1
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications†. Biol Reprod 2025; 112:204-224. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization, and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia, gestational diabetes mellitus, preterm birth, and fetal growth restriction, may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction, and gene transcription. In this review, we focus on the impact of various post-translational modifications on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Geisler HC, Safford HC, Mitchell MJ. Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300852. [PMID: 37191231 PMCID: PMC10651803 DOI: 10.1002/smll.202300852] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.
Collapse
Affiliation(s)
- Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
3
|
Ghosh S, Thamotharan S, Fong J, Lei MYY, Janzen C, Devaskar SU. Circulating extracellular vesicular microRNA signatures in early gestation show an association with subsequent clinical features of pre-eclampsia. Sci Rep 2024; 14:16770. [PMID: 39039088 PMCID: PMC11263608 DOI: 10.1038/s41598-024-64057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
In a prospective cohort of subjects who subsequently developed preeclampsia (PE, n = 14) versus remaining healthy (NORM, n = 12), early gestation circulating extracellular vesicles (EVs) containing a panel of microRNA signatures were characterized and their biological networks of targets deciphered. Multiple microRNAs of which some arose from the placenta (19MC and 14MC) demonstrated changes in association with advancing gestation, while others expressed were pathognomonic of the subsequent development of characteristic clinical features of PE which set in as a late-onset subtype. This panel of miRNAs demonstrated a predictability with an area under the curve of 0.96 using leave-one-out cross-validation training in a logistic regression model with elastic-net regularization and precautions against overfitting. In addition, this panel of miRNAs, some of which were previously detected in either placental tissue or as maternal cell-free non-coding transcripts, lent further validation to our EV studies and the observed association with PE. Further, the identified biological networks of targets of these detected miRNAs revealed biological functions related to vascular remodeling, cellular proliferation, growth, VEGF, EGF and the PIP3/Akt signaling pathways, all mediating key cellular functions. We conclude that we have demonstrated a proof-of-principle by detecting a panel of EV packaged miRNAs in the maternal circulation early in gestation with possibilities of biological function in the placenta and other maternal tissues, along with the probability of predicting the subsequent clinical appearance of PE, particularly the late-onset subtype.
Collapse
Affiliation(s)
- Shubhamoy Ghosh
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA
| | - Shanthie Thamotharan
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA
| | - Jeanette Fong
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA
| | - Margarida Y Y Lei
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Carla Janzen
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Baruah H, Sarma A, Basak D, Das M. Exosome: From biology to drug delivery. Drug Deliv Transl Res 2024; 14:1480-1516. [PMID: 38252268 DOI: 10.1007/s13346-024-01515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
In recent years, different advancements have been observed in nanosized drug delivery systems. Factors such as stability, safety and targeting efficiency cause hindrances in the clinical translation of these synthetic nanocarriers. Therefore, researchers employed endogenous nanocarriers like exosomes as drug delivery vehicles that have an inherent ability to target more efficiently after appropriate functionalization and show higher biocompatibility and less immunogenicity and facilitate penetration through the biological barriers more quickly than the other available carriers. Exosomes are biologically derived lipid bilayer-enclosed nanosized extracellular vesicles (size ranges from 30 to 150 nm) secreted from both prokaryotic and eukaryotic cells and appears significantly in the extracellular space. These EVs (extracellular vesicles) can exist in different sources, including mammals, plants and microorganisms. Different advanced techniques have been introduced for the isolation of exosomes to overcome the existing barriers present with conventional methods. Extensive research on the application of exosomes in therapeutic delivery for treating various diseases related to central nervous system, bone, cancer, skin, etc. has been employed. Several studies are on different stages of clinical trials, and many exosomes patents have been registered.
