1
|
Wu Q, Zhong L, Zhang G, Han L, Xie J, Xu Y. Complementing therapeutic strategies for acute myeloid leukemia: Signaling pathways and targets of traditional Chinese medicine. Leuk Res 2025; 151:107672. [PMID: 40022774 DOI: 10.1016/j.leukres.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Leukemia is a heterogeneous malignant tumor of the hematopoietic system and is characterized by the blockage of differentiation and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow and peripheral blood. Currently, intensified chemotherapy regimens and hematopoietic stem cell transplantation (HSCT) are the most common treatment methods for various types of leukemia. However, they are associated with severe side effects and multidrug resistance. Therefore, developing new treatment approaches with sufficient therapeutic effects to eliminate leukemia cells and improve leukemia outcomes selectively is essential. Traditional Chinese Medicine (TCM) has received widespread attention as an alternative treatment for acute myeloid leukemia (AML) because of its multi-component and multi-target characteristics. Increasing evidence suggests that TCM blocks AML progression by regulating various biological processes. Herein, we review the effects of TCM therapies for AML and its potential mechanisms and targets. Our findings will promote further research and improve the clinical application of TCM in treating AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Medicine, Chinese Traditional/methods
- Signal Transduction/drug effects
- Drugs, Chinese Herbal/therapeutic use
- Animals
Collapse
Affiliation(s)
- Qiaoliang Wu
- Department of Hematology, The First People's Hospital of Jiashan, China
| | - Lei Zhong
- Department of Laboratory Medicine, Tongxiang Traditional Chinese Medicine Hospital, China
| | - Guibing Zhang
- Department of Hematology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Liying Han
- Department of Laboratory Medicine, Tongxiang Traditional Chinese Medicine Hospital, China
| | - Jing Xie
- Department of Laboratory Medicine, Taizhou First People's Hospital, China
| | - Yao Xu
- Department of Pediatric Medicine, The First People's Hospital of Jiashan, China.
| |
Collapse
|
2
|
Huang G, Cai X, Li D. Significance of targeting DNMT3A mutations in AML. Ann Hematol 2025; 104:1399-1414. [PMID: 39078434 PMCID: PMC12031811 DOI: 10.1007/s00277-024-05885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.
Collapse
MESH Headings
- Humans
- DNA Methyltransferase 3A
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/drug therapy
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Mutation
- DNA Methylation
- Epigenesis, Genetic
- Molecular Targeted Therapy
- Gene Expression Regulation, Leukemic
- Prognosis
Collapse
Affiliation(s)
- Guiqin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Jafari PA, Bagheri R, Lavasani S, Goudarzi S. DNMT3A-R882: a mutation with many paradoxes. Ann Hematol 2024; 103:4981-4988. [PMID: 38969930 DOI: 10.1007/s00277-024-05874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Understanding the underlying mechanism of acute myeloid leukemia (AML) has led to the discovery of novel biomarkers to help predict, treat and monitor leukemia. DNA (cytosine-5)-methyltransferase 3 A (DNMT3A) is considered a prognostic and therapeutic epigenetic target in AML patients with a hotspot mutation of R882. R882 mutation is associated with impaired differentiation of Hematopoietic stem cells in the bone marrow and disease progression. The prevalence of R882 mutation varied in different ethnicities and countries, and similarly, its prognostic impact differed among numerous studies. Nevertheless, the co-occurrence of mutations in R882 with NPM1 and FLT3 has been reported more frequently and is associated with a worse prognosis. These studies also suggest diverse results regarding bone marrow transplantation response as a treatment, while chemoresistance is reached as a conclusive outcome These findings highlight the crucial need for an in-depth discussion on the significance of the R882 mutation in AML patients. Understanding its impact on leukemic transformation, prognosis, and treatment is vital for advancing clinical implications.
Collapse
Affiliation(s)
| | - Ramin Bagheri
- Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
4
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
5
|
Guo Y, Niu Y, Liang H, Yang X, Jian J, Tang X, Liu B. A nomogram based on clinical features and molecular abnormalities for predicting the prognosis of patients with acute myeloid leukemia. Transl Cancer Res 2023; 12:3432-3442. [PMID: 38192982 PMCID: PMC10774028 DOI: 10.21037/tcr-23-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/29/2023] [Indexed: 01/10/2024]
Abstract
Background The high clinical and molecular heterogeneity of acute myeloid leukemia (AML) has led to an unsatisfactory clinical prognosis, thus we sought to incorporate both clinical features and molecular abnormalities to construct a new prognostic model. Methods A database search of the Gene Expression Omnibus (GEO) revealed 238 cases of adult AML. The independent risk factors were assessed using both univariate and multivariate Cox regression, as well as least absolute shrinkage and selection operator (LASSO) regression. The predictive accuracy, discriminatory power and clinical applicability of the nomogram were determined by the consistency index (C-index), calibration curves and decision curve analysis (DCA). In addition, a single-centre cohort of 135 cases was used for external validation. Results Multivariate Cox regression analysis showed that the independent influences on overall survival (OS) were age, type of disease, DNMT3A, IDH2 and TP53 mutations. The area under the curve (AUC) values for the training set were 0.755, 0.745 and 0.757 at 1, 2 and 3 years respectively; the AUC for the validation set were 0.648, 0.648 and 0.654 at 1, 2 and 3 years; and the AUC for the northwest China set were 0.692, 0.724 and 0.689 at 1, 2 and 3 years. The calibration and DCA indicated good consistency and clinical utility of the nomogram. Finally, younger (age <60 years) and elderly (age ≥60 years) patients were each divided into two risk groups with significantly different survival rates. Conclusions A nomogram consisting of five risk factors was developed for forecasting the prognosis of AML with guaranteed reliability.
Collapse
Affiliation(s)
- Yuancheng Guo
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yujie Niu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Haiping Liang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaoxiao Yang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinli Jian
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of hematology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Chen X, Tian C, Hao Z, Pan L, Hong M, Wei W, Muyey DM, Wang H, Chen X. The impact of DNMT3A variant allele frequency and two different comutations on patients with de novo cytogenetically normal acute myeloid leukemia. Cancer Med 2023; 12:10340-10350. [PMID: 36912186 DOI: 10.1002/cam4.5764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
To refine the biological and prognostic significance of DNMT3A mutations in acute myeloid leukemia (AML), we assessed the impact of DNMT3A variant allele frequency (VAF) and its comutations in this study. Using targeted next-generation sequencing, we analyzed 171 adult patients with de novo cytogenetically normal AML for DNMT3A mutations and associated comutations. DNMT3Amut was detected in 35 patients. DNMT3Amut patients were divided into DNMT3AHigh and DNMT3ALow using a cut-off VAF value of 42%. We observed that DNMT3AHigh patients at diagnosis had increasing white blood cell (WBC) counts (p < 0.001) and a higher lactate dehydrogenase (LDH) level (p = 0.027), and were associated with lower complete remission (CR) rate (p = 0.015) and shorter overall survival (OS) (p = 0.032) than DNMT3ALow patients. We classified two different comutated genetypes, including DNMT3Amut NPM1mut FLT3-ITDmut and DNMT3Amut IDH1/IDH2mut . Patients with DNMT3Amut NPM1mut FLT3-ITDmut showed worse OS (p = 0.026) and relapse-free survival (RFS) (p = 0.003) than those with DNMT3Amut IDH1/IDH2mut , and showed a shorter OS (p = 0.027) than those with DNMT3Awt NPM1mut FLT3-ITDmut . We also observed that patients with DNMT3Amut IDH1/IDH2mut had higher platelet counts (p = 0.009) and a lower BM blast percentage (p = 0.040) than those with DNMT3Awt IDH1/IDH2mut . In multivariate analyses, DNMT3AHigh was independently associated with a lower CR rate (OR = 5.883; p = 0.004) and shorter OS (HR = 3.768; p < 0.001). DNMT3Amut NPM1mut FLT3-ITDmut independently affected worse OS (HR = 6.030; p < 0.001) and RFS (HR = 8.939; p < 0.001). Our findings might be potentially useful for predicting clinical outcomes.
Collapse
Affiliation(s)
- Xian Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Department of Genetic Medicine, Shanxi Medical University, Jinzhong, China
| | - Chuchu Tian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lingang Pan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Minglin Hong
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wei
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Zhang YW, Su L, Tan YH, Lin H, Liu XL, Liu QJ, Sun JN, Zhang M, Du YZ, Song F, Han W, Gao SJ. Measurable residual disease detected by flow cytometry independently predicts prognoses of NPM1-mutated acute myeloid leukemia. Ann Hematol 2023; 102:337-347. [PMID: 36378304 DOI: 10.1007/s00277-022-05033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) with NPM1 mutation is a distinct genetic entity with favorable outcomes. Nevertheless, emerging evidence suggests that NPM1-mutated AML is still a highly heterogeneous disorder. In this study, 266 patients with AML with NPM1 mutations were retrospectively analyzed to evaluate the associations between variant allele frequency (VAF) of NPM1 mutations, co-mutated genes, measurable residual disease (MRD), and patient outcomes. Multiparameter flow cytometry (MFC) and real-time quantitative polymerase chain reaction (RT-PCR) were used for monitoring MRD. Ultimately, 106 patients were included in the long-term follow-up period. Patients with high NPM1 VAF (≥ 42.43%) had poorer 2-year relapse-free survival (RFS) (55.7% vs. 70.2%, P = 0.017) and overall survival (OS) (63.7% vs. 82.0%, P = 0.027) than those with low VAF. DNMT3A mutations negatively influenced the outcomes of patients with NPM1 mutations. Patients with high DNMT3A VAF or NPM1/DNMT3A/FLT3-ITD triple mutations had shorter RFS and significantly lower OS than that in controls. After two cycles of chemotherapy, patients with positive MFC MRD results had lower RFS (MRD+ vs. MRD-:44.9% vs. 67.6%, P = 0.007) and OS (61.5% vs. 76.6%, P = 0.011) than those without positive MFC MRD results. In multivariate analysis, high NPM1 VAF (hazard ratio [HR] = 2.045; P = 0.034) and positive MRD after two cycles of chemotherapy (HR = 3.289; P = 0.003) were independent risk factors for RFS; MRD positivity after two cycles of chemotherapy (HR = 3.293; P = 0.008) independently predicted the OS of the patients. These results indicate that VAF of both NPM1 gene itself or certain co-occurring gene pre-treatment and MRD post-treatment are potential markers for restratifying the prognoses of patients AML having NPM1 mutations.
Collapse
Affiliation(s)
- Yun-Wei Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Long Su
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ye-Hui Tan
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Hai Lin
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao-Liang Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Qiu-Ju Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Nan Sun
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ya-Zhe Du
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Fei Song
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Han
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Su-Jun Gao
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Maksimova VP, Usalka OG, Makus YV, Popova VG, Trapeznikova ES, Khayrieva GI, Sagitova GR, Zhidkova EM, Prus AY, Yakubovskaya MG, Kirsanov KI. Aberrations of DNA methylation in cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation is a chromatin modification that plays an important role in the epigenetic regulation of gene expression. Changes in DNA methylation patterns are characteristic of many malignant neoplasms. DNA methylation is occurred by DNA methyltransferases (DNMTs), while demethylation is mediated by TET family proteins. Mutations and changes in the expression profile of these enzymes lead to DNA hypo- and hypermethylation and have a strong impact on carcinogenesis. In this review, we considered the key aspects of the mechanisms of regulation of DNA methylation and demethylation, and also analyzed the role of DNA methyltransferases and TET family proteins in the pathogenesis of various malignant neoplasms.During the preparation of the review, we used the following biomedical literature information bases: Scopus (504), PubMed (553), Web of Science (1568), eLibrary (190). To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, CyberLeninka were used. To analyze the mutational profile of epigenetic regulatory enzymes, we used the cBioportal portal (https://www.cbioportal.org / ), data from The AACR Project GENIE Consortium (https://www.mycancergenome.org / ), COSMIC, Clinvar, and The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- V. P. Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. G. Usalka
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - Yu. V. Makus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - V. G. Popova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Mendeleev University of Chemical Technology of Russia
| | - E. S. Trapeznikova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. I. Khayrieva
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. R. Sagitova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. Yu. Prus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; MIREA – Russian Technological University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| |
Collapse
|
9
|
Muacevic A, Adler JR, Rinaldi I, Wanandi SI. Resistance Mechanism of Acute Myeloid Leukemia Cells Against Daunorubicin and Cytarabine: A Literature Review. Cureus 2022; 14:e33165. [PMID: 36726936 PMCID: PMC9885730 DOI: 10.7759/cureus.33165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy commonly found in adult patients. Low overall survival and resistance to therapy are the main issues in AML. The first line of treatment for AML chemotherapy is the induction phase, namely, the phase to induce remission by administering a combination of daunorubicin (DNR) for three days followed by administration of cytarabine (Ara-C) with continuous infusion for seven days, which is referred to as "3 + 7." Such induction therapy has been the standard therapy for AML for the last four decades. This review article is made to discuss daunorubicin and cytarabine from their chemical structure, pharmacodynamics, pharmacokinetics, and mechanisms of resistance in AML.
Collapse
|
10
|
Najafi F, Kelaye SK, Kazemi B, Foruzandeh Z, Allahverdizadeh F, Vakili S, Rad KK, Derakhshani M, Solali S, Alivand MR. The role of miRNA-424 and miR-631 in various cancers: Focusing on drug resistance and sensitivity. Pathol Res Pract 2022; 239:154130. [DOI: 10.1016/j.prp.2022.154130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
11
|
Liao M, Chen R, Yang Y, He H, Xu L, Jiang Y, Guo Z, He W, Jiang H, Wang J. Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm Sin B 2022; 12:678-691. [PMID: 35256939 PMCID: PMC8897035 DOI: 10.1016/j.apsb.2021.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Aging-elevated DNMT3A R882H-driven clonal hematopoiesis (CH) is a risk factor for myeloid malignancies remission and overall survival. Although some studies were conducted to investigate this phenomenon, the exact mechanism is still under debate. In this study, we observed that DNMT3A R878H bone marrow cells (human allele: DNMT3A R882H) displayed enhanced reconstitution capacity in aged bone marrow milieu and upon inflammatory insult. DNMT3A R878H protects hematopoietic stem and progenitor cells from the damage induced by chronic inflammation, especially TNFα insults. Mechanistically, we identified that RIPK1–RIPK3–MLKL-mediated necroptosis signaling was compromised in R878H cells in response to proliferation stress and TNFα insults. Briefly, we elucidated the molecular mechanism driving DNMT3A R878H-based clonal hematopoiesis, which raises clinical value for treating DNMT3A R882H-driven clonal hematopoiesis and myeloid malignancies with aging.
Collapse
|
12
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Zhou FJ, Zeng CX, Kuang W, Cheng C, Liu HC, Yan XY, Chen XP, Zhou G, Cao S. Metformin exerts a synergistic effect with venetoclax by downregulating Mcl-1 protein in acute myeloid leukemia. J Cancer 2021; 12:6727-6739. [PMID: 34659562 PMCID: PMC8518002 DOI: 10.7150/jca.60208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Recently, one of the specific BH3-mimetics, Venetoclax has been approved by FDA providing new options for newly diagnosed AML patient especially who are unfitted to receive conventional chemotherapy. Though the clinical success of venetoclax has been achieved in clinical outcomes such as complete remission (CR) and overall survival. Acquired resistance to ABT-199 which is induced by the regulation of apoptosis pathway is still an important clinical problem. To this end, the attempt to combine drugs which can reverse the compensatory regulation is urgent. Methods: In three AML cell lines (KG-1, Kasumi-1 and THP-1), the anti-AML effects of the combination of ABT-199 (Venetoclax) and metformin or the two drugs used alone were compared. CCK8 was used to evaluate the cell viability, and flow cytometry was used to estimate the rate of apoptosis, Western blot method was performed to detect apoptosis-related protein levels. In mice experiments, female BALB/c-nu nude mice were subcutaneously injected with THP-1 cells for subcutaneous tumor formation, and the combined effect of ABT-199 and metformin was tested. The evaluation indicators were tumor size, tumor weight, and Ki67 staining. Mouse body weight and HE staining were detected to evaluate liver damage and adverse drug reactions. Results: Both in vitro and in vivo experiments showed that compared with metformin or ABT-199 alone, the combined use of the two drugs exerts a synergistic effect on promoting apoptosis, thereby producing a strong anti-leukemia effect. Furthermore, after a short incubation time, ABT-199 swiftly increased the expression level of the anti-apoptotic protein Mcl-1, while the combined use of metformin and ABT-199 significantly reduced the level of Mcl-1. Notably, Metformin significantly downregulates the level of Mcl-1 protein by inhibiting its protein production. To less extent, metformin can also downregulate the expression of another anti-apoptotic protein, BCL-xl. Conclusion: Metformin downregulates the expression of anti-apoptotic proteins Mcl-1 and Bcl-xl by inhibiting protein production, and shows a synergistic anti-tumor effect with ABT-199 in acute myeloid leukemia.
Collapse
Affiliation(s)
- Fang-Jiao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Chen-Xing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Wei Kuang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Cong Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Cai Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xue-Ying Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.,Phase I Clinical Trial Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| |
Collapse
|
14
|
Goel H, Rahul E, Gupta I, Chopra A, Ranjan A, Gupta AK, Meena JP, Viswanathan GK, Bakhshi S, Misra A, Hussain S, Kumar R, Singh A, Rath GK, Sharma A, Mittan S, Tanwar P. Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:472-497. [PMID: 34824881 PMCID: PMC8610791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a complex, aggressive myeloid neoplasm characterized by frequent somatic mutations that influence different functional categories' genes, resulting in maturational arrest and clonal expansion. AML can arise de novo (dn-AML) or can be secondary AML (s-AML) refers to a leukemic process which may arise from an antecedent hematologic disorder (AHD-AML), mostly from a myelodysplastic syndrome (MDS) or myeloproliferative neoplasm (MPN) or can be the result of an antecedent cytotoxic chemotherapy or radiation therapy (therapy-related AML, t-AML). Clinical and biological features in secondary and therapy-related AML are distinct from de novo AML. Secondary and therapy-related AML occurs mainly in the elderly population and responds worse to therapy with higher relapse rates due to resistance to cytotoxic chemotherapy. Over the last decade, advances in molecular genetics have disclosed the sub-clonal architecture of secondary and therapy-related AML. Recent investigations have revealed that cytogenetic abnormalities and underlying genetic aberrations (mutations) are likely to be significant factors dictating prognosis and critical impacts on treatment outcome. Secondary and therapy-related AML have a poorer outcome with adverse cytogenetic abnormalities and higher recurrences of unfavorable mutations compared to de novo AML. In this review, we present an overview of the clinical features of secondary and therapy-related AML and address the function of genetic mutations implicated in the pathogenesis of secondary leukemia. Detailed knowledge of the pathogenetic mechanisms gives an overview of new prognostic markers, including targetable mutations that will presumably lead to the designing and developing novel molecular targeted therapies for secondary and therapy-related AML. Despite significant advances in knowing the genetic aspect of secondary and therapy-related AML, its influence on the disease's pathophysiology, standard treatment prospects have not significantly evolved during the past three decades. Thus, we conclude this review by summarizing the modern and developing treatment strategies in secondary and therapy-related acute myeloid leukemia.
Collapse
Affiliation(s)
- Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ekta Rahul
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ishan Gupta
- All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Ganesh Kumar Viswanathan
- Department of Hematology, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Aroonima Misra
- National Institute of Pathology, ICMRNew Delhi 110029, India
| | - Showket Hussain
- Division Of Molecular Oncology, National Institute of Cancer Prevention & Research I-7, Sector-39Noida 201301, India
| | - Ritesh Kumar
- Department of Radiation Oncology, Rudgers Cancer Institute of New JerseyNJ 07103, United States
| | - Archana Singh
- Department of Pathology, College of Medical Sciences, Rajasthan University of Health SciencesJaipur 302033, India
| | - GK Rath
- Department of Radiotherapy, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital1468 Madison Avenue, New York 10028, United States
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
15
|
Cheng C, Yuan F, Chen XP, Zhang W, Zhao XL, Jiang ZP, Zhou HH, Zhou G, Cao S. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother 2021; 142:111652. [PMID: 34112534 DOI: 10.1016/j.biopha.2021.111652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy resistance remains to be the primary barrier to acute myeloid leukemia (AML) treatment failure. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been well established as a truly pleiotropic transcription factor. Inhibition of Nrf2 function increases the sensitivity of various chemotherapeutics and overcomes chemoresistance effectively. Brusatol (Bru) has been reported to decrease Nrf2 protein expression specifically by ubiquitin degradation of Nrf2. However, it remains elusive whether combination of Brusatol and Cytarabine (Ara-C) elicits a synergistic antitumor effect in AML. Our results demonstrated that combination of Ara-C and Brusatol synergistically exerted remarkable pro-apoptosis effect in HL-60 and THP-1 cells. Mechanistically, synergistic anti-tumor effect of Ara-C/Brusatol in AML cells is mediated by attenuating Nrf2 expression. To our surprise, Nrf2 inhibition by Brusatol causes downregulation of the expression of glycolysis-related proteins and decreased glucose consumption and lactate production, whereas the level of ROS production was unaffected. The activation of Nrf2 by Sulforaphane (SFP) could reverse the chemotherapeutic effect and changes of glycolysis of concomitant of Ara-C with Brusatol in AML cell lines. Additionally, Ara-C/Brusatol co-treatment decreased Glucose-6-phosphate dehydrogenase (G6PD) protein expression and increased the sensitivity of Ara-C. Moreover, the mouse xenograft in vivo experiment confirmed that combining Ara-C with Brusatol exerted stronger antileukemia than Ara-C alone. The efficacy, together with the mechanistic observations, reveals the potential of simultaneously giving these two drugs and provides a rational basis for targeting glucose catabolism in future clinical therapeutic approach.
Collapse
Affiliation(s)
- Cong Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Fang Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Zhi-Ping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
16
|
Effect of DNMT3A variant allele frequency and double mutation on clinicopathologic features of patients with de novo AML. Blood Adv 2021; 5:2539-2549. [PMID: 34100902 DOI: 10.1182/bloodadvances.2021004250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
The clinicopathologic features of DNA methyltransferase 3A (DNMT3A)-mutated de novo acute myeloid leukemia (AML), and the significance of variant type, variant allele frequency (VAF), and multiple concomitant DNMT3A mutations, remain poorly defined. We examined 104 DNMT3A-mutated de novo AML patients from 2 major centers. Most (82%) had normal karyotype (NK); R882H variants were frequent(38%). The most commonly comutated genes included nucleophosmin (NPM1; 53%), Fms-related tyrosine kinase 3 (FLT3)-internal tandem duplication (25%), IDH1 (23%), IDH2 (23%), and TET2 (21%). Patients with high DNMT3A VAF at diagnosis (≥44%; DNMT3AHIGH) had more significant leukocytosis and higher blast counts in peripheral blood and bone marrow. DNMT3AHIGH cases were associated with much shorter event-free survival (EFS; 14.1 vs 56.8 months) and overall survival (OS; 18.3 months vs not reached) compared with cases of patients with low DNMT3A (DNMT3ALOW). Thirteen patients had 2 DNMT3A variants and similar VAFs at diagnosis that tracked together at multiple time points after chemotherapy and/or stem cell transplantation (SCT). In multivariable analyses performed in NK patients who received standard induction chemotherapy, presence of 2 DNMT3A mutations (hazard ratio [HR] = 3.192; P = .038) and SCT in first complete remission (HR = 0.295; P = .001) independently affected EFS; increasing marrow blast percentage (HR = 1.026; P = .025), high DNMT3A VAF (HR = 3.003; P = .010), and 2 DNMT3A mutations (HR = 4.816; P = .020) had independent effects on OS. These data support the adverse prognostic significance of DNMT3AHIGH reveal a novel association between 2 concomitant DNMT3A mutations and inferior outcome in DNMT3A-mutated de novo AML with a NK.
Collapse
|
17
|
Doucette K, Karp J, Lai C. Advances in therapeutic options for newly diagnosed, high-risk AML patients. Ther Adv Hematol 2021; 12:20406207211001138. [PMID: 33995985 PMCID: PMC8111550 DOI: 10.1177/20406207211001138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal proliferation of neoplastic immature precursor cells. AML impacts older adults and has a poor prognosis. Despite recent advances in treatment, AML is complex, with both genetic and epigenetic aberrations in the malignant clone and elaborate interactions with its microenvironment. We are now able to stratify patients on the basis of specific clinical and molecular features in order to optimize individual treatment strategies. However, our understanding of the complex nature of these molecular abnormalities continues to expand the defining characteristics of high-risk mutations. In this review, we focus on genetic and microenvironmental factors in adverse risk AML that play critical roles in leukemogenesis, including those not described in an European LeukemiaNet adverse risk group, and describe therapies that are currently in the clinical arena, either approved or under development.
Collapse
Affiliation(s)
- Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith Karp
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
18
|
Liu H, Chen P, Yang YL, Zhu KW, Wang T, Tang L, Liu YL, Cao S, Zhou G, Zeng H, Zhao XL, Zhang W, Chen XP. TBC1D16 predicts chemosensitivity and prognosis in adult acute myeloid leukemia (AML) patients. Eur J Pharmacol 2021; 895:173894. [PMID: 33476656 DOI: 10.1016/j.ejphar.2021.173894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disease with poor survival. Chemotherapy resistance is one of the determinant factors influencing AML prognosis. To identify genes possibly affecting the drug responses in AML, the Illumina Infinium MethylationEPIC (850K) was used to screen for differential DNA methylation loci between patients achieved complete remission (CR) or not (non-CR) after induction therapy in 37 AML patients. Then, 32 differentially methylated sites (DMS) were selected for replication in another 86 AML patients by next-generation sequencing. Nine sites including cg03988660, cg16804603, cg18166936, cg11308319, cg09095403, cg18493214, cg01443536, cg16030878 and cg10143426 were replicated. Analysis of the Gene Expression Omnibus (GEO) database showed that mRNA expression of TBC1D16 and HDAC4 was associated with AML prognosis. Methylation level of the cg16030878 in TBC1D16 3'-UTR correlated positively with TBC1D16 mRNA expression in samples both in the TCGA database and clinically collected in the study. Both higher cg16030878 methylation and higher TBC1D16 mRNA expression were associated with increased risk of non-CR and worse overall survival (OS) in AML patients. In AML cells, knockdown of TBC1D16 decreased cell proliferation and ERK phosphorylation levels, as well as increased sensitivity to mitoxantrone and decitabine indicated by IC50. In patients with combined use of decitabine, those patients with CR showed significantly lower TBC1D16 mRNA expression. On the contrary, knockdown of TBC1D16 resulted in decreased sensitivity to cytarabine in U937 cells. Our findings implicated that TBC1D16 is a potential predictor for chemosensitivity and prognosis in adult AML patients.
Collapse
Affiliation(s)
- Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Yong-Long Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Tao Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
19
|
Zhuang H, Chen Y, Sheng X, Hong L, Gao R, Zhuang X. Searching for a signature involving 10 genes to predict the survival of patients with acute myelocytic leukemia through a combined multi-omics analysis. PeerJ 2020; 8:e9437. [PMID: 32617195 PMCID: PMC7321666 DOI: 10.7717/peerj.9437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/08/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Currently, acute myelocytic leukemia (AML) still has a poor prognosis. As a result, gene markers for predicting AML prognosis must be identified through systemic analysis of multi-omics data. METHODS First of all, the copy number variation (CNV), mutation, RNA-Seq, and single nucleotide polymorphism (SNP) data, as well as those clinical follow-up data, were obtained based on The Cancer Genome Atlas (TCGA) database. Thereafter, all samples (n = 229) were randomized as test set and training set, respectively. Of them, the training set was used to screen for genes related to prognosis, and genes with mutation, SNP or CNV. Then, shrinkage estimate was used for feature selection of all the as-screened genes, to select those stable biomarkers. Eventually, a prognosis model related to those genes was established, and validated within the GEO verification (n = 124 and 72) and test set (n = 127). Moreover, it was compared with the AML prognosis prediction model reported in literature. RESULTS Altogether 832 genes related to prognosis, 23 related to copy amplification, 774 associated with copy deletion, and 189 with significant genomic variations were acquired in this study. Later, genes with genomic variations and those related to prognosis were integrated to obtain 38 candidate genes; eventually, a shrinkage estimate was adopted to obtain 10 feature genes (including FAT2, CAMK2A, TCERG1, GDF9, PTGIS, DOC2B, DNTTIP1, PREX1, CRISPLD1 and C22orf42). Further, a signature was established using these 10 genes based on Cox regression analysis, and it served as an independent factor to predict AML prognosis. More importantly, it was able to stratify those external verification, test and training set samples with regard to the risk (P < 0.01). Compared with the prognosis prediction model reported in literature, the model established in this study was advantageous in terms of the prediction performance. CONCLUSION The signature based on 10 genes had been established in this study, which is promising to be used to be a new marker for predicting AML prognosis.
Collapse
Affiliation(s)
- Haifeng Zhuang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hang Zhou, China
| | - Yu Chen
- Hangzhou Medical College, Hang Zhou, China
| | - Xianfu Sheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hang Zhou, China
| | - Lili Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hang Zhou, China
| | - Ruilan Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hang Zhou, China
| | - Xiaofen Zhuang
- Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hang Zhou, China
| |
Collapse
|
20
|
Park DJ, Kwon A, Cho BS, Kim HJ, Hwang KA, Kim M, Kim Y. Characteristics of DNMT3A mutations in acute myeloid leukemia. Blood Res 2020; 55:17-26. [PMID: 32269971 PMCID: PMC7106122 DOI: 10.5045/br.2020.55.1.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background DNMT3A mutations occur in approximately 20% of AML cases and are associated with changes in DNA methylation. CDKN2B plays an important role in the regulation of hematopoietic progenitor cells and DNMT3A mutation is associated with CDKN2B promoter methylation. We analyzed the characteristics of DNMT3A mutations including their clinical significance in AML and their influence on promoter methylation and CDKN2B expression. Methods A total of 142 adults, recently diagnosed with de novo AML, were enrolled in the study. Mutations in DNMT3A, CEBPA, and NPM1 were analyzed by bidirectional Sanger sequencing. We evaluated CDKN2B promoter methylation and expression using pyrosequencing and RT-qPCR. Results We identified DNMT3A mutations in 19.7% (N=28) of enrolled patients with AML, which increased to 29.5% when analysis was restricted to cytogenetically normal-AML. Mutations were located on exons from 8–23, and the majority, including R882, were found to be present on exon 23. We also identified a novel frameshift mutation, c.1590delC, in AML with biallelic mutation of CEBPA. There was no significant difference in CDKN2B promoter methylation according to the presence or type of DNMT3A mutations. CDKN2B expression inversely correlated with CDKN2B promoter methylation and was significantly higher in AML with R882H mutation in DNMT3A. We demonstrated that DNMT3A mutation was associated with poor AML outcomes, especially in cytogenetically normal-AML. The DNMT3A mutation remained as the independent unfavorable prognostic factor after multivariate analysis. Conclusion We characterized DNMT3A mutations in AML and revealed the association between the DNMT3A mutation and CDKN2B expression and clinical outcome.
Collapse
Affiliation(s)
- Dong Jin Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahlm Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung-Sik Cho
- Cancer Research Institute, Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Cancer Research Institute, Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, Genetree Research, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
21
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
22
|
Linch DC, Hills RK, Burnett AK, Gale RE. The clinical impact of mutant DNMT3A R882 variant allele frequency in acute myeloid leukaemia. Br J Haematol 2020; 189:e81-e86. [PMID: 32004382 DOI: 10.1111/bjh.16486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David C Linch
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Robert K Hills
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Alan K Burnett
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
23
|
Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C. Life Sci 2020; 243:117276. [PMID: 31926250 DOI: 10.1016/j.lfs.2020.117276] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
AIMS Chemo-resistance still was the main obstacle for AML patients, more effective and less toxic forms of therapies were desperately needed. Metformin, a classic hypoglycemic drug for diabetes recently delivered us a new identity that it exerted anti-tumor activity through suppressing mTOR in various tumors. But the anti-tumor effect of metformin in AML was not clear. METHODS In this study, we used CCK8 assay and apoptosis assay to determine the anti-leukemia activity of metformin combined with AraC, and explore the mechanism of the joint role of Ara-C/metformin in AML. We finally used xenograft experiment in mice to determine the anti-leukemia effect of Ara-C/metformin in vivo. KEY FINDINGS We found that metformin could synergistically sensitize AML cells to Ara-C via inhibiting mTORC1/P70S6K pathway. In vivo experiment also verified metformin in aid of Ara-C caused an obviously synergistic anti-tumor effect. SIGNIFICANCE We firstly found the synergistic anti-tumor effect of Ara-C/metformin in AML through inhibiting mTORC1/P70S6K pathway.
Collapse
|
24
|
Qiu L, Zhou G, Cao S. Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sci 2019; 243:117234. [PMID: 31887299 DOI: 10.1016/j.lfs.2019.117234] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), complete remission can be achieved in parts of patients using cytarabine/anthracycline combination-based chemotherapy, however, drug resistance-related recurrence is still a common cause of treatment failure, leading to high mortality among patients. In our research, we revealed the molecular mechanisms that were sufficient to improve sensitivity of AML cells to the anthracycline daunorubicin (DNR). METHODS We evaluated the effects of autophagy and apoptosis induced by DNR using two AML cell lines HL60 and U937.Western blot was preformed to analyze the apoptotic pathway protein expression and flow cytometric analysis was used to detect the level of apoptosis in AML cells. The levels of autophagy-related proteins were detected by western blotting and autophagic vesicles were observed by electron microscopy. RESULTS DNR effectively induced autophagy in two AML cell lines HL60 and U937 confirming by upregulation of LC3-II lipidation, formation of autophagosomes. Inhibition of autophagy by pharmacologic inhibitor HCQ promoted apoptosis induced by DNR, suggesting that autophagy played a vital role in pro-survival in AML. Furthermore, ULK1 inhibition by a highly selective kinase inhibitor SBI-0206965 and shRNA enhanced cytotoxicity of DNR against AML cells. Independent of mTOR -ULK1 signaling pathway, activation of autophagy of DNR was proved to be mediated by AMPK (pThr172)/ULK1 pathway. CONCLUSIONS These results revealed that pro-survival autophagy induced by ULK1 activation was one of the potential mechanisms of AML resistance to DNR. Targeting ULK1 selectively could be a promising therapeutic strategy to enhance sensitivity of DNR for AML therapy.
Collapse
Affiliation(s)
- Li Qiu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan 410078, China.
| |
Collapse
|