1
|
Wang X, Yang Q, Wu Y. Novel insights into the circ_0003489/let-7b-5p/GLUT1 axis and its possible role in multiple myeloma. Transpl Immunol 2025; 88:102165. [PMID: 39716648 DOI: 10.1016/j.trim.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) act as vital players in multiple myeloma (MM). Herein, we focused on the function of hsa_circ_0003489 (circ_0003489) in MM development and bortezomib (BTZ) resistance. METHODS Relative RNA levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Relative protein levels were evaluated by Western blotting or immunohistochemistry (IHC). The 5'-ethynyl-2'-deoxyuridine (EdU) and cell colony formation (CF) assays were conducted for cell proliferation. Cell counting kit-8 assay was used to evaluate the BTZ resistance. Flow cytometry analysis was performed for cell apoptosis analysis. Glycolysis was determined by detecting the levels of ECAR, glucose consumption, and lactate production. Dual-luciferase reporter and RNA pull-down assays were carried out to analyze the relationships of circ_0003489 with let-7b-5p microRNA and glucose transporter 1 (GLUT1) glucose transporter protein. Xenograft models were conducted to assess the function of circ_0003489 in vivo. RESULTS Indeed, as shown by qRT-PCR, bone marrow samples of MM patients showed an upregulation of circ_0003489 RNA in comparison to normal controls (P < 0.0001). In in vitro experiments in MM cells, silencing of circ_0003489 repressed cell proliferation, BTZ resistance, and glycolysis. Furthermore, blocking circ_0003489 facilitated in vitro the apoptosis of MM cells. In vivo experiments showed that silencing circ_0003489 decreased tumor formation. Signaling experiments demonstrated that circ_0003489 sponged let-7b-5p microRNA and negatively regulated let-7b-5p microRNA expression. Loss of let-7b-5p microRNA ameliorated circ_0003489 silencing-mediated effects on MM cell malignant behaviors and BTZ resistance. Moreover, we showed that GLUT1 glucose transporter was targeted by let-7b-5p mircoRNA. GLUT1 enhancement reversed the repressive impacts of let-7b-5p upregulation on MM cell malignant behaviors and BTZ resistance. CONCLUSION We suggest that circ_0003489 RNA knockdown inhibited MM progression and reversed BTZ-induced resistance of MM growth by let-7b-5p microRNA regulated function of GLUT1 glucose transporter.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Qinqin Yang
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian, China
| | - Yuedi Wu
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China.
| |
Collapse
|
2
|
Liu X, Zhao P, Du X, Hou J, Zhang G, Zhang W, Yang L, Chen Y. Let-7b-5p promotes triptolide-induced growth-inhibiting effects in glioma by targeting IGF1R. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5909-5925. [PMID: 38363352 DOI: 10.1007/s00210-024-02957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Glioma is one of the most common malignancies of the central nervous system. The therapeutic effect has not been satisfactory despite advances in comprehensive treatment techniques. Our previous studies have found that triptolide inhibits glioma proliferation through the ROS/JNK pathway, but in-depth mechanisms need to be explored. Recent studies have confirmed that miRNAs may function as tumor suppressor genes or oncogenes and be involved in cancer development and progression. In this study, we found that let-7b-5p expression levels closely correlated with WHO grades and overall survival in patients in tumor glioma-CGGA-mRNAseq-325, and the upregulation of let-7b-5p can inhibit the proliferation and induce apoptosis of glioma cells. Functionally, upregulation of let-7b-5p increased the inhibitory effect on cell viability and colony formation caused by triptolide and promoted the apoptosis rate of triptolide-treated U251 cells. Conversely, downregulation of let-7b-5p had the opposite effect, indicating that let-7b-5p is a tumor suppressor miRNA in glioma cells. Moreover, target prediction, luciferase reporter assays and functional experiments revealed that IGF1R was a direct target of let-7b-5p. In addition, upregulation of IGF1R reversed the triptolide-regulated inhibition of cell viability but promoted glioma cell apoptosis and activated the ROS/JNK signaling pathway induced by triptolide. The results obtained in vivo experiments substantiated those from the in vitro experiments. In summary, the current study provides evidence that triptolide inhibits the growth of glioma cells by regulating the let-7b-5p-IGF1R-ROS/JNK axis in vitro and in vivo. These findings may provide new ideas and potential targets for molecularly targeted therapies for comprehensive glioma treatment.
Collapse
Affiliation(s)
- Xihong Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Peiyuan Zhao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Xiaodan Du
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Junlin Hou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Guanghui Zhang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenxian Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Liping Yang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China.
| | - Yulong Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Wu L, Xie Y, Ni B, Jin P, Li B, Cai M, Wang B, Wu C, Liang Y, Wang X. Revealing splenectomy-driven microRNA hsa-7b-5p's role in pancreatic cancer progression. iScience 2024; 27:109045. [PMID: 38361622 PMCID: PMC10864800 DOI: 10.1016/j.isci.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Splenectomy often accompanies distal pancreatectomy for pancreatic cancer. However, debates persist on splenic function loss impact. Prior studies in mice revealed splenectomy promotes pancreatic cancer growth by altering CD4/Foxp3 and CD8/Foxp3 ratios. The effect on other immune cells remains unclear. Clinical observations indicate splenectomy induces immunosuppression, heightening recurrence and metastasis risk. Here, we established an orthotopic pancreatic cancer model with splenectomy and observed a significant increase in tumor burden. Flow cytometry revealed elevated MDSCs, CD8+PD-1high+ T cells, and reduced CD4+ T cells, CD8+ T cells, and natural killer cells in tumors. Bulk sequencing identified increased MicroRNA (miRNA) hsa-7b-5p post-splenectomy, correlating with staging and immunosuppression. Similar results were obtained in vivo by constructing a KPC-miRNA hsa-7b-5p-sh cell line. These findings suggest that splenectomy enhances the expression of miRNA hsa-7b-5p, inhibits the tumor immune microenvironment, and promotes pancreatic cancer growth.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peng Jin
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bin Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Mingzhi Cai
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Baogui Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chengyan Wu
- Department of Bioinformation, Beijing University of Technology, Beijing 100124, China
| | - Yuexiang Liang
- Department of Gastrointestinal Oncology, The First Affiliated Hospital of Hainan Medical University, Longhua Road, Longhua District, Haikou 570102, China
| | - Xiaona Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
4
|
Gao Y, Ma H, Hou D. Sevoflurane Represses Proliferation and Migration of Glioma Cells by Regulating the ANRIL/let-7b-5p Axis. Cancer Biother Radiopharm 2024; 39:117-124. [PMID: 32822241 DOI: 10.1089/cbr.2020.3596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Glioma is a malignant brain tumor with poor prognosis. Sevoflurane has been shown to have antitumor effects in various cancers. However, the underlying role and mechanism of sevoflurane in glioma is still unclear. Materials and Methods: Glioma cell lines were exposed different concentrations of sevoflurane (sev). The cell proliferation and migration were examined by Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. All protein levels were measured by Western blot. The levels of noncoding RNA in the INK4 locus (ANRIL) and let-7b-5p were detected by quantitative real-time polymerase chain reaction. The binding sites between ANRIL and let-7b-5p were predicted by StarBase v.3.0 and confirmed using dual-luciferase reporter assay. Results: Sevoflurane treatment suppressed proliferation and migration of glioma cells. The expression of ANRIL was downregulated in glioma cells after treatment with sevoflurane in a dose-dependent manner, and overexpression of ANRIL reversed sevoflurane-induced inhibition of proliferation and migration of glioma cells. Furthermore, let-7b-5p was targeted by ANRIL, and ANRIL knockdown recovered the promoting effects of silencing let-7b-5p on proliferation, migration, and JAK2/STAT3 pathway in sevoflurane-treated glioma cells. Conclusions: Sevoflurane hindered proliferation and migration through JAK2/STAT3 pathway mediated by ANRIL and let-7b-5p in glioma cells, indicating a new reference for the application of anesthetics like sevoflurane in glioma.
Collapse
Affiliation(s)
- Yufeng Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hui Ma
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dongnan Hou
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Bo Z, Li X, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Phosphoproteomic landscape of pseudorabies virus infection reveals multiple potential antiviral targets. Microbiol Spectr 2024; 12:e0301023. [PMID: 37991362 PMCID: PMC10783065 DOI: 10.1128/spectrum.03010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Yang X, Man D, Zhao P, Li X. Quantitative study of bioinformatics analysis on glioma: a bibliometric analysis. Front Oncol 2023; 13:1222797. [PMID: 38045000 PMCID: PMC10690598 DOI: 10.3389/fonc.2023.1222797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background The bioinformatics analysis on glioma has been a hot point recently. The purpose of this study was to provide an overview of the research in this field using a bibliometric method. Methods The Web of Science Core Collection (WOSCC) database was used to search for literature related to the bioinformatics analysis of gliomas. Countries, institutions, authors, references, and keywords were analyzed using VOSviewer, CiteSpace, and Microsoft Excel software. Result China was the most productive country, while the USA was the most cited. Capital Medical University had the largest number of publications and citations. Institutions tend to collaborate more with other institutions in their countries rather than foreign ones. The most productive and most cited author was Jiang Tao. Two citation paths were identified, with literature in basic research journals often cited in clinical journals. Immune-related vocabularies appeared frequently in recent studies. Conclusion Glioma bioinformatics analyses spanned a wide range of fields. The international communication in this field urgently needs to be strengthened. Glioma bioinformatics approaches are developing from basic research to clinical applications. Recently, immune-related research has become a focus.
Collapse
Affiliation(s)
- Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Dulegeqi Man
- Department of Neurosurgery, International Mongolia Hospital of Inner Mongolia, Hohhot, China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
7
|
Ma R, Guan X, Teng N, Du Y, Ou S, Li X. Construction of ceRNA prognostic model based on the CCR7/CCL19 chemokine axis as a biomarker in breast cancer. BMC Med Genomics 2023; 16:254. [PMID: 37864213 PMCID: PMC10590005 DOI: 10.1186/s12920-023-01683-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The study of CCR7/CCL19 chemokine axis and breast cancer (BC) prognosis and metastasis is a current hot topic. We constructed a ceRNA network and risk-prognosis model based on CCR7/CCL19. METHODS Based on the lncRNA, miRNA and mRNA expression data downloaded from the TCGA database, we used the starbase website to find the lncRNA and miRNA of CCR7/CCL19 and established the ceRNA network. The 1008 BC samples containing survival data were divided into Train group (504 cases) and Test group (504 cases) using R "caret" package. Then we constructed a prognostic risk model using RNA screened by univariate Cox analysis in the Train group and validated it in the Test and All groups. In addition, we explored the correlation between riskScores and clinical trials and immune-related factors (22 immune-infiltrating cells, tumor microenvironment, 13 immune-related pathways and 24 HLA genes). After transfection with knockdown CCR7, we observed the activity and migration ability of MDA-MB-231 and MCF-7 cells using CCK8, scratch assays and angiogenesis assays. Finally, qPCR was used to detect the expression levels of five RNAs in the prognostic risk model in MDA-MB-231 and MCF-7 cell. RESULTS Patients with high expression of CCR7 and CCL19 had significantly higher overall survival times than those with low expression. The ceRNA network is constructed by 3 pairs of mRNA-miRNA pairs and 8 pairs of miRNA-lncRNA. After multivariate Cox analysis, we obtained a risk prognostic model: riskScore= -1.544 *`TRG-AS1`+ 0.936 * AC010327.5 + 0.553 *CCR7 -0.208 *CCL19 -0.315 *`hsa-let-7b-5p. Age, stage and riskScore can all be used as independent risk factors for BC prognosis. By drug sensitivity analysis, we found 5 drugs targeting CCR7 (convolamine, amikacin, AH-23,848, ondansetron, flucloxacillin). After transfection with knockdown CCR7, we found a significant reduction in cell activity and migration capacity in MDA-MB-231 cells. CONCLUSION We constructed the first prognostic model based on the CCR7/CCL19 chemokine axis in BC and explored its role in immune infiltration, tumor microenvironment, and HLA genes.