Collapse
Affiliation(s)
- Himakshi Baruah
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| | - Anupam Sarma
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India.
| | - Debojeet Basak
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| | - Mridusmita Das
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| |
Collapse
|
5
|
Cordier AG, Zerbib E, Favier A, Dabi Y, Daraï E. Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy. Diagnostics (Basel) 2024; 14:729. [PMID: 38611642 PMCID: PMC11011513 DOI: 10.3390/diagnostics14070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pregnancy-related complications (PRC) impact maternal and fetal morbidity and mortality and place a huge burden on healthcare systems. Thus, effective diagnostic screening strategies are crucial. Currently, national and international guidelines define patients at low risk of PRC exclusively based on their history, thus excluding the possibility of identifying patients with de novo risk (patients without a history of disease), which represents most women. In this setting, previous studies have underlined the potential contribution of non-coding RNAs (ncRNAs) to detect patients at risk of PRC. However, placenta biopsies or cord blood samples are required, which are not simple procedures. Our review explores the potential of ncRNAs in biofluids (fluids that are excreted, secreted, or developed because of a physiological or pathological process) as biomarkers for identifying patients with low-risk pregnancies. Beyond the regulatory roles of ncRNAs in placental development and vascular remodeling, we investigated their specific expressions in biofluids to determine favorable pregnancy outcomes as well as the most frequent pathologies of pregnant women. We report distinct ncRNA panels associated with PRC based on omics technologies and subsequently define patients at low risk. We present a comprehensive analysis of ncRNA expression in biofluids, including those using next-generation sequencing, shedding light on their predictive value in clinical practice. In conclusion, this paper underscores the emerging significance of ncRNAs in biofluids as promising biomarkers for risk stratification in PRC. The investigation of ncRNA expression patterns and their potential clinical applications is of diagnostic, prognostic, and theragnostic value and paves the way for innovative approaches to improve prenatal care and maternal and fetal outcomes.
Collapse
Affiliation(s)
| | - Elie Zerbib
- Department of Obstetrics and Reproductive Medicine, Sorbonne University, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.-G.C.); (Y.D.)
| | | | | | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Sorbonne University, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.-G.C.); (Y.D.)
| |
Collapse
|
6
|
Kondracka A, Stupak A, Rybak-Krzyszkowska M, Kondracki B, Oniszczuk A, Kwaśniewska A. MicroRNA Associations with Preterm Labor-A Systematic Review. Int J Mol Sci 2024; 25:3755. [PMID: 38612564 PMCID: PMC11012198 DOI: 10.3390/ijms25073755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This systematic review delves into the connections between microRNAs and preterm labor, with a focus on identifying diagnostic and prognostic markers for this crucial pregnancy complication. Covering studies disseminated from 2018 to 2023, the review integrates discoveries from diverse pregnancy-related scenarios, encompassing gestational diabetes, hypertensive disorders and pregnancy loss. Through meticulous search strategies and rigorous quality assessments, 47 relevant studies were incorporated. The synthesis highlights the transformative potential of microRNAs as valuable diagnostic tools, offering promising avenues for early intervention. Notably, specific miRNAs demonstrate robust predictive capabilities. In conclusion, this comprehensive analysis lays the foundation for subsequent research, intervention strategies and improved outcomes in the realm of preterm labor.
Collapse
Affiliation(s)
- Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.K.)
| | - Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.K.)
| | - Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, The University Hospital in Krakow, 30-551 Krakow, Poland;
| | - Bartosz Kondracki
- Department of Cardiology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.K.)
| |
Collapse
|
7
|
Zhao X, Peng X, Wang Z, Zheng X, Wang X, Wang Y, Chen J, Yuan D, Liu Y, Du J. MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice. Int J Mol Sci 2023; 24:17173. [PMID: 38139002 PMCID: PMC10743272 DOI: 10.3390/ijms242417173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cleft palate (CP) is a common congenital birth defect. Cellular and morphological processes change dynamically during palatogenesis, and any disturbance in this process could result in CP. However, the molecular mechanisms steering this fundamental phase remain unclear. One study suggesting a role for miRNAs in palate development via maternal small extracellular vesicles (SEVs) drew our attention to their potential involvement in palatogenesis. In this study, we used an in vitro model to determine how SEVs derived from amniotic fluid (ASVs) and maternal plasma (MSVs) influence the biological behaviors of mouse embryonic palatal mesenchyme (MEPM) cells and medial edge epithelial (MEE) cells; we also compared time-dependent differential expression (DE) miRNAs in ASVs and MSVs with the DE mRNAs in palate tissue from E13.5 to E15.5 to study the dynamic co-regulation of miRNAs and mRNAs during palatogenesis in vivo. Our results demonstrate that some pivotal biological activities, such as MEPM proliferation, migration, osteogenesis, and MEE apoptosis, might be directed, in part, by stage-specific MSVs and ASVs. We further identified interconnected networks and key miRNAs such as miR-744-5p, miR-323-5p, and miR-3102-5p, offering a roadmap for mechanistic investigations and the identification of early CP biomarkers.
Collapse
Affiliation(s)
- Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Dong Yuan
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China;
| | - Ying Liu
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.P.); (Z.W.); (X.Z.); (X.W.); (Y.W.); (J.C.); (Y.L.)
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China;
| |
Collapse
|
8
|
Chamberlain F, Grammatopoulos D. Methodology for Isolation of miRNA From the Serum of Women Investigated for Pre-eclampsia. Cureus 2023; 15:e46181. [PMID: 37905272 PMCID: PMC10613333 DOI: 10.7759/cureus.46181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Background Pre-eclampsia remains a leading cause of maternal and foetal mortality with a poorly understood pathophysiology. It can lead to a range of clinical presentations, but proteinuria and hypertension are key components of the diagnosis. These signs arise due to disordered placental implantation due to poor trophoblastic invasion, resulting in placental oxidative stress due to hypoxia. Oxidative stress triggers the release of syncytiotrophoblast microvesicles (STMBs), of which placenta-derived exosomes may be a key component. The high specificity of exosomes for their cell of origin makes them ideal candidates as diagnostic biomarkers. We are particularly interested in the miRNAs (microRNAs) contained within these exosomes, as they may give us an insight into the genomic regulation within the pre-eclamptic placenta that leads to the disease state. The development of workflows for miRNA quantitation may enable us to identify novel biomarkers. Methods We extracted exosomes and purified total RNA from 23 serum samples using the Norgen Plasma/Serum Exosome Purification and RNA Isolation Midi Kit. We then used the bioanalyser to determine the concentration and quality of the RNA obtained. It uses rapid electrophoresis, requires minimal sample sizes, and can assess the quality of genetic material as small as 25 bases. Results We have successfully isolated RNA from these samples; however, the concentration of the total RNA was too low for downstream molecular analysis. We did gain insight into how to optimise and develop the workflow so that, with each attempt, the yield increased. Our greatest concentrations were obtained by combining serum samples from multiple patients, demonstrating that we needed a higher volume to optimise the yield. Future studies should aim to obtain samples specifically for use in this research so that we can process a larger volume of serum. Conclusions We have also noted that there is a positive correlation between the overall concentration of total RNA and a high sFlt-1/PlGF ratio. Preliminary analysis from Illumina identified with a high degree of confidence the presence of three miRNAs, namely, mir-498(46), mir-122(1), and mir-134(41). Further work is necessary to validate these findings and should focus on the possible future role of these miRNAs as biomarkers for the early diagnosis of pre-eclampsia.
Collapse
|
9
|
Mohiti Ardakani E, Mazaheri M, Ph.D., Forouzanfar M, Mojibian M, Jafarinia M. Crucial role of corticotropin-releasing hormone, corticotropin-releasing hormone -binding protein, mir-200c, and mir-181a in preterm delivery: A case-control study. Int J Reprod Biomed 2023; 21:715-722. [PMID: 37969569 PMCID: PMC10643681 DOI: 10.18502/ijrm.v21i9.14398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 11/17/2023] Open
Abstract
Background Preterm birth before 37th wk of gestation is called premature birth. Corticotropin-releasing hormone (CRH) and CRH-binding protein (BP) act on various maternal and fetal tissues during pregnancy, such as the myometrium, which regulates the transition from the dormant phase of the uterus to the active phase. Studies have shown that mir-200c and mir-181a interact with CRH and CRH-BP. Objective The present study aimed to investigate the expression of mir-200c, mir-181a, CRH, and CRH-BP in women with a history of preterm birth. Materials and Methods In this case-control study, the gene expression level of mir-200c, mir-181a, CRH, and CRH-BP in placental tissue samples obtained from 48 women with a history of preterm labor was assessed in the Mojibian hospital of Yazd, Iran, from January to March 2023. Differences between mir-200c, mir-181a CRH, and CRH-BP gene expressions among cases and controls were assessed. Results The outcomes indicated that the expression of CRH increased with going on to the regular parturition time (p < 0.001). While outcomes indicated, CRH-BP decreased with going on to the regular parturition time (p < 0.001). In addition, the results showed that the expression of mir-181a increased and mir-200c decreased with approaching the normal delivery time (p < 0.001). Conclusion In conclusion, the expressions of mir-200c, mir-181a, CRH, and CRH-BP were dissimilar in different weeks of gestation. It could be proposed to use mir-200c, mir-181a, CRH, and CRH-BP as biomarkers to weigh the exact delivery time, which could minimize the side effects of preterm labor for the mother and fetus.
Collapse
Affiliation(s)
- Ehsan Mohiti Ardakani
- Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohsen Forouzanfar
- Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Mojtaba Jafarinia
- Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
10
|
Guo C, Yin X, Yao S. The effect of MicroRNAs variants on idiopathic recurrent pregnancy loss. J Assist Reprod Genet 2023; 40:1589-1595. [PMID: 37199867 PMCID: PMC10352210 DOI: 10.1007/s10815-023-02827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Although the importance of miRNA variants in female reproductive disorders has been frequently reported, the association between miRNA polymorphisms and recurrent pregnancy loss (RPL) has been poorly studied. In this study, we aimed to assess the correlation of four different miRNA variants to unexplained RPL. METHODS AND RESULTS The prevalence of four SNPs including miR-21 rs1292037, miR-155-5p rs767649, miR-218-2 rs11134527, and miR-605 rs2043556 in 280 cases with iRPL and 280 controls was performed. The DNA was extracted from all subjects and the SNPs were genotyped using RFLP-PCR methods. The data revealed that rs1292037 and rs767649 were significantly associated with higher rates of iRPL in patients compared with controls while rs11134527 and rs2043556 showed no association with increased rates of iRPL among patients. The haplotypes T-A-G-G and T-A-G-A were the most frequent in both cases and controls. Three haplotypes including T-T-G-A, C-T-G-G, and T-A-A-A showed significantly different frequencies in patients in comparison to healthy females. CONCLUSION This study suggests that rs1292037 and rs767649 could be risk factors for increased rates of iRPL.
Collapse
Affiliation(s)
- Chunlei Guo
- Department of Obstetrics, Hengshui People's Hospital, 180 East Renmin Rd, Hengshui, 053000, China
| | - Xuejing Yin
- Department of Obstetrics, Hengshui People's Hospital, 180 East Renmin Rd, Hengshui, 053000, China
| | - Shuiping Yao
- Department of Obstetrics, Hengshui People's Hospital, 180 East Renmin Rd, Hengshui, 053000, China.
| |
Collapse
|
11
|
Heidarzadeh M, Zarebkohan A, Rahbarghazi R, Sokullu E. Protein corona and exosomes: new challenges and prospects. Cell Commun Signal 2023; 21:64. [PMID: 36973780 PMCID: PMC10041507 DOI: 10.1186/s12964-023-01089-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
12
|
Foley HB, Howe CG, Eckel SP, Chavez T, Gevorkian L, Reyes EG, Kapanke B, Martinez D, Xue S, Suglia SF, Bastain TM, Marsit C, Breton CV. Depression, perceived stress, and distress during pregnancy and EV-associated miRNA profiles in MADRES. J Affect Disord 2023; 323:799-808. [PMID: 36563790 PMCID: PMC9844263 DOI: 10.1016/j.jad.2022.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/17/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNA (miRNA) circulating in plasma has been proposed as biomarkers for a variety of diseases and stress measures, including depression, stress, and trauma. However, few studies have examined the relationship between stress and miRNA during pregnancy. METHODS In this study, we examined associations between measures of stress and depression during pregnancy with miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, California. Extracellular-vesicle- (EV-) associated miRNA were isolated from maternal plasma and quantified using the Nanostring nCounter platform. Correlations for stress-associated miRNA were also calculated for 89 matching cord blood samples. RESULTS Fifty miRNA were nominally associated with depression, perceived stress, and prenatal distress (raw p < 0.05) with 17 miRNA shared between two or more stress measures. Two miRNA (miR-150-5p and miR-148b-3p) remained marginally significant after FDR adjustment (p < 0.10). Fifteen PANTHER pathways were enriched for predicted gene targets of the 50 miRNA associated with stress. Clusters of maternal and neonate miRNA expression suggest a link between maternal and child profiles. LIMITATIONS The study evaluated 142 miRNA and was not an exhaustive analysis of all discovered miRNA. Evaluations for stress, depression and trauma were based on self-reported instruments, rather than diagnostic tools. CONCLUSIONS Depression and stress during pregnancy are associated with some circulating EV miRNA. Given that EV miRNA play important roles in maternal-fetal communication, this may have downstream consequences for maternal and child health, and underscore the importance of addressing mental health during pregnancy, especially in health disparities populations.
Collapse
Affiliation(s)
- Helen Bermudez Foley
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States of America
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Thomas Chavez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Lili Gevorkian
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Interface Team, Fulgent Genetics, Inc., Temple City, CA, United States of America
| | - Eileen Granada Reyes
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Bethany Kapanke
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Danilo Martinez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shanyan Xue
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
13
|
Saadeldin IM, Ehab S, Swelum AA. Potential roles of extracellular vesicles as a noninvasive tool for prenatal genetic diagnosis. F&S SCIENCE 2023; 4:36-43. [PMID: 36736894 DOI: 10.1016/j.xfss.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
The rate of infertility is increasing owing to genetic and environmental factors. Consequently, assisted reproductive technology has been introduced as an alternative. Bearing in mind the global trend toward the transfer of only one embryo, there is an increasing trend for assessing embryo quality before transfer through prenatal genetic diagnosis (PGD) tests. This ensures that the best-quality embryos are implanted into the uterus. In the in vitro fertilization cycle, PGD is not only used for diseases or quality checks before embryo freezing but also for evaluating unfortunate risks, such as aneuploidy, signs of early abortions, and preterm birth. However, traditional preimplantation genetic testing and screening approaches are invasive and harm the health of both the mother and embryo, raising the risk of miscarriage. In the last decade, embryonic extracellular vesicles (EVs) have been investigated and have emerged as a promising diagnostic tool. In this mini-review, we address the use of EVs as a noninvasive biomarker in PGD to test for biological hazards within the embryo without invading its cells. We summarize the state-of-the-art in the use of the embryo's EV content, genomic DNA, messenger RNA, and microRNA in the spent culture medium and their relationship with embryo quality, successful implantation, and pregnancy.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Seif Ehab
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Giza, Egypt; Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
14
|
Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med (Berl) 2023; 101:65-81. [PMID: 36538060 PMCID: PMC9977902 DOI: 10.1007/s00109-022-02278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 03/02/2023]
Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clinical data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings into a clinical non-invasive prenatal test.
Collapse
Affiliation(s)
- Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Robyn R Lotto
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,School of Nursing and Allied Health, Liverpool John Moores University, Tithebarn St, Liverpool, L2 2ER, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Iain M Dykes
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK. .,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
15
|
Mestry C, Ashavaid TF, Shah SA. Key methodological challenges in detecting circulating miRNAs in different biofluids. Ann Clin Biochem 2023; 60:14-26. [PMID: 36113172 DOI: 10.1177/00045632221129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The technological advancement in diagnostic techniques has immensely improved the capability of predicting disease progression. Yet, there is a great interest in developing newer biomarkers that can enhance disease risk prediction thereby minimising the associated morbidity and mortality. Circulating miRNAs, a non-coding RNA molecule, are critical regulators in the pathophysiology of various complex multifactorial diseases. In recent years, circulating miRNAs have been enormously studied and are considered as an emerging biomarker due to their easy accessibility, stability, and detection by sequence-specific amplification methods. However, there is a distinct lack of consensus regarding the preanalytical factors such as preferred sample selection, methodological aspects, etc that may independently or together influence the detection of circulating miRNAs resulting in erroneous expression profiles. Therefore, the present review makes an attempt to highlight the various pre-analytical and analytical factors that can potentially influence the circulating miRNA levels. Literature on circulating miRNA's stability, processing and quantitation in different biofluids along with the effect of various controllable and uncontrollable factors influencing circulating miRNA expression have been summarised in the current review.
Collapse
Affiliation(s)
- Chitra Mestry
- Research Laboratories, 29537P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Swarup Av Shah
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| |
Collapse
|
16
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
17
|
The exosome: a review of current therapeutic roles and capabilities in human reproduction. Drug Deliv Transl Res 2023; 13:473-502. [PMID: 35980542 PMCID: PMC9794547 DOI: 10.1007/s13346-022-01225-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
Exosomes are nano-vesicles (30-150 nm) which may be useful as therapeutic delivery vehicles and as diagnostic biomarkers. Exosomes are produced naturally within the human body and therefore are not prone to immunogenicity effects which would otherwise destroy unelicited foreign bodies. Clinically, they have been regarded as ideal candidates for applications relating to biomarker developments for the early detection of different diseases. Furthermore, exosomes may be of interest as potential drug delivery vehicles, which may improve factors such as bioavailability of loaded molecular cargo, side effect profiles, off-target effects, and pharmacokinetics of drug molecules. In this review, the therapeutic potential of exosomes and their use as clinical biomarkers for early diagnostics will be explored, alongside exosomes as therapeutic delivery vehicles. This review will evaluate techniques for cargo loading, and the capacity of loaded exosomes to improve various reproductive disease states. It becomes important, therefore, to consider factors such as loading efficiency, loading methods, cell viability, exosomal sources, exosome isolation, and the potential therapeutic benefits of exosomes. Issues related to targeted drug delivery will also be discussed. Finally, the variety of therapeutic cargo and the application of appropriate loading methods is explored, in the context of establishing clinical utility. Exosomes have more recently been widely accpeted as potential tools for disease diagnostics and the targeted delivery of certain therapeutic molecules-and in due time exosomes will be utilised more commonly within the clinical setting. Specifically, exosomal biomarkers can be identified and related to various detrimental conditions which occur during pregnancy. Considering, this review will explore the potential future of exosomes as both diagnostic tools and therapeutic delivery vehicles to treat related conditions, including the challenges which exist towards incorporating exosomes within the clinical environment to benefit patients.
Collapse
|
18
|
Fetal Myocardial Expression of GLUT1: Roles of BPA Exposure and Cord Blood Exosomes in a Rat Model. Cells 2022; 11:cells11203195. [PMID: 36291063 PMCID: PMC9601122 DOI: 10.3390/cells11203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 μg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.
Collapse
|
19
|
Brancaccio M, Giachino C, Iazzetta AM, Cordone A, De Marino E, Affinito O, Vivo M, Calabrò V, Pollice A, Angrisano T. Integrated Bioinformatics Analysis Reveals Novel miRNA as Biomarkers Associated with Preeclampsia. Genes (Basel) 2022; 13:genes13101781. [PMID: 36292666 PMCID: PMC9601722 DOI: 10.3390/genes13101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Preeclampsia is a leading cause of perinatal maternal-foetal mortality and morbidity. This study aims to identify the key microRNAs (miRNA) in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE119799 for plasma and GSE177049 for the placenta. Each dataset consisted of five patients (PE) and five controls (N). From a technical point of view, we analysed the counts per million (CPM) for both datasets, highlighting 358 miRNAs in common, 78 unique for plasma and 298 unique for placenta. At the same time, we performed an expression differential analysis (|logFC| ≥ 1|and FDR ≤ 0.05) to evaluate the biological impact of the miRNAs. This approach allowed us to highlight 321 miRNAs in common between plasma and placenta, within which four were upregulated in plasma. Furthermore, the same analysis revealed five miRNAs expressed exclusively in plasma; these were also upregulated. In conclusion, the in-depth bioinformatics analysis conducted during our study will allow us, on the one hand, to verify the targets of each of the nine identified miRNAs; on the other hand, to use them both as new non-invasive biomarkers and as therapeutic targets for the development of personalised treatments.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| | - Caterina Giachino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Antonio Cordone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Elena De Marino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ornella Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vivo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| |
Collapse
|
20
|
Vishnyakova P, Kuznetsova M, Poltavets A, Fomina M, Kiseleva V, Muminova K, Potapova A, Khodzhaeva Z, Pyregov A, Trofimov D, Elchaninov A, Sukhikh G, Fatkhudinov T. Distinct gene expression patterns for CD14++ and CD16++ monocytes in preeclampsia. Sci Rep 2022; 12:15469. [PMID: 36104441 PMCID: PMC9474473 DOI: 10.1038/s41598-022-19847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Preeclampsia (PE) is a serious gestational complication affecting the life of a mother and child. The immunophenotype and gene expression profile of isolated blood monocyte subpopulations of pregnant women with PE have not been studied before. In this work, we assessed changes in CD14++ and CD16++ monocyte subpopulations in PE and physiological pregnancy (n = 33). Immunophenotyping, immunomagnetic sorting of monocytes and analysis of the transcriptional profile of their genes were carried out. The percentage of classical monocytes was significantly lower, while the intermediate fraction of monocytes was significantly higher in late-onset PE compared to control. Transcriptome analysis of late-onset PE classical CD14++ monocytes revealed significant activation of inflammation mediated by chemokine and cytokine signalling pathways; apoptosis; regulation of transcription from RNA polymerase II promoter in response to stress and others. The most suppressed signalling pathways were associated with T cell activation and selection. In CD16++ monocytes of late-onset PE cases, positive regulation of cell-cell adhesion, integrin signalling pathway, blood coagulation cascade were the most activated ones. The inflammation mediated by chemokine and cytokine signalling pathway and p53 pathway were the most down-regulated in CD16++ monocytes. The obtained results indicate profound changes occurring to two most polar monocyte subpopulations in PE and their different roles in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia.
- Peoples' Friendship University of Russia, Moscow, Russia.
| | - Maria Kuznetsova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Mariia Fomina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alexey Pyregov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Dmitry Trofimov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia, Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
21
|
Maligianni I, Yapijakis C, Nousia K, Bacopoulou F, Chrousos G. Exosomes and exosomal non‑coding RNAs throughout human gestation (Review). Exp Ther Med 2022; 24:582. [PMID: 35949320 PMCID: PMC9353550 DOI: 10.3892/etm.2022.11518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, research on exosomes and their content has been intensive, which has revealed their important role in cell-to-cell communication, and has implicated exosomal biomolecules in a broad spectrum of physiological processes, as well as in the pathogenesis of various diseases. Pregnancy and its normal progression rely highly on the efficient communication between the mother and the fetus, mainly mediated by the placenta. Recent studies have established the placenta as an important source of circulating exosomes and have demonstrated that exosome release into the maternal circulation gradually increases during pregnancy, starting from six weeks of gestation. This orchestrates maternal-fetal crosstalk, including maternal immune tolerance and pregnancy-associated metabolic adaptations. Furthermore, an increased number of secreted exosomes, along with altered patterns of exosomal non-coding RNAs (ncRNAs), especially microRNAs and long non-coding RNAs (lncRNAs), have been observed in a number of pregnancy complications, such as gestational diabetes mellitus and preeclampsia. The early detection of exosomes and specific exosomal ncRNAs in various biological fluids during pregnancy highlights them as promising candidate biomarkers for the diagnosis, prognosis and treatment of numerous pregnancy disorders in adolescents and adults. The present review aimed to provide insight into the current knowledge regarding the potential, only partially elucidated, role of exosomes and exosomal cargo in the regulation and progression of normal pregnancy, as well as their potential dysregulation and contribution to pathological pregnancy situations.
Collapse
Affiliation(s)
- Ioanna Maligianni
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Yapijakis
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantina Nousia
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
22
|
Jia S, Zhang Q, Wang Y, Wei X, Gu H, Liu D, Ma W, He Y, Luo W, Yuan Z. Identification by RNA-Seq of let-7 clusters as prenatal biomarkers for nonsyndromic cleft lip with palate. Ann N Y Acad Sci 2022; 1516:234-246. [PMID: 35854669 DOI: 10.1111/nyas.14868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nonsyndromic cleft lip with palate (nsCLP) is a common congenital malformation; however, early prenatal diagnosis is challenging and pathogenesis remains unclear. The purpose of this study was to determine the diagnostic potential of miRNAs in plasma-derived exosomes and whole plasma of pregnant women to identify nsCLP and an underlying mechanism. Combined RNA sequencing analysis was performed on samples from plasma exosomes and whole plasma of pregnant women carrying normal fetuses or fetuses with nsCLP in an ongoing birth cohort, in addition to lip samples from nsCLP fetuses and healthy controls. Eight let-7 cluster miRNAs (hsa-let-7a-3p, hsa-let-7a-5p, hsa-let-7c-5p, hsa-let-7d-3p, hsa-let-7d-5p, hsa-let-7e-5p, hsa-let-7f-5p, and hsa-miR-98-5p) in plasma exosomes from pregnant women provided higher sensitivity/specificity for diagnosing fetal nsCLP than those in plasma. Area under the receiver operating characteristic curve value of the eight miRNAs from plasma exosomes was 0.992. Among them, hsa-let-7a-3p showed better diagnostic capability and was downregulated in nsCLP fetal lip tissues. Upstream and downstream target genes of hsa-let-7a-3p were screened and confirmed. Our work highlights the potential clinical application value of let-7 clusters in predicting nsCLP and associates as a new regulatory axis (EN2-LIN28A-hsa-let-7a-3p-HHIP-GLI2) with human nsCLP pathogenesis.
Collapse
Affiliation(s)
- Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Qiang Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China.,Department of Pulmonary and Critical Care Medicine, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China.,Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| |
Collapse
|
23
|
Shekibi M, Heng S, Nie G. MicroRNAs in the Regulation of Endometrial Receptivity for Embryo Implantation. Int J Mol Sci 2022; 23:ijms23116210. [PMID: 35682889 PMCID: PMC9181585 DOI: 10.3390/ijms23116210] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
Development of endometrial receptivity is crucial for successful embryo implantation and pregnancy initiation. Understanding the molecular regulation underpinning endometrial transformation to a receptive state is key to improving implantation rates in fertility treatments such as IVF. With microRNAs (miRNAs) increasingly recognized as important gene regulators, recent studies have investigated the role of miRNAs in the endometrium. Studies on miRNAs in endometrial disorders such as endometriosis and endometrial cancer have been reviewed previously. In this minireview, we aim to provide an up-to-date knowledge of miRNAs in the regulation of endometrial receptivity. Since endometrial remodelling differs considerably between species, we firstly summarised the key events of the endometrial cycle in humans and mice and then reviewed the miRNAs identified so far in these two species with likely functional significance in receptivity establishment. To date, 29 miRNAs have been reported in humans and 15 miRNAs in mice within various compartments of the endometrium that may potentially modulate receptivity; miRNAs regulating the Wnt signalling and those from the let-7, miR-23, miR-30, miR-200 and miR-183 families are found in both species. Future studies are warranted to investigate miRNAs as biomarkers and/or therapeutic targets to detect/improve endometrial receptivity in human fertility treatment.
Collapse
|
24
|
Yakubovich EI, Polischouk AