have a prognostic value in AML. These include: β-catenin, LEF-1, phosphorylated-GSK3β, PSMD2, PPARD, XPNPEP, sFRP2, RUNX1, AXIN2, PCDH17, CXXC5, LLGL1 and PTK7. Targeting Wnt signalling for tumour eradication is an approach that is being explored in haematological and solid tumours. A number of preclinical studies confirms its feasibility, albeit, so far no reliable clinical trial data are available to prove its utility and efficacy.
Collapse
|
19
|
Xu ZJ, Gu Y, Wang CZ, Jin Y, Wen XM, Ma JC, Tang LJ, Mao ZW, Qian J, Lin J. The M2 macrophage marker CD206: a novel prognostic indicator for acute myeloid leukemia. Oncoimmunology 2019; 9:1683347. [PMID: 32002295 PMCID: PMC6959428 DOI: 10.1080/2162402x.2019.1683347] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/13/2023] Open
Abstract
Hematological malignancies possess a distinctive immunologic microenvironment compared with solid tumors. Here, using an established computational algorithm (CIBERSORT), we systematically analyzed the overall distribution of 22 tumor-infiltrating leukocyte (TIL) populations in more than 2000 bone marrow (BM) samples from 5 major hematological malignancies and healthy controls. Focusing on significantly altered TILs in acute myeloid leukemia (AML), we found that patients with AML exhibited increased frequencies of M2 macrophages, compared to either healthy controls or the other four malignancies. High infiltration of M2 macrophages was associated with poor outcome in AML. Further analysis revealed that CD206, a M2 marker gene, could faithfully reflect variation in M2 fractions and was more highly expressed in AML than normal controls. High CD206 expression predicted inferior overall survival (OS) and event-free survival (EFS) in two independent AML cohorts. Among 175 patients with intermediate-risk cytogenetics, the survival still differed greatly between low and high CD206 expressers (OS; P < .0001; 3-year rates, 56% v 32%; EFS; P < .001; 3-year rates, 47% v 25%). When analyzed in a meta-analysis, CD206 as a continuous variable showed superior predictive performance than classical prognosticators in AML (BAALC, ERG, EVI1, MN1, and WT1). In summary, M2 macrophages are preferentially enriched in AML. The M2 marker CD206 may serve as a new prognostic marker in AML.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Yu Gu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Cui-Zhu Wang
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Zhen-Wei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|