Collapse
Affiliation(s)
- Rufei Ma
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Xiuliang Guan
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Nan Teng
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Yue Du
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Shu Ou
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Xiaofeng Li
- Department of Epidemiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Knowles T, Huang T, Qi J, An S, Burket N, Cooper S, Nazarian J, Saratsis AM. LIN28B and Let-7 in Diffuse Midline Glioma: A Review. Cancers (Basel) 2023; 15:3241. [PMID: 37370851 DOI: 10.3390/cancers15123241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Diffuse midline glioma (DMG) is the most lethal of all childhood cancers. DMGs are driven by histone-tail-mutation-mediated epigenetic dysregulation and partner mutations in genes controlling proliferation and migration. One result of this epigenetic and genetic landscape is the overexpression of LIN28B RNA binding protein. In other systems, LIN28B has been shown to prevent let-7 microRNA biogenesis; however, let-7, when available, faithfully suppresses tumorigenic pathways and induces cellular maturation by preventing the translation of numerous oncogenes. Here, we review the current literature on LIN28A/B and the let-7 family and describe their role in gliomagenesis. Future research is then recommended, with a focus on the mechanisms of LIN28B overexpression and localization in DMG.
Collapse
Affiliation(s)
- Truman Knowles
- W.M. Keck Science Department, Scripps, Pitzer, and Claremont McKenna Colleges, Claremont, CA 91711, USA
| | - Tina Huang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jin Qi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shejuan An
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Noah Burket
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Javad Nazarian
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Zurich Children's Hospital, 8032 Zurich, Switzerland
| | - Amanda M Saratsis
- Department of Neurosurgery, Lutheran General Hospital, Park Ridge, IL 60068, USA
| |
Collapse
|
9
|
Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, Swiat M, Wiechec E, Vitorino C, Vitorino R, Jamalpoor Z, Ghavami S. Integrating Multi-Omics Analysis for Enhanced Diagnosis and Treatment of Glioblastoma: A Comprehensive Data-Driven Approach. Cancers (Basel) 2023; 15:3158. [PMID: 37370767 DOI: 10.3390/cancers15123158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The most aggressive primary malignant brain tumor in adults is glioblastoma (GBM), which has poor overall survival (OS). There is a high relapse rate among patients with GBM despite maximally safe surgery, radiation therapy, temozolomide (TMZ), and aggressive treatment. Hence, there is an urgent and unmet clinical need for new approaches to managing GBM. The current study identified modules (MYC, EGFR, PIK3CA, SUZ12, and SPRK2) involved in GBM disease through the NeDRex plugin. Furthermore, hub genes were identified in a comprehensive interaction network containing 7560 proteins related to GBM disease and 3860 proteins associated with signaling pathways involved in GBM. By integrating the results of the analyses mentioned above and again performing centrality analysis, eleven key genes involved in GBM disease were identified. ProteomicsDB and Gliovis databases were used for determining the gene expression in normal and tumor brain tissue. The NetworkAnalyst and the mGWAS-Explorer tools identified miRNAs, SNPs, and metabolites associated with these 11 genes. Moreover, a literature review of recent studies revealed other lists of metabolites related to GBM disease. The enrichment analysis of identified genes, miRNAs, and metabolites associated with GBM disease was performed using ExpressAnalyst, miEAA, and MetaboAnalyst tools. Further investigation of metabolite roles in GBM was performed using pathway, joint pathway, and network analyses. The results of this study allowed us to identify 11 genes (UBC, HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (hsa-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone) and 15 distinct signaling pathways that play an indispensable role in GBM disease development. The identified top genes, miRNAs, and metabolite signatures can be targeted to establish early diagnostic methods and plan personalized GBM treatment strategies.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Trauma Research Center, Aja University of Medical Sciences, Tehran 14117-18541, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14977-16316, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Maciej Swiat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Carla Vitorino
- Coimbra Chemistry Coimbra, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-456 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran 14117-18541, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, Wu S, Ye Q. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov 2023; 9:114. [PMID: 37019900 PMCID: PMC10076263 DOI: 10.1038/s41420-023-01412-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Hexokinase 2 (HK2), a critical rate-limiting enzyme in the glycolytic pathway catalyzing hexose phosphorylation, is overexpressed in multiple human cancers and associated with poor clinicopathological features. Drugs targeting aerobic glycolysis regulators, including HK2, are in development. However, the physiological significance of HK2 inhibitors and mechanisms of HK2 inhibition in cancer cells remain largely unclear. Herein, we show that microRNA-let-7b-5p (let-7b-5p) represses HK2 expression by targeting its 3'-untranslated region. By suppressing HK2-mediated aerobic glycolysis, let-7b-5p restrains breast tumor growth and metastasis both in vitro and in vivo. In patients with breast cancer, let-7b-5p expression is significantly downregulated and is negatively correlated with HK2 expression. Our findings indicate that the let-7b-5p/HK2 axis plays a key role in aerobic glycolysis as well as breast tumor proliferation and metastasis, and targeting this axis is a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiujuan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yanni Lin
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Xinxin Ren
- The second hospital of Shanxi Medical University, Taiyuan, 030001, China
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Tian Xie
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jing Lin
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Shumeng Wu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China.
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
11
|
Zheng YX, Shi S, Jiang XH, Liu KC, Qin ZJ, Wang YY, Li ZH, Chen MW. Comprehensive analysis of protein phosphatase 1 regulatory inhibitor subunit 14B, a molecule related to tumorigenesis, poor prognosis, and immune cell infiltration in lung adenocarcinoma. Am J Transl Res 2023; 15:858-877. [PMID: 36915775 PMCID: PMC10006819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/28/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To explore the relationship between Protein Phosphatase 1 Regulatory Inhibitor Subunit 14B (PPP1R14B) and the occurrence of lung adenocarcinoma (LUAD). METHOD PPP1R14B expression was investigated using various databases, and its molecular functions and pathways were evaluated using Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Then, the correlation between tumor mutations and PPP1R14B expression was analyzed. Furthermore, the regulation network and expression pathway axes of PPP1R14B were constructed. The correlation analysis between PPP1R14B and immune cell infiltration was performed using deconvolution algorithm analysis and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining of the clinical samples were used for expression validation. RESULTS PPP1R14B showed high expression in tumor tissue. PPP1R14B was associated with T and N stages and poor prognosis and was linked to the cell cycle, DNA repair, and low immune response. High PPP1R14B expression was associated with high tumor mutation rates. The upstream and downstream genes of PPP1R14B were identified, along with the construction of a protein-protein interaction network (PPI network) and the expression pathway axes of PPP1R14B. PPP1R14B expression was associated with poor immune cell infiltration and a negative correlation between PPP1R14B and mast cell and eosinophil infiltration. CONCLUSION This study reveals high PPP1R14B expression in LUAD, its contribution to poor prognosis, molecular function, biological pathways, and impact on immune cell infiltration, and provides great insight into the role of PPP1R14B in LUAD tumorigenesis.
Collapse
Affiliation(s)
- Yu-Xuan Zheng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Shuo Shi
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Xiao-Hong Jiang
- Department of Orthopedic, Affiliated Minzu Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Kai-Cheng Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Zhao-Jie Qin
- Department of Orthopedic, The People's Hospital of Hechi Hechi 547600, Guangxi, People's Republic of China
| | - Yong-Yong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Zi-Hao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Ming-Wu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, People's Republic of China
| |
Collapse
|
12
|
Xue C, Liu C, Yun X, Zou X, Li X, Wang P, Li F, Ge Y, Zhang Q, Xie X, Li X, Luo B. Knockdown of hsa_circ_0008922 inhibits the progression of glioma. PeerJ 2022; 10:e14552. [PMID: 36570001 PMCID: PMC9784332 DOI: 10.7717/peerj.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A glioma is a tumor originating from glial cells in the central nervous system. Although significant progress has been made in diagnosis and treatment, most high-grade glioma patients are prone to recurrence. Therefore, molecular targeted therapy may become a new direction for adjuvant therapy in glioma. In recent years, many studies have revealed that circular RNA (circRNA) may play an important role in the occurrence and development of many tumors including gliomas. Our previous study found that the expression of hsa_circ_0008922 was up-regulated in glioma tissues upon RNA sequencing. The biological mechanism of circ_0008922 is still unreported in gliomas. Therefore, in this study, we preliminarily outlined the expression of hsa_circ_0008922 in glioma and explored its biological functions. METHODS The expression of hsa_circ_0008922 in forty glioma tissues and four glioma cell lines (A172, U251, SF763 and U87) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between hsa_circ_0008922 expression and clinicopathological features of glioma patients was evaluated by Fisher's exact test. To understand the potential function of hsa_circ_0008922 in glioma, we constructed small interfering RNA (siRNA) to hsa_circ_0008922 to downregulate its expression in glioma cell lines A172 and U251. With these hsa_circ_0008922 downregulated cells, a series of assays were carried out as follows. Cell proliferation was detected by CCK8 assay, migration and invasion were determined by wound healing assay and transwell assay, respectively. Colony formation ability was evaluated by plate clonogenic assay. Moreover, flow cytometry combined with Western blot was performed to analyze apoptosis status and the expression of apoptotic related proteins (caspase 3 and caspase 9). Finally, the possible biological pathways and potential miRNA targets of hsa_circ_0008922 were predicted by bioinformatics. RESULTS We found that the expression of hsa_circ_0008922 in glioma tissues was 3.4 times higher than that in normal tissues. The expression of has_circ_0008922 was correlated with WHO tumor grade. After down-regulating the expression of hsa_circ_0008922, malignant biological behavior of glioma cells was inhibited, such as cell proliferation, colony formation, migration, and invasion. At the same time, it also induced apoptosis of glioma cells. Predicted analysis by bioinformatics demonstrated that hsa_circ_0008922 may be involved in tumor-related pathways by acting as a molecular sponge for multiple miRNAs (hsa-let-7e-5p, hsa-miR-506-5p, hsa-let-7b-5p, hsa-let-7c-5p and hsa-let-7a-5p). Finally, we integrated our observation to build a circRNA-miRNA-mRNA predictive network.
Collapse
Affiliation(s)
- Chunhong Xue
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Xiang Yun
- Department of International Cooperation and External Exchange, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqiong Zou
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Xin Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Ping Wang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xisheng Li
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
13
|
Liang Z, Liu L, Guo X, Wu X, Yu YL, Yu Z, Hu X, Zhang X, Wang J. The expression profiles of circular RNAs and competing endogenous RNA networks in intrahepatic cholangiocarcinoma. Front Cell Dev Biol 2022; 10:942853. [PMID: 36274844 PMCID: PMC9585165 DOI: 10.3389/fcell.2022.942853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/23/2022] [Indexed: 09/02/2023] Open
Abstract
Introduction: Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous entity with diverse etiologies, morphologies, and clinical outcomes, but our knowledge of its epidemiology and carcinogenesis is very limited. Materials and methods: The expression patterns of circRNAs were explored in iCCA tissues and corresponding adjacent normal ones, denoted by (iCCA) and (iCCAP), respectively, using high-throughput sequencing. Results: A total of 117 differential expressed (DE) circRNAs were identified. Based on the parental transcripts of circRNAs, these DE circRNAs were related to several important GO terms and were enriched in important pathways. Two circRNA-mediated ceRNA networks were constructed and many important metabolic pathways related to mRNAs were regulated by DE circRNAs via miRNAs. Conclusion: Our study revealed the DE circRNAs in the iCCA tissues compared with iCCAP ones, suggesting that circRNAs may play crucial roles in the pathogenesis of iCCA.
Collapse
Affiliation(s)
- Zi Liang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Liyan Liu
- Department of Blood Transfusion, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xinyi Guo
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun-Li Yu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyang Yu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Ji Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Nguyen TB, Do DN, Nguyen-Thi ML, Hoang-The H, Tran TT, Nguyen-Thanh T. Identification of potential crucial genes and key pathways shared in Inflammatory Bowel Disease and cervical cancer by machine learning and integrated bioinformatics. Comput Biol Med 2022; 149:105996. [DOI: 10.1016/j.compbiomed.2022.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/10/2022] [Accepted: 08/14/2022] [Indexed: 11/15/2022]
|
15
|
Lirussi L, Ayyildiz D, Liu Y, Montaldo NP, Carracedo S, Aure MR, Jobert L, Tekpli X, Touma J, Sauer T, Dalla E, Kristensen VN, Geisler J, Piazza S, Tell G, Nilsen H. A regulatory network comprising let-7 miRNA and SMUG1 is associated with good prognosis in ER+ breast tumours. Nucleic Acids Res 2022; 50:10449-10468. [PMID: 36156150 PMCID: PMC9561369 DOI: 10.1093/nar/gkac807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.
Collapse
Affiliation(s)
- Lisa Lirussi
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Yan Liu
- Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Nicola P Montaldo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Sergio Carracedo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Miriam R Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Laure Jobert
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Silvano Piazza
- Bioinformatics Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 18, 38123, Povo (Trento), Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
16
|
Hesperidin Inhibits the p53-MDMXInteraction-Induced Apoptosis of Non-Small-Cell Lung Cancer and Enhances the Antitumor Effect of Carboplatin. JOURNAL OF ONCOLOGY 2022; 2022:5308577. [PMID: 36157229 PMCID: PMC9507700 DOI: 10.1155/2022/5308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
Objective This study aimed to observe the effect of hesperidin on the apoptosis, proliferation, and invasion of non-small-cell lung cancer, as well as to explore the possible mechanism. The inhibitory effect of hesperidin combined with carboplatin on non-small-cell lung cancer was also investigated. Methods A549 and NCI-H460 cells were treated with different concentrations of hesperidin (10, 50, and 100 μM). The effect of siRNA knockdown on MDMX on the antitumor effect of hesperidin was observed. CCK-8 was used to detect cell activity. The apoptosis rate was determined by TUNEL. The transwell assay detects the ability of cell migration and invasion. The expression levels of the apoptosis-related proteins p53, MDM2, MDMX, p21, PUMA, Bcl-2, and Bax were detected by qRT-PCR. Cell-proliferation and transwell assays were used to detect the effects of the combined use of hesperidin and carboplatin on lung cancer cells. Results Hesperidin significantly inhibited the activity and invasion of A549 and NCI-H460 cells in a dose-dependent manner. Hesperidin also induced the apoptosis of A549 and NCI-H460 cells. Hesperidin further inhibited the interaction between p53 and MDMX, increased the expression of p53, and played an anticancer role. The combination of hesperidin and carboplatin showed the most obvious antitumor effect. Conclusion Hesperidin can inhibit lung cancer by inhibiting the interaction between p53 and MDMX. Moreover, the combination of hesperidin and carboplatin can inhibit the migration and invasion of lung cancer cell lines through p53 upregulation, thereby increasing the antitumor effect of carboplatin.
Collapse
|
17
|
Liang R, Zhang G, Xu W, Liu W, Tang Y. Tetramethylpyrazine Inhibits the Proliferation and Invasion of Glioma Cells by Regulating the UBL7-AS1/miR-144-3p Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5261285. [PMID: 36045665 PMCID: PMC9423964 DOI: 10.1155/2022/5261285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
This work aims to investigate the effects of tetramethylpyrazine (TMP) on the proliferation, migration, and invasion of glioma cells and to analyze the regulation mechanism of TMP on the long noncoding RNA UBL7-AS1/miR-144-3p pathway. Glioma cell line and normal astrocytes were collected. The expression of UBL7-AS1 was detected by real-time PCR. The glioma cells were overexpressed with UBL7-AS1. CCK-8 and Transwell assays were used to detect cell proliferation and cell invasion ability, respectively. Bioinformatics was adopted to predict the possible regulatory mechanisms of UBL7-AS1. The dual luciferase reporter gene was applied to verify the regulatory effect of RNA UBL7-AS1 with miR-144-3p. TMP inhibited the proliferation and invasion of glioma cells. UBL7-AS1 was highly expressed in glioma tissues and cells. The overexpression of UBL7-AS1 promotes the cell proliferation and invasion of glioma. UBL7-AS1 can act as a sponge for miR-144-3p in glioma cells. The overexpression of UBL7-AS1 can reverse the inhibition of TMP on proliferation, migration, and invasion of glioma cells. TMP inhibits the proliferation, migration, and invasion of glioma cells by regulating the UBL7-AS1/miR-144-3p pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Guofeng Zhang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Wenhua Xu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Weibing Liu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Youjia Tang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
18
|
Li T, Xing G, Lu L, Kong X, Guo J. CircAGFG1 Promotes Osteosarcoma Progression and Stemness by Competing with miR-302a-3p to Upregulate the Expression of LATS2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6370766. [PMID: 35958928 PMCID: PMC9357677 DOI: 10.1155/2022/6370766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the effect of circRNA (circAGFG1) on the proliferation, migration, invasion, and cell stemness of osteosarcoma cells by targeting miR-302a to regulate LATS2. The expression of circAGFG1 in osteosarcoma cells and normal osteoblasts was detected by real-time fluorescent quantitative PCR (RT-qPCR). Cell proliferation, clone formation, and invasion were detected by CCK-8, clone formation, and cell invasion assays. In vivo tumor formation assay was used to detect the effect of circAGFG1 on tumor growth. The expression level of circAGFG1 was upregulated in osteosarcoma cells. The downregulation of circAGFG1 inhibited the proliferation, invasion, and migration of osteosarcoma cells. The overexpression of circAGFG1 enhanced the stemness of osteosarcoma cells. CircAGFG1 was specifically bound to miR-302a to regulate the expression activity of miR-302a. MiR-302a specifically bound to the 3'UTR of LATS2 and inhibited the expression of LATS2. The overexpression of miR-302a reversed the effect of circAGFG1 on the proliferation, invasion, and migration of osteosarcoma cells. CircAGFG1 regulated the expression of LATS2 by miR-302a, thereby regulating the proliferation, migration, and invasion of osteosarcoma cells.
Collapse
Affiliation(s)
- Tongchun Li
- Department of Orthopedics, Changle County People's Hospital, Weifang 262400, Shandong, China
| | - Guangjie Xing
- Department of Orthopedics, Changle County People's Hospital, Weifang 262400, Shandong, China
| | - Liangliang Lu
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, Shandong, China
| | - Xiangzhen Kong
- Department of Oncology, Sishui County People's Hospital, Jining 273299, Shandong, China
| | - Jinwei Guo
- Department of Orthopedics, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| |
Collapse
|
19
|
Prasad K, Gour P, Raghuvanshi S, Kumar V. The SARS-CoV-2 targeted human RNA binding proteins network biology to investigate COVID-19 associated manifestations. Int J Biol Macromol 2022; 217:853-863. [PMID: 35907451 PMCID: PMC9328843 DOI: 10.1016/j.ijbiomac.2022.07.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has had unprecedented social and economic ramifications. Identifying targets for drug repurposing could be an effective means to present new and fast treatments. Furthermore, the risk of morbidity and mortality from COVID-19 goes up when there are coexisting medical conditions, however, the underlying mechanisms remain unclear. In the current study, we have adopted a network-based systems biology approach to investigate the RNA binding proteins (RBPs)-based molecular interplay between COVID-19, various human cancers, and neurological disorders. The network based on RBPs commonly involved in the three disease conditions consisted of nine RBPs connecting 10 different cancer types, 22 brain disorders, and COVID-19 infection, ultimately hinting at the comorbidities and complexity of COVID-19. Further, we underscored five miRNAs with reported antiviral properties that target all of the nine shared RBPs and are thus therapeutically valuable. As a strategy to improve the clinical conditions in comorbidities associated with COVID-19, we propose perturbing the shared RBPs by drug repurposing. The network-based analysis presented hereby contributes to a better knowledge of the molecular underpinnings of the comorbidities associated with COVID-19.
Collapse
Affiliation(s)
- Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Pratibha Gour
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Saurabh Raghuvanshi
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
| |
Collapse
|
20
|
ST8SIA6-AS1 Promotes the Epithelial-to-Mesenchymal Transition and Angiogenesis of Pituitary Adenoma. JOURNAL OF ONCOLOGY 2022; 2022:7960261. [PMID: 35783150 PMCID: PMC9242794 DOI: 10.1155/2022/7960261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
To investigate the effect of long noncoding RNA ST8SIA6-AS1 on the epithelial-to-mesenchymal transition (EMT) and angiogenesis of pituitary adenoma and its possible mechanism. The expression levels of ST8SIA6-AS1 and HOXA9 in noninvasive pituitary adenoma and invasive pituitary adenoma were detected using qRT-PCR. sh-ST8SIA6-AS1 transfection silenced the expression of ST8SIA6-AS1 in GH3 and GTI-1 cells. The effects of ST8SIA6-AS1 on the proliferation, invasion, angiogenesis, and EMT of GH3 and GTI-1 pituitary adenoma cells were detected. The migration ability of cells was detected through scratch assay. Dual luciferase analysis verified the targeting relationship between ST8SIA6-AS1 and miR-5195-3p. ST8SIA6-AS1 and HOXA9 were highly expressed in invasive pituitary adenoma. In pituitary adenomas, miR-5195-3p directly targeted HOXA9. miR-5195-3p is the target gene of ST8SIA6-AS1. ST8SIA6-AS1 knockdown inhibited the proliferation, invasion, angiogenesis, and EMT of pituitary adenoma. HOXA9 expression mediates the biological effect of ST8SIA6-AS1. ST8SIA6-AS1 targets miR-5195-3p to regulate the expression of HOXA9 and promote the EMT of pituitary adenomas.
Collapse
|
21
|
Chen S. Glioma Subtypes Based on the Activity Changes of Immunologic and Hallmark Gene Sets in Cancer. Front Endocrinol (Lausanne) 2022; 13:879233. [PMID: 35774141 PMCID: PMC9236851 DOI: 10.3389/fendo.2022.879233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Glioma is the most common primary cranial brain tumor that arises from the cancelation of glial cells (which can be in the brain or spinal cord). It is due to innate genetic risk factors or induced by a carcinogenic environment. If left untreated, the disease has a poor prognosis. Methods In this study, we downloaded glioma data from TCGA database and GEO (GSE4412). The GSEA database was used to screen tumor microenvironment-related gene sets. Cancer subtypes were classified by GSVA enrichment method. Results By GSVA enrichment analysis, we obtain three Gliomas cancer subtypes. After further survival prognosis analysis and biological function analysis, we obtained 13 tumor microenvironment gene sets and 14 core genes that affect patients' survival prognosis, and these genes have the potential to become targets for targeted therapies and disease detection. Conclusion We screened a total of 13 gene sets through a series of enrichment analyses, statistical and prognostic analyses, etc. Among them, 14 core genes were identified, namely: TOP2A, TPX2, BUB1, AURKB, AURKA, CDK1, BUB1B, CCNA2, CCNB2, CDCA8, CDC20, KIF11, KIF20A and KIF2C.
Collapse
|
22
|
Fan X, Zhang L, Huang J, Zhong Y, Fan Y, Zhou T, Lu M. An Integrated Immune-Related Bioinformatics Analysis in Glioma: Prognostic Signature's Identification and Multi-Omics Mechanisms' Exploration. Front Genet 2022; 13:889629. [PMID: 35601497 PMCID: PMC9114310 DOI: 10.3389/fgene.2022.889629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
As the traditional treatment for glioma, the most common central nervous system malignancy with poor prognosis, the efficacy of high-intensity surgery combined with radiotherapy and chemotherapy is not satisfactory. The development of individualized scientific treatment strategy urgently requires the guidance of signature with clinical predictive value. In this study, five prognosis-related differentially expressed immune-related genes (PR-DE-IRGs) (CCNA2, HMGB2, CASP3, APOBEC3C, and BMP2) highly associated with glioma were identified for a prognostic model through weighted gene co-expression network analysis, univariate Cox and lasso regression. Kaplan-Meier survival curves, receiver operating characteristic curves and other methods have shown that the model has good performance in predicting the glioma patients' prognosis. Further combined nomogram provided better predictive performance. The signature's guiding value in clinical treatment has also been verified by multiple analysis results. We also constructed a comprehensive competing endogenous RNA (ceRNA) regulatory network based on the protective factor BMP2 to further explore its potential role in glioma progression. Numerous immune-related biological functions and pathways were enriched in a high-risk population. Further multi-omics integrative analysis revealed a strong correlation between tumor immunosuppressive environment/IDH1 mutation and signature, suggesting that their cooperation plays an important role in glioma progression.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Tong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Lu
- Department of Emergency Medicine, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao, China
| |
Collapse
|
23
|
Kabir F, Apu MNH. Multi-omics analysis predicts fibronectin 1 as a prognostic biomarker in glioblastoma multiforme. Genomics 2022; 114:110378. [PMID: 35513291 DOI: 10.1016/j.ygeno.2022.110378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is one of the most malignant and intractable central nervous system tumors with high recurrence, low survival rate, and poor prognosis. Despite the advances of aggressive, multimodal treatment, a successful treatment strategy is still elusive, often leading to therapeutic resistance and fatality. Thus, it is imperative to search for and identify novel markers critically associated with GBM pathogenesis to improve the existing trend of diagnosis, prognosis, and treatment. Seven publicly available GEO microarray datasets containing 409 GBM samples were integrated and further data mining was conducted using several bioinformatics tools. A total of 209 differentially expressed genes (DEGs) were identified in the GBM tissue samples compared to the normal brains. Gene Ontology (GO) enrichment analysis of the DEGs revealed association of the upregulates genes with extracellular matrix (ECM), conceivably contributing to the invasive nature of GBM while downregulated DEGs were found to be predominantly related to neuronal processes and structures. Alongside, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway analyses described the involvement of the DEGs with various crucial contributing pathways (PI3K-Akt signaling pathway, p53 signaling pathway, insulin secretion, etc.) in GBM progression and pathogenesis. Protein-protein interaction (PPI) network containing 879 nodes and 1237 edges revealed 3 significant modules and consecutive KEGG pathway analysis of these modules showed a significant connection to gliomagenesis. Later, 10 hub genes were screened out based on degree and their expressions were externally validated. Surprisingly, only fibronectin 1 (FN1) high expression appeared to be related to poor prognosis. Subsequently, 109 transcription factors and 211 miRNAs were detected to be involved with the hub genes where FN1 demonstrated the highest number of interactions. Considering its high connectivity and potential prognostic value FN1 could be a novel biomarker providing new insights into the prognosis and treatment for GBM, although experimental validation is required.
Collapse
Affiliation(s)
- Farzana Kabir
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
24
|
Tumor-Derived Exosome FGD5-AS1 Promotes Angiogenesis, Vascular Permeability, and Metastasis in Thyroid Cancer by Targeting the miR-6838-5p/VAV2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4702855. [PMID: 35528244 PMCID: PMC9076303 DOI: 10.1155/2022/4702855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Exosomes are small vesicles with a diameter of 30~150 nm secreted by cells, which are rich in mRNA, microRNA, and long noncoding RNA (lncRNA). The biological functions of most exosomal lncRNAs are not well understood. Studies have shown that tumor exosome FGD5-AS1 plays an important role in the proliferation, migration, and invasion of tumor cells. In this study, SW1736 and KAT18 TC cells with high expression of FGD5-AS1 were screened. Exosomes with high expression of FGD5-AS1 were collected. The collected exosomes were then added to HUVEC cells. After incubation for 24 h, the effects on the proliferation and migration of HUVEC cells and vascular permeability were detected. The results showed that TC cells SW1736 and KAT18 could secrete a large number of exosomes, which could be taken up by HUVEC cells. Overexpression of FGD5-AS1 enhanced proliferation, migration, angiogenesis, and permeability of HUVEC. This effect is achieved through activation of the miR-6838-5p/VAV2 axis. These results suggest that FGD5-AS1 in tumor-derived exoskeleton promotes angiogenesis, vascular permeability, and metastasis by regulating the endothelial miR-6838-5p/VAV2 axis and ultimately promotes the occurrence and development of TC.
Collapse
|
25
|
lncRNA KCNQ1OT1 Promotes EMT, Angiogenesis, and Stemness of Pituitary Adenoma by Upregulation of RAB11A. JOURNAL OF ONCOLOGY 2022; 2022:4474476. [PMID: 35432529 PMCID: PMC9010184 DOI: 10.1155/2022/4474476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
This study is aimed at investigating the effect and mechanism of long noncoding RNA (lncRNA) KCNQ1OT1 on pituitary adenoma (PA). The KCNQ1OT1 expression in invasive and noninvasive PA tissues was detected by real-time fluorescence quantitative polymerase chain reaction (qPCR). The effects of KCNQ1OT1 on the proliferation of PA cells, namely, GH3 and HP75, were detected by CCK-8 experiment. The Transwell assay detected the effect of KCNQ1OT1 on the invasion of GH3 and HP75 cells. The effect of KCNQ1OT1 on the clonal formation ability was detected by clonal formation experiment. The double luciferase reporter assay and the miRNA pull down assay verified the binding of KCNQ1OT1 to miR-140-5p. Meanwhile, the regulatory effect of miR-140-5p on RAB11A was verified. qPCR results showed that KCNQ1OT1 was significantly increased in invasive PA compared with noninvasive PA tissues. Knockdown KCNQ1OT1 inhibited PA cell stemness, angiogenesis, and EMT. In addition, knockdown KCNQ1OT1 inhibited the proliferation, invasion, and clonal formation of PA. miR-140-5p is the target gene of KCNQ1OT1. miR-140-5p targets RAB11A directly. RAB11A can mediate the biological effects of KCNQ1OT1. Meanwhile, lncRNA KCNQ1OT1 can promote the EMT and cellular stemness of PA. Its mechanism of action is realized by inhibiting miR-140-5p. This result can provide a molecular basis for the further study of PA.
Collapse
|
26
|
Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 2022; 12:5885. [PMID: 35393513 PMCID: PMC8991185 DOI: 10.1038/s41598-022-09920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the most important cancers worldwide, and if it is diagnosed early, its progression in humans can be prevented and long-term survival will be achieved accordingly. This study aimed to identify novel micro-RNA (miRNA) and gene-based biomarkers for diagnosing BC. The microarray dataset of BC tissues (GSE13507) listed in the GEO database was analyzed for this purpose. The gene expression data from three BC tissues including 165 primary bladder cancer (PBC), 58 normal looking-bladder mucosae surrounding cancer (NBMSC), and 23 recurrent non-muscle invasive tumor tissues (RNIT) were used to reconstruct gene co-expression networks. After preprocessing and normalization, deferentially expressed genes (DEGs) were obtained and used to construct the weighted gene co-expression network (WGCNA). Gene co-expression modules and low-preserved modules were extracted among BC tissues using network clustering. Next, the experimentally validated mRNA-miRNA interaction information were used to reconstruct three mRNA-miRNA bipartite networks. Reactome pathway database and Gene ontology (GO) was subsequently performed for the extracted genes of three bipartite networks and miRNAs, respectively. To further analyze the data, ten hub miRNAs (miRNAs with the highest degree) were selected in each bipartite network to reconstruct three bipartite subnetworks. Finally, the obtained biomarkers were comprehensively investigated and discussed in authentic studies. The obtained results from our study indicated a group of genes including PPARD, CST4, CSNK1E, PTPN14, ETV6, and ADRM1 as well as novel miRNAs (e.g., miR-16-5p, miR-335-5p, miR-124-3p, and let-7b-5p) which might be potentially associated with BC and could be a potential biomarker. Afterward, three drug-gene interaction networks were reconstructed to explore candidate drugs for the treatment of BC. The hub miRNAs in the mRNA-miRNA bipartite network played a fundamental role in BC progression; however, these findings need further investigation.
Collapse
Affiliation(s)
- Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sahar Sadat Hosseini
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
27
|
Comprehensive Analysis of Potential Biomarkers of Acute Lymphoblastic Leukemia in Children by Using a Competing Endogenous RNA Network. JOURNAL OF ONCOLOGY 2022; 2022:4563523. [PMID: 35432537 PMCID: PMC9007646 DOI: 10.1155/2022/4563523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most serious hematological carcinoma in adolescents. The significance of long noncoding RNAs (lncRNAs) and their regulative role in the proliferation and differentiation of myeloid cells in cancer has been recently reported. Nevertheless, key RNAs and the regulatory mechanism of competitive endogenous RNA (ceRNA) network affected by pediatric ALL are not fully illustrated. In this study, phase 2 and 3 pediatric ALL RNA profiles were extracted from the TARGET database and used to identify lncRNAs, microRNAs, and messenger RNAs in high-risk ALL and reconstruct the sponge ceRNA regulatory network. Results indicated that 44 lncRNAs, 25 miRNAs, and 115 mRNA were up/downregulated. Functional analysis with differentially expressed RNAs (DERNAs) showed enriched significant signaling pathways, including PI3K-Akt and p53 signaling cascades and other pathways associated with the tumor. Seventeen differential hub RNAs, including LINC00909, BZRAP1-AS1, C17orf76-AS1, HCG11, MIAT, SNHG5, SNHG15, and TP73-AS1, were identified. The Cox model of correlation indicated that 14 of these RNAs were associated with the progression of pediatric ALL. These findings would help clarify the regulatory role of several lncRNAs as well as provide insights into the leukemogenesis of pediatric ALL to further explore novel prognostic markers/therapeutic targets for ALL.
Collapse
|
28
|
Ambrose JM, Anand DA, Kullappan M, Hussain S, James KM, Sreekandan RN, Suga SSD, Kamaraj D, Raghavan VPV, Mohan SK. A Computational approach to screen, predict and annotate human and chimpanzee PHEX intronic miRNAs, their gene targets, and regulatory interaction networks. Comput Biol Chem 2022; 98:107673. [DOI: 10.1016/j.compbiolchem.2022.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/22/2021] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
|
29
|
circNBPF10/miR-224 Axis Regulates PBX3 to Promote the Malignant Progression of Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2832920. [PMID: 35342419 PMCID: PMC8947861 DOI: 10.1155/2022/2832920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
This study aims to reveal the potential effect of circNBPF10 on the malignant progression of lung cancer. The expression levels of circNBPF10 in lung cancer tissues and cell lines were detected via real-time quantitative PCR (RT-qPCR). The relationship between circNBPF10 expression and lung cancer metastasis was further analyzed. Effects on lung cancer cells after the knockout or overexpression of circNBPF10 were detected. Subsequently, the regulatory relationship of circNBPF10 with miR-224 was detected by using the dual-luciferase reporter gene. In addition, the role of pre-B-cell homeo box 3 (PBX3) in the progression of lung cancer affected by circNBPF10 was evaluated through a rescue experiment. circNBPF10 was highly expressed in lung cancer tissues and lung cancer cell lines. The expression level of circNBPF10 was significantly higher in patients with lung cancer and lymphatic metastasis or distant metastasis than in patients with nonmetastatic lung cancer. The downregulation of circNBPF10 reduced the proliferation, migration, and invasion of lung cancer cells. In lung cancer cells, circNBPF10 negatively regulated the expression of miR-224, whereas miR-224 directly targeted the expression of PBX3. The results of the rescue experiment confirmed that PBX3 was the key gene for the promoting effect of circNBPF10 on the malignant progression of lung cancer. circNBPF10 was highly expressed in lung cancer tissues and was associated with distant metastasis and poor prognosis in patients with lung cancer. circNBPF10 upregulated PBX3 by targeting miR-224 and promoted the malignant progression of lung cancer.
Collapse
|
30
|
PTPN6-EGFR Protein Complex: A Novel Target for Colon Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:7391069. [PMID: 35186080 PMCID: PMC8856819 DOI: 10.1155/2022/7391069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 01/04/2023]
Abstract
This study investigates the expression of nonreceptor protein tyrosine phosphatase 6 (PTPN6) gene in different colon cancer cells and its effect on malignant biological behavior. The expression level of PTPN6 mRNA in different colon cancer cell lines was detected by qPCR. CCK-8, clone formation assay, scratch assay, and transwell assay were used to detect the effect of knockdown or overexpression of the PTPN6 gene on the malignant biological behavior of colon cancer cells. CO-IP assay was used to detect the interaction protein of PTPN6. PTPN6 was highly expressed in colorectal cancer tissues. High expression of PTPN6 is associated with poor prognosis in patients with colon cancer. PtPN6 knockdown inhibited the proliferation, invasion, migration, and clonogenesis of colorectal cancer LOVO and SW480 cells. At the same time, the knockdown of PTPN6 inhibited the EMT process in colorectal cancer. CO-IP results showed that PTPN6 had a protein-protein interaction with EGFR. Overexpression of EGFR increased the carcinogenic effect of PTPN6. The high expression of the PTPN6 gene can promote the proliferation, migration, and invasion of colon cancer cells. PTPN6 can interact with EGFR. PTPN6-EGFR complex may be an important factor affecting the biological characteristics of colon cancer cells and a potential therapeutic target.
Collapse
|
31
|
Gaines D, Nestorova GG. Extracellular vesicles-derived microRNAs expression as biomarkers for neurological radiation injury: Risk assessment for space exploration. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:54-62. [PMID: 35065761 DOI: 10.1016/j.lssr.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Space missions pose threats to the health of the astronauts due to long-term exposure to galactic cosmic rays and solar particle events comprised predominantly of medium to high energy protons, energetic helium ions, and energetic high atomic number particles (HZEs). While the tissue-specific effects of radiation have been studied extensively, the changes in exosomal miRNA expression levels in response to acute radiation exposure have not been assessed. Extracellular vesicles (EVs) originate from the host cells and contain nucleic acid and proteins that can modify the physiology of the receiving cells via the transfer of genomic, proteomic, and lipids cargo. Detection and analysis of miRNA cargo of circulating EVs is an emerging method for non-invasive diagnosis and monitoring of neurological disorders. This study characterizes the EV-derived miRNA expression profiles of human astrocytes to identify those that are altered after treatment with 3 Gy proton radiation as biomarkers of neurological radiation injury. The relationship between radiation and miRNA extracellular vesicles expression levels was investigated in human astrocytes after treatment with 3 Gy proton radiation at Willis-Knighton Cancer Center. Microarray analysis was performed using miRNA from the EVs enriched fraction in the cell culture medium collected from sham-control and radiation-treated cells. The exosomal levels of 13 miRNAs were significantly (FDR p < 0.05) down-regulated after exposure to high-energy radiation. The computational analysis identified hsa-miR-762, hsa-let-7c-5p, and has-let-7b-5p regulate the highest number of genes being associated with cognitive, mental, and motor delay. These miRNAs target the same subset of genes (Amd1, CCNF, COX6B, PLXND1) that are associated with epileptic encephalopathy; frontotemporal dementia; mitochondrial complex iv deficiency, and a rare neurological condition (Moebius syndrome) respectively. GO enrichment analysis of the biological processes identified overrepresentation in mRNA polyadenylation and regulation of glutamine and long fatty acids transport. Gene expression analysis confirmed the upregulation of the glutamine synthetase after irradiation. Significant fold enrichment of GO l-glutamine transmembrane transporter activity was identified in the molecular function category as well indicating exosome-mediated regulation of this important pathway after proton radiation exposure.
Collapse
Affiliation(s)
- Deriesha Gaines
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, United States
| | - Gergana G Nestorova
- School of Biological Sciences, Nestorova University School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA 71272, United States
| |
Collapse
|
32
|
Bioinformatics Characterization of Candidate Genes Associated with Gene Network and miRNA Regulation in Esophageal Squamous Cell Carcinoma Patients. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to identify potential therapeutic targets for esophageal squamous cell carcinoma (ESCC). The gene expression profile GSE161533 contained 84 samples, in that 28 tumor tissues and 28 normal tissues encoded as ESCC patients were retrieved from the Gene Expression Omnibus database. The obtained data were validated and screened for differentially expressed genes (DEGs) between normal and tumor tissues with the GEO2R tool. Next, the protein–protein network (PPI) was constructed using the (STRING 2.0) and reconstructed with Cytoscape 3.8.2, and the top ten hub genes (HGsT10) were predicted using the Maximal Clique Centrality (MCC) algorithm of the CytoHubba plugin. The identified hub genes were mapped in GSE161533, and their expression was determined and compared with The Cancer Genome Atlas (TCGA.) ESCC patient’s samples. The overall survival rate for HGsT10 wild and mutated types was analyzed with the Gene Expression Profiling Interactive Analysis2 (GEPIA2) server and UCSC Xena database. The functional and pathway enrichment analysis was performed using the WebGestalt database with the reference gene from lumina human ref 8.v3.0 version. The promoter methylation for the HGsT10 was identified using the UALCAN server. Additionally, the miRNA-HGsT10 regulatory network was constructed to identify the top ten hub miRNAs (miRT10). Finally, we identified the top ten novel driving genes from the DEGs of GSE161533 ESCC patient’s sample using a multi-omics approach. It may provide new insights into the diagnosis and treatment for the ESCC affected patients early in the future.
Collapse
|
33
|
CircRNA ANXA2 Promotes Lung Cancer Proliferation and Metastasis by Upregulating PDPK1 Expression. JOURNAL OF ONCOLOGY 2022; 2021:4526609. [PMID: 34992655 PMCID: PMC8727169 DOI: 10.1155/2021/4526609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is a common malignant tumor that seriously threatens human health. It has become the top malignant tumor in terms of morbidity and mortality. In recent years, circRNA, a special noncoding RNA molecule, has attracted considerable interest. This study focused on the role of circRNA ANXA2 (circANXA2) in lung cancer and the molecular mechanism of cancer promotion. Real-time quantitative PCR (RT-PCR) was used in detecting the expression abundance of circANXA2 in different lung cancer cells and tissues. The subcellular localization of circANXA2 was detected through fluorescence in situ hybridization. circANXA2 expression was knocked down through siRNA. CCK-8, clone formation assay, and TUNEL assay were used in evaluating the effects of circANXA2 on cell proliferation, clone formation ability, and apoptosis. The role of circANXA2 in tumor proliferation was further verified in vivo using the tumor transplantation model in nude mice. The molecular mechanism of circANXA2 was investigated with luciferase activity assay and RT-PCR. The expression abundance of circANXA2 is high in lung cancer cell lines and tissues. Knocking down of circANXA2 inhibits the proliferation and clonogenesis of the lung cancer cells. Knocking down circANXA2 promotes apoptosis. circANXA2 further affects downstream PDPK1 expression by regulating miR-33a-5p and thereby affecting the malignancy of the lung cancer cells. circANXA2 inhibits miR-33a-5p activity by directly interacting with miR-33a-5p. circANXA2 regulates the transcription of the miR-33a-5p downstream target gene PDPK1 and affects the malignant progression of lung cancer.
Collapse
|
34
|
Hara K, Murakami M, Niitsu Y, Takeuchi A, Horino M, Shiba K, Tsujimoto K, Komiya C, Ikeda K, Tsuiki M, Tanabe A, Tanaka T, Yokoyama M, Fujii Y, Naruse M, Yamada T. Heterogeneous circulating miRNA profiles of PBMAH. Front Endocrinol (Lausanne) 2022; 13:1073328. [PMID: 36583003 PMCID: PMC9792611 DOI: 10.3389/fendo.2022.1073328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Primary bilateral macronodular adrenal hyperplasia (PBMAH), a rare cause of Cushing syndrome, is often diagnosed as a bilateral adrenal incidentaloma with subclinical cortisol production. Circulating microRNAs (miRNAs) are a characteristic of adrenocortical adenomas, but miRNA expression in PBMAH has not been investigated. We aimed to evaluate the circulating miRNA expression in patients with PBMAH and compare them with those in patients with non-functioning adrenocortical adenoma (NFA) and cortisol-producing adrenocortical adenoma (CPA). METHODS miRNA profiling of plasma samples from four, five, and five patients with NFA, CPA, and PBMAH, respectively, was performed. Selected miRNA expressions were validated using quantitative RT-PCR. RESULTS PBMAH samples showed distinct miRNA expression signatures on hierarchical clustering while NFA and CPA samples were separately clustered. PBMAH was distinguished from the adenoma group of NFA and CPA by 135 differentially expressed miRNAs. Hsa-miR-1180-3p, hsa-miR-4732-5p, and hsa-let-7b-5p were differentially expressed between PBMAH and adenoma (P = 0.019, 0.006, and 0.003, respectively). Furthermore, PBMAH could be classified into two subtypes based on miRNA profiling: subtype 1 with a similar profile to those of adenoma and subtype 2 with a distinct profile. Hsa-miR-631, hsa-miR-513b-5p, hsa-miR-6805-5p, and hsa-miR-548av-5p/548k were differentially expressed between PBMAH subtype 2 and adenoma (P = 0.027, 0.027, 0.027, and 1.53E-04, respectively), but not between PBMAH, as a whole, and adenoma. CONCLUSION Circulating miRNA signature was identified specific for PBMAH. The existence of subtype-based miRNA profiles may be associated with the pathophysiological heterogeneity of PBMAH.
Collapse
Affiliation(s)
- Kazunari Hara
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Niitsu
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Takeuchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Horino
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kumiko Shiba
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazutaka Tsujimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mika Tsuiki
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University, Tokyo, Japan
- BioResource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minato Yokoyama
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Mitsuhide Naruse
- Endocrine Center and Clinical Research Center, Ijinkai Takeda General Hospital, Kyoto, Japan
- Clinical Research Institute of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
circABCB10 Promotes Malignant Progression of Gastric Cancer Cells by Preventing the Degradation of MYC. JOURNAL OF ONCOLOGY 2021; 2021:4625033. [PMID: 34950208 PMCID: PMC8692003 DOI: 10.1155/2021/4625033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the role of circABCB10 in gastric cancer and the molecular mechanism of promoting malignant progression of gastric cancer cells by preventing the degradation of MYC by hsa-miR-1252-5p. Methods The expression of circABCB10 in gastric cancer tissues and cells was detected by real-time quantitative PCR. MTT, Transwell, clone formation, and TUNEL assay were used to detect the effects of circABCB10 on the proliferation, invasion, and apoptosis of gastric cancer cells. A subcutaneous tumor-bearing model was established to study the inhibitory effect of knockdown circABCB10 on gastric cancer proliferation. The dual luciferase reporter gene assay and RNA pull-down assay were used to verify the regulatory effect of circABCB10 on miR-1252-5p and the regulatory effect of miR-1252-5p on MYC. Results Compared with paracancerous tissues and gastric mucosal epithelial cells, the expression of circABCB10 was significantly increased in human gastric cancer tissues and gastric cancer cells. circABCB10 knockout significantly decreased cell viability and invasion ability and promoted cell apoptosis (P < 0.01). Subcutaneous tumor-bearing experiments in nude mice demonstrated that circABCB10 knockdown inhibited the proliferation of gastric cancer cells. circABCB10 can act as a sponge for miR-1252-5p in gastric cancer cells. Meanwhile, MYC is the target gene of miR-1252-5p. Overexpression of miR-1252-5p and knockdown of MYC reversed the promoting effect of circABCB10 on gastric cancer. Conclusion circABCB10 can promote the proliferation, invasion, and clonal formation of gastric cancer cells by targeting miR-1252-5p and upregulating the expression of MYC. circABCB10/miR-1252-5p/MYC constitutes the regulatory mechanism of ceRNA.
Collapse
|
36
|
MiR-20a-5p Negatively Regulates NR4A3 to Promote Metastasis in Bladder Cancer. JOURNAL OF ONCOLOGY 2021; 2021:1377989. [PMID: 34925506 PMCID: PMC8677415 DOI: 10.1155/2021/1377989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
Metastasis is the leading cause of death in cancer patients. Therefore, the prediction and treatment of metastasis are critical in improving the survival of patients with bladder cancer. In this study, we aimed to investigate the role of miR-20a-5p and NR4A3 in bladder cancer and the regulatory relationship between them. The high expression of miR-20a-5p in the bladder cancer (BCa) tissues and cells was determined by qRT-PCR. Exogenous miR-20a-5p overexpression promoted the proliferation, migration, and invasion of BCa cells. MiR-20a-5p inhibition inhibited the BCa cell proliferation, invasion, and migration. NR4A3 was proved to be the target gene of miR-20a-5p by the double luciferase reporter assay. In addition, the reduction of NR4A3 could promote the proliferation, invasion, and clonal formation of the bladder cancer cells 5637 and T24. NR4A3 overexpression could reverse the carcinogenic effect of miR-20a. We further confirmed that the oncogenic effect of miR-20a was achieved by promoting EMT in tumor cells. MiR-20a-5p promoted the growth and metastasis of the bladder cancer cells by inhibiting the expression of the tumor suppressor gene NR4A3 and played a carcinogenic role in BCa. Thus, miR-20a-5p may become a potential therapeutic target for BCa treatment.
Collapse
|
37
|
MiR-145-5p Inhibits the Invasion of Prostate Cancer and Induces Apoptosis by Inhibiting WIP1. JOURNAL OF ONCOLOGY 2021; 2021:4412705. [PMID: 34899906 PMCID: PMC8660234 DOI: 10.1155/2021/4412705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is a common malignant tumor of the male genitourinary system that seriously affects the quality of life of patients. Studying the pathogenesis and therapeutic targets of PCa is important. In this study, we investigated the role of miR-145-5p in PCa and its potential molecular mechanisms. The expression levels of miR-145-5p in PCa tissues and adjacent control tissues were detected by real-time quantitative polymerase chain reaction. The effects of miR-145-5p overexpression on PCa were studied using cell proliferation, migration, and invasion experiments. Furthermore, WIP1 was the target gene of miR-145-5p through the bioinformatics website and dual-luciferase reporter gene experiment. Further studies found that WIP1 downregulation could inhibit the proliferation, invasion, and cloning of PCa cells. Overexpression of WIP1 reversed the anticancer effects of miR-145. The anticancer effect of miR-145 was achieved by inhibiting the PI3K/AKT signaling pathway and upregulating ChK2 and p-p38MAPK. Taken together, these results confirmed that miR-145-5p inhibited the growth and metastasis of PCa cells by inhibiting the expression of proto-oncogene WIP1, thereby playing a role in tumor suppression in PCa and may become a potential therapeutic target for the treatment of PCa.
Collapse
|
38
|
circDENND4C Promotes Proliferation and Metastasis of Lung Cancer by Upregulating BRD4 Signaling Pathway. JOURNAL OF ONCOLOGY 2021; 2021:2469691. [PMID: 34876902 PMCID: PMC8645384 DOI: 10.1155/2021/2469691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the effects of circDENND4C on the malignant biological behavior of lung cancer and its downstream target genes and molecular mechanisms. Methods The expression of circDENND4C in lung cancer tissues and cells was detected. After transfection with silenced circDENND4C, the expression levels of circDENND4C, miR-141-3p, and BRD4 in lung cancer cells were detected by qRT-PCR. The targeting relationship between circDENND4C and miR-141-3p as well as miR-141-3p and BRD4 was verified. Cell activity was detected by CCK-8 and EdU assay. Transwell assay was used to detect the invasiveness of A549 and NCI-H1299 in each group. Effects of circDENND4C on proliferation and metastasis of lung cancer in nude mice were studied. Results In vitro and in vivo results showed that circDENND4C silencing reduced the proliferation, invasion, and metastasis of lung cancer cells. Mechanism studies showed that circDENND4C has a targeting relationship with miR-141-3p. However, miR-141-3p has a targeting relationship with BRD4. circDENND4C indirectly upregulated BRD4 through sponge adsorption of miR-141-3p, thereby promoting metastasis and proliferation of NSCLC. Conclusion circDENND4C, as an oncogene, promotes the proliferation, invasion, and metastasis of lung cancer cells.
Collapse
|
39
|
Hsp70 Promotes SUMO of HIF-1 α and Promotes Lung Cancer Invasion and Metastasis. JOURNAL OF ONCOLOGY 2021; 2021:7873085. [PMID: 34868316 PMCID: PMC8642011 DOI: 10.1155/2021/7873085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
Objective This study aims to investigate the effect of heat shock protein-70 (Hsp70) on epithelial-mesenchymal transition (EMT) of lung cancer cells under heat stimulation and to explore its possible molecular mechanism. Methods qRT-PCR and immunohistochemistry assay were used to detect the expression of Hsp70 in lung cancer tissues and adjacent tissues. EdU assay was used to detect the cell activity. The effect of Hsp70 on the migration and invasion of A549 and NCI-H446 cells was detected by the wound-healing assay and Transwell assay. A tumor transplantation animal model was established to detect the effect of overexpression of Hsp70 on proliferation and metastasis of lung cancer cells. Western blot assay was used to detect the effect of thermal stimulation and overexpression of Hsp70 on SUMO modification of HIF-1α. Results The wound-healing rate of A549 and NCI-H446 cells under Hsp70 stimulation was significantly higher than blank control group. At the same time, the number of cells passing through the membrane increased significantly. Hypodermic tumor transplantation in nude mice proved that knockout Hsp70 can inhibit proliferation and metastasis of lung cancer cells. Thermal stimulation upregulated the expression of Hsp70 and promoted SUMO modification of HIF-1α, ultimately promoting the proliferation and metastasis of lung cancer. Inhibition of Hsp70 reverses the effect of thermal stimulation on lung cancer by reducing the SUMO modification of HIF-1α. Conclusion Thermal stimulation can promote EMT in A549 and NCI-H446 cells and promote cell migration and invasion in vitro and in vivo by upregulation of Hsp70. This process is associated with the promotion of SUMO modification of HIF-1α.
Collapse
|
40
|
Tang H, Li C, Wang Y, Deng L. Sufentanil Inhibits the Proliferation and Metastasis of Esophageal Cancer by Inhibiting the NF- κB and Snail Signaling Pathways. JOURNAL OF ONCOLOGY 2021; 2021:7586100. [PMID: 34912457 PMCID: PMC8668294 DOI: 10.1155/2021/7586100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Sufentanil is a μ-opioid receptor agonist, widely used in intraoperative and postoperative analgesia of esophageal cancer. This study investigated the effects of sufentanil on the proliferation, invasion, and metastasis of esophageal carcinoma cells and its molecular mechanisms. Human esophageal carcinoma cells CaES-17 and Eca-109 were cultured in vitro. Different concentrations of sufentanil (1 and 10 μmol/L) were added to the experimental group. MTT was used to detect the proliferative activity of esophageal carcinoma cells. The migration ability of esophageal carcinoma cells was measured by the scratch test. Transwell was used to detect the invasive ability of esophageal carcinoma cells. The EMT marker expression was detected by qPCR. Meanwhile, effects of sufentanil on NF-κB and Snail expression and nucleation were evaluated. Establish a subcutaneous xenograft tumor model of nude mice with esophageal carcinoma cells and evaluate the antitumor effect of sufentanil. Sufentanil can inhibit the proliferation, invasion, and migration of CaES-17 and Eca-109 cells and has a dose-dependent relationship. The molecular mechanism showed that sufentanil could upregulate the expression of E-cadherin and inhibit the expression of vimentin. Sufentanil can inhibit the expression of NF-κB and Snail, as well as the nuclear expression of NF-κB and Snail. Xenograft tumor model results showed that sufentanil could inhibit tumor proliferation and NF-κB and Snail expression in tumor tissues of nude mice. Sufentanil inhibits esophageal cancer epithelial-mesenchymal transition (EMT) by acting on NF-κB and Snail signaling pathways to inhibit proliferation and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Huiyan Tang
- Department of Oncology, XinTai People's Hospital, Taian, Shandong 271200, China
| | - Chao Li
- Department of Thoracic Surgery, Rizhao Central Hospital, Rizhao, Shandong 276800, China
| | - Yongsheng Wang
- Department of Thoracic Surgery, Gaotang County People's Hospital, Liaocheng, Shandong 252800, China
| | - Liqiang Deng
- Department of Anesthesiology, Maternal and Child Healthcare Hospital of Shandong Province, Ji'nan, Shandong 250014, China
| |
Collapse
|
41
|
Miao R, Qi C, Fu Y, Wang Y, Lang Y, Liu W, Zhang Y, Zhang Z, Liu A, Chai H, Zhang Y, Song Y, Lu X. Silencing of circARHGAP12 inhibits the progression of atherosclerosis via miR-630/EZH2/TIMP2 signal axis. J Cell Physiol 2021; 237:1057-1069. [PMID: 34750830 DOI: 10.1002/jcp.30598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis (AS) is a common disease that seriously threatens human health. So far, the pathogenesis of AS has not been fully understood. This project investigates the effects of circARHGAP12 on AS and its regulatory mechanism. ApoE-/- knockout mice (ApoE) were adopted and reared with a high-fat diet to construct an AS model. Lentivirus was established to knock down the expression of circARHGAP12 in mice. After 12 weeks, the aorta was removed and the expression of circARHGAP12 was detected. Vascular oil red O staining was used to detect the degree of AS. The expression of inflammatory factors was detected by ELISA. Aortic smooth muscle cells (MASMCs) were cultured to evaluate the effects of circARHGAP12 on the phenotype of MASMCs. RNA pull-down and luciferase assay were used to verify the downstream target genes of circARHGAP12. In addition, the effects of circARHGAP12 on MASMCs proliferation and migration were detected by MTT and transwell assay. Compared with the normal group, the expression of circARHGAP12 in the MASMCs under ox-LDL treatment was elevated, and circARHGAP12 silencing could inhibit AS in vitro and in vivo. The results of the mechanism study showed that circARHGAP12 can directly bind with miR-630. In addition, miR-630 can also target EZH2 to modulate the transcription of TIMP2 and to influence the migration of MASMCs. circARHGAP12 is upregulated in AS. CircARHGAP12 knockdown can inhibit the progression of AS. This study expands on the role of circRNA in AS and provides potential targets for the treatment of AS.
Collapse
Affiliation(s)
- Renying Miao
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoran Qi
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiqun Fu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjun Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchang Lang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanli Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhimin Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ankang Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Chai
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonggan Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Song
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiubo Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Dong X, Sun H, Mao J, Zhang S, Meng C. Differential expression of circular RNA in patients with white matter hyperintensity and cognitive impairment. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1080-1089. [PMID: 34911837 PMCID: PMC10930227 DOI: 10.11817/j.issn.1672-7347.2021.200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES White matter hyperintensity (WMH) is an important factor leading to cognitive impairment, and the mechanism has not been clarified. In recent years, studies have found that circular RNA (circRNA) has differential expression in cerebrovascular diseases. This study aims to analyze the expression profile of circRNA in peripheral blood mononuclear cell (PBMC) of patients with WMH with cognitive impairment, to screen the differentially expressed circRNA, and to explore the possible role of circRNA in WMH with cognitive impairment. METHODS CircRNA microarray was used to detect the circRNA expression profile of PBMC in patients with WMH with cognitive impairment, and in patients with WMH without cognitive impairment as well as in normal controls (3 cases each, male to female ratio of 2꞉1). The differentially expressed circRNA in patients with WMH with cognitive impairment was screened. The screening criteria for differentially expressed circRNA was fold change (FC) ≥2.0 (|log2FC ≥1) and P<0.05. TargetScan and miRanda target gene analysis software were used to predict the relevant target miRNA, and Genespring software was used to predict the target genes. RESULTS Compared with the control group, there were 5 significantly up-regulated circRNA and 3 down-regulated circRNA in the WMH with cognitive impairment group; 8 circRNA were significantly up-regulated and 2 were down-regulated in the WMH without cognitive impairment group. When compared with the WMH with cognitive impairment group, no co-differentially expressed circRNA was found in WMH without cognitive impairment group and control group. Compared with the control group, the expression of hsa_circ_0092222 was up-regulated and the expressions of hsa_circ_0000662 and hsa_circ_0083773 were down-regulated in the WMH with cognitive impairment group and the WMH without cognitive impairment group, and there was no significant difference between the 2 groups (all P>0.05). Two target miRNA (hsa-miR-19a-3p and hsa-miR-19b-3p) of hsa_circ_0092222 were predicted, and the target gene was ribosomal protein S4, Y-linked 1 (RPS4Y1). Hsa_circ_0000662 predicted a target miRNA (hsa-miR-194) with axis inhibitor 1 (AXIN1) as the target gene. Hsa_circ_0083773 predicted 7 target miRNA, and the target gene was recombinant scavenger receptor class A member 3 (SCARA3). CONCLUSIONS The circRNA expression profile of patients with WMH is changed significantly. The differentially expressed circRNA may be the cause of WMH; Hsa_circ_0092222, hsa_circ_0000662, and hsa_circ_0083773 may regulate the expression of target genes by targeting adsorption of the target miRNA, leading to brain white matter damage through Janus kinase 2 (JAK2)/signal transducers and activators of transcription (STAT3) signal pathway and Wnt signal pathway.There is no significant difference in circRNA expression profile between WMH with or without cognitive impairment. Cognitive impairment in patients with WMH may have other reasons.
Collapse
Affiliation(s)
- Xuewei Dong
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China.
| | - Hongying Sun
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China.
| | - Jian Mao
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
| | - Shuya Zhang
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
| | - Chenxi Meng
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
| |
Collapse
|
43
|
Zhou Z, Lai Y, Cao S, Zhuo Q, Tang H. Long non‑coding RNA HHIP‑AS1 inhibits lung cancer epithelial‑mesenchymal transition and stemness by regulating PCDHGA9. Mol Med Rep 2021; 24:845. [PMID: 34643245 PMCID: PMC8524434 DOI: 10.3892/mmr.2021.12485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effect of hedgehog‑interacting protein antisense RNA 1 (HHIP‑AS1) on epithelial‑mesenchymal transition (EMT) and cellular stemness of human lung cancer cells by regulating the microRNA (miR)‑153‑3p/PCDHGA9 axis. Reverse transcription‑quantitative PCR was used to compare the expression of HHIP‑AS1 in lung cancer and adjacent normal lung tissues. In addition, the correlation of HHIP‑AS1 with E‑cadherin, Vimentin, N‑cadherin and Twist1 was analyzed. HHIP‑AS1 overexpression vector was transfected into lung cancer A549 and NCI‑H1299 cell lines. Cell Counting Kit‑8 and Transwell and clonogenic assays were used to detect the proliferation, invasion and clonogenesis of the lung cancer cells, respectively. The associations among HHIP‑AS1, miR‑153‑3p and PCDHGA9 were predicted by bioinformatics analysis and verified by a dual‑luciferase reporter system. The results showed that the expression of HHIP‑AS1 in lung cancer tissues was significantly lower than that in normal tissues (P<0.001). HHIP‑AS1 was positively correlated with E‑cadherin and negatively correlated with Vimentin, N‑cadherin and Twist1. HHIP‑AS1 overexpression inhibited the proliferation, invasion and clonal formation of the A549 and NCI‑H1299 cells. The luciferase reporter system verified that HHIP‑AS1 could adsorb miR‑153‑3p and that PCDHGA9 was the target gene of miR‑153‑3p. A549 cells were transfected with HHIP‑AS1 overexpression vector and miR‑153‑3p mimic, and the miR‑153‑3p mimic had a mitigating effect on HHIP‑AS1 inhibition (P<0.001). In conclusion, HHIP‑AS1 inhibits the EMT and stemness of lung cancer cells by regulating the miR‑153‑3p/PCDHGA9 axis. Thus, HHIP‑AS1 may be a new potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Zhuanzhuan Zhou
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yanping Lai
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shan Cao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Qifang Zhuo
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Huiqin Tang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
44
|
Zhao L, Zheng H, Jiang P. circCD151 promotes GLI2 expression by regulating miR‑30d‑5p and enhancing proliferation, invasion and stemness of lung cancer. Mol Med Rep 2021; 24:699. [PMID: 34368867 PMCID: PMC8365425 DOI: 10.3892/mmr.2021.12338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
To investigate the changes of circular (circ)RNA circCD151 expression in lung cancer tissues and cells and its effects on proliferation, migration and invasion of lung cancer cells. The relative expression levels of circCD151 in lung cancer tissues and lung cancer cells (A549 and NCI‑H292) were determined by reverse transcription‑quantitative PCR. The effects of silencing or upregulation of circCD151 on the activity and clonal forming ability of A549 and NCI‑H292 cells were detected by CCK‑8 and cloning formation experiments. Transwell invasion assay detected the effects of silencing or upregulation of circCD151 on the migration and invasion ability of A549 and NCI‑H292 cells. The regulatory effect of circCD151 on miR‑30d‑5p was detected by dual luciferase reporter gene. The relative expression level of circCD151 in lung cancer tissues was significantly higher compared with that in adjacent tissues. The relative expression level of circCD151 in A549 and NCI‑H292 cells was significantly higher compared with that in human lung epithelial cells. In A549 and NCI‑H292 cells, silencing circCD151 decreased cell activity and clonal formation ability and invasion ability was also significantly decreased. circCD151 was upregulated in A549 and NCI‑H292 cells and the activity and clonal formation ability of A549 and NCI‑H292 cells were significantly increased and the invasion ability was also significantly increased. Double luciferase reporter assay confirmed the ceRNA regulatory mechanism of circCD151/miR‑30d‑5p/GLI2. In the present study, in vivo and in vitro functional studies demonstrated that circCD151 may promote the proliferation, invasion and cell stemness of lung cancer cells. Further molecular mechanism studies demonstrated that circCD151 could promote the malignant proliferation of lung adenocarcinoma by targeting miR‑30d‑5p and upregulating GLI2 expression. From the perspective of circRNA, the present study will provide new clues to the pathogenesis and prognostic judgment of lung adenocarcinoma and provide a new target for clinical treatment.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300110, P.R. China
| | - Hong Zheng
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300110, P.R. China
| | - Ping Jiang
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300110, P.R. China
| |
Collapse
|
45
|
Zhuo X, Bai K, Wang Y, Liu P, Xi W, She J, Liu J. Long-chain noncoding RNA-GAS5/hsa-miR-138-5p attenuates high glucose-induced cardiomyocyte damage by targeting CYP11B2. Biosci Rep 2021; 41:BSR20202232. [PMID: 33682891 PMCID: PMC8485392 DOI: 10.1042/bsr20202232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is one of the complications experienced by patients with diabetes. In recent years, long noncoding RNAs (lncRNAs) have been investigated because of their role in the progression of various diseases, including DCM. The purpose of the present study was to explore the role of lncRNA GAS5 in high glucose (HG)-induced cardiomyocyte injury and apoptosis. MATERIALS AND METHODS We constructed HG-induced AC16 cardiomyocytes and a streptozotocin (STZ)-induced rat diabetes model. GAS5 was overexpressed and knocked out at the cellular level, and GAS5 was knocked down by lentiviruses at the animal level to observe its effect on myocardial injury. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of GAS5. Cell proliferation and apoptosis after GAS5 knockout were detected by CCK-8, TUNEL, and flow cytometry assays. ELISA was used to detect the changes in myocardial enzyme content in cells and animal myocardial tissues during the action of GAS5 on myocardial injury. RESULTS GAS5 expression was up-regulated in HG-treated AC16 cardiomyocytes and the rat diabetic myocardial injury model. The down-regulation of GAS5 could inhibit HG-induced myocardial damage. This work proved that the down-regulation of GAS5 could reverse cardiomyocyte injury and apoptosis by targeting miR-138 to down-regulate CYP11B2. CONCLUSION We confirmed for the first time that the down-regulation of GAS5 could reverse CYP11B2 via the miR-138 axis to reverse HG-induced cardiomyocyte injury. This research might provide a new direction for explaining the developmental mechanism of DCM and potential targets for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Kai Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingxian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Peining Liu
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wen Xi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jianqing She
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Junhui Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
46
|
Yang B, Chen Q, Wan C, Sun S, Zhu L, Zhao Z, Zhong W, Wang B. Transgelin Inhibits the Malignant Progression of Esophageal Squamous Cell Carcinomas by Regulating Epithelial-Mesenchymal Transition. Front Oncol 2021; 11:709486. [PMID: 34552870 PMCID: PMC8450671 DOI: 10.3389/fonc.2021.709486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Objective This article investigates the role of Transgelin (TAGLN) in the epithelial–mesenchymal transition (EMT) of esophageal squamous cell carcinomas (ESCC) and its possible mechanism of inhibiting the invasion of these cancers. Methods Tissue specimens and clinical information of patients with ESCC were collected to analyze the relationship between Transgelin expression level and prognosis of patients with ESCC. Transgelin siRNA was used to knock down Transgelin expression. The expression of Transgelin in Eca-109 and KYSE-150 cells was overexpressed by Transgelin-overexpressing plasmid. The effects of Transgelin overexpression and knockdown on the proliferation of Eca-109 and KYSE-150 cells were examined by Transwell chamber, scratch assay, and CCK-8 cell activity assay. RT-PCR and Western blot were used to detect the effect of Transgelin overexpression or knockdown on the mRNA and protein expressions of E-cadherin and Vimentin. TCGA data were used to analyze Transgelin co-expressed genes and further study the GO and KEGG enrichment analysis results under the influence of Transgelin. Results The expression of Transgelin was low in ESCC, and its expression level was positively correlated with the prognosis of patients with ESCC. The targeted Transgelin siRNA and Transgelin-overexpressing plasmid can effectively regulate the expression of Transgelin mRNA and protein in Eca-109 and KYSE-150 cells. After overexpression of Transgelin, the invasion and proliferation abilities of Eca-109 and KYSE-150 cells were significantly decreased compared with those of the control group (P < 0.05). However, Transgelin knockdown could promote the proliferation, migration, and invasion of ESCC cells. The overexpression of Transgelin inhibits EMT in ESCC. With the increase of Transgelin expression in Eca-109 and KYSE-150 cells, the expression of E-cadherin increased, while the expression of Vimentin decreased, and the difference was statistically significant (P < 0.05). Conclusion Transgelin can inhibit the malignant progression of ESCC by inhibiting the occurrence of EMT.
Collapse
Affiliation(s)
- Boli Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China.,Department of Digestive Diseases, General Hospital of Jincheng, Tianjin, China
| | - Qiuyu Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Changshan Wan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Siyuan Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Zhizhong Zhao
- Department of Digestive Diseases, General Hospital of Jincheng, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Bangmang Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| |
Collapse
|
47
|
Chu Y, Wang X, Yu N, Li Y, Kan J. Long non‑coding RNA FGD5‑AS1/microRNA‑133a‑3p upregulates aquaporin 1 to decrease the inflammatory response in LPS‑induced sepsis. Mol Med Rep 2021; 24:784. [PMID: 34498707 DOI: 10.3892/mmr.2021.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infections. The present study aimed to investigate the potential mechanism of FGD5‑AS1 in sepsis and lipopolysaccharide (LPS)‑induced inflammatory response. An animal model of sepsis was constructed. LPS was used to induce mice HL‑1 cardiomyocytes to construct a cell model. The association between FGD5‑AS1 and miR‑133a‑3p was investigated through animal and cell models. FGD5‑AS1 overexpression was used to analyze the effect of FGD5‑AS1 on inflammatory reaction. Tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 levels were detected by enzyme‑linked immunosorbent assay and reverse transcription‑quantitative polymerase chain reaction. The interaction of FGD5‑AS1, miR‑133a‑3p and aquaporin 1 (AQP1) was detected by dual‑luciferase reporter assay and microRNA (miRNA/miR) pull‑down assay. Compared with the control group, the expression of FGD5‑AS1 was decreased and the expression of miR‑133a‑3p was increased in the sepsis group. FGD5‑AS1 overexpression increased LPS‑induced expression of FGD5‑AS1 and AQP1, decreased the expression of miR‑133a‑3p, and inhibited the expression of the inflammatory cytokines, TNF‑α, IL‑6 and IL‑1β. Dual‑luciferase reporter and miRNA pull‑down assays confirmed the interaction of FGD5‑AS1, miR‑133a‑3p and AQP1. These results indicated that FGD5‑AS1 is the competitive endogenous RNA of miR‑133a‑3p on AQP1, and thus FGD5‑AS1 overexpression may be able to inhibit the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Yuru Chu
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Xu Wang
- Acupuncture Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Naihao Yu
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Yali Li
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Jianying Kan
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| |
Collapse
|
48
|
Li Y, Qi W, Yan L, Wang M, Zhao L. Tripterygium wilfordii derivative LLDT-8 targets CD2 in the treatment of rheumatoid arthritis. Biomed Rep 2021; 15:81. [PMID: 34429967 PMCID: PMC8372124 DOI: 10.3892/br.2021.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/24/2021] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory synovitis systemic disease, can lead to joint deformities, loss of function and even death. The pathogenesis of RA may be related to genetics, infection and/or sex hormones; however, detailed accounts of the molecular mechanisms underlying its pathogenesis are lacking. In the present study, the synovial tissues of patients with RA and healthy individuals were analyzed to identify the pathogenic signaling pathways and key candidate genes involved in RA. Gene Ontology (GO), pathway enrichment and protein-protein interaction analysis were further used to identify the differentially expressed genes (DEGs) and their potential roles in RA. Molecular docking was used to screen the potential candidate drugs for management of RA. Small interfering RNA was used for knockdown of the CD2 protein. A Cell Counting Kit-8 assay was used to detect the proliferation of cells. Changes in the levels of inflammatory cytokines were detected using ELISA. A total of 279 DEGs were identified in RA; amongst these genes, 166 and 113 were upregulated and downregulated, respectively. GO analysis revealed that the upregulated DEGs were primarily enriched in the activation of the immune and adaptive immune responses, as well as the inflammatory response. The T-cell surface antigen CD2 (CD2) was identified as the most important hub gene by selecting the most important module from the protein-protein interaction network. Knockout of CD2 reduced the damaging effects of TNF-α on synovial cells. Through in situ screening using computer-aided drug design, the triptolide derivative (5R)-5-hydroxytriptolide (LLDT-8) was determined to have the highest docking score based on the CD2 protein structure. Cell experiments showed that LLDT-8 could inhibit the expression of CD2. Cell proliferation and inflammatory cytokine assays confirmed that CD2 was the direct target of LLDT-8. Together, the results of the present study determined factors involved in the pathogenesis of RA and the important role of CD2 in this process by analyzing the DEGs in the RA process. LLDT-8 inhibited CD2 and may thus be used to treat RA. These candidate genes and signaling pathways may serve as potential targets for the clinical treatment of RA.
Collapse
Affiliation(s)
- Yuan Li
- Department of Rheumatology and Clinical Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Wufang Qi
- Department of Rheumatology and Clinical Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Lei Yan
- Department of Rheumatology and Clinical Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Mengmeng Wang
- Department of Rheumatology and Clinical Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Linru Zhao
- Department of Rheumatology and Clinical Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
49
|
Du W, Li D, Xie J, Tang P. miR‑367‑3p downregulates Rab23 expression and inhibits Hedgehog signaling resulting in the inhibition of the proliferation, migration, and invasion of prostate cancer cells. Oncol Rep 2021; 46:192. [PMID: 34278506 PMCID: PMC8299014 DOI: 10.3892/or.2021.8143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs play an important role in tumor cell proliferation, invasion, and Rab23 is a member of the Ras-related small GTPase family and plays a critical role in the progression of may types of tumors. The present study was designed to investigate the inhibitory effect of microRNA (miR)-367-3p on the proliferation, invasion, and metastasis of prostate cancer cells. qRT-PCR was used to detect the expression of miR-367-3p in prostate cancer and adjacent tissues. Cell proliferation, scratch, and Transwell assays were performed to verify the inhibitory effect of miR-367-3p overexpression or Ras-related protein Rab 23 (Rab23) knockdown on prostate cancer. Double luciferase reporter assay was utilized to verify whether miR-367-3p could target the Rab23 3′-untranslated region (UTR). The expression levels of Rab23, Gli1, and Gli2 in prostate cancer cells transfected with the miR-367-3p mimic were detected via qRT-PCR analysis. miR-367-3p expression in the prostate cancer tissues was downregulated compared with that in the para-cancer control tissues. miR-367-3p expression in DU145 and PC3 cells was also downregulated compared with that in the human prostate epithelial cell line RWPE-1. The overexpression of miR-367-3p or the knockdown of Rab23 inhibited the proliferation, invasion, and metastasis of prostate cancer cells. The results of the luciferase reporter assay confirmed that Rab23 was a target gene that was regulated by miR-367-3p. miR-367-3p specifically bound to the 3′-UTR of Rab23 mRNA. The overexpression of miR-367-3p inhibited Rab23 expression and the Hedgehog pathway. Cell function experiments confirmed that the overexpression of Rab23 reversed the anticancer effect of miR-367-3p. miR-367-3p was able to inhibit the Hedgehog pathway by targeting the expression of the Rab23 gene, thus inhibiting the proliferation, invasion, and metastasis of prostate cancer cells.
Collapse
Affiliation(s)
- Wei Du
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Dong Li
- Department of Urology, Nanhai Hospital of Guangdong Provincial People's Hospital, Foshan, Guangdong 528251, P.R. China
| | - Jianhao Xie
- Department of Clinical Laboratory, Nanhai Hospital of Guangdong Provincial People's Hospital, Foshan, Guangdong 528251, P.R. China
| | - Ping Tang
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
50
|
Ren Y, Deng R, Zhang Q, Li J, Han B, Ye P. Bioinformatics analysis of key genes in triple negative breast cancer and validation of oncogene PLK1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1637. [PMID: 33490149 PMCID: PMC7812170 DOI: 10.21037/atm-20-6873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Breast cancer is the most common malignancy in women. Triple-negative breast cancer (TNBC) refers to a special subtype that is deficient in the expression of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2). In this study, a variety of bioinformatics analysis tools were used to screen Hub genes related to the occurrence and development of triple negative breast cancer, and their biological functions were analyzed. Methods Gene Expression Omnibus (GEO) breast cancer microarray data GSE62931 was selected as the research object. The differentially expressed genes (DEGs) were screened and the protein-protein interaction (PPI) network of DEGs was constructed using bioinformatics tools. The Hub genes were also screened. The Gene Ontology (GO) knowledgebase and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for biological enrichment analysis. The Gene Expression Profiling Interactive Analysis (GEPIA) online tool was used to verify the expression of the screened genes and patient survival. The effects of polo-like kinase 1 (PLK1) on the proliferation, invasion, migration, and dryness of breast cancer cells were verified using cell counting kit 8 (CCK-8), transwell migration assays, scratch tests, and clone formation tests. An animal model of subcutaneous xenotransplantation of breast cancer was established to evaluate the effect of PLK1 on the proliferation of breast cancer. Results A total of 824 DEGs were screened by GSE62931 microarray data; 405 of which were up-regulated and 419 of which were down-regulated. Functional enrichment analysis showed that these DEGs were mainly enriched in cancer-related pathways and were primarily involved in biological processes (BP) such as cell and mitotic division. From the Hub gene screening, PLK1 was further identified as the Hub gene associated with TNBC. Cell and animal experiments indicated that PLK1 promotes the proliferation, invasion, migration, and clone formation of breast cancer cells. Conclusions Gene chip combined with bioinformatics methods can effectively analyze the DEGs related to the occurrence and development of breast cancer, and the screening of PLK1 can provide theoretical guidance for further research on the molecular mechanism of breast cancer and the screening of molecular markers.
Collapse
Affiliation(s)
- Yi Ren
- Breast Department, Xuzhou Cancer Hospital/Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing, China
| | - Qian Zhang
- Breast Department, Xuzhou Cancer Hospital/Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Jing Li
- Breast Department, Xuzhou Cancer Hospital/Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument & Food Engineering, University of Shanghai for Science & Technology, Shanghai, China
| |
Collapse
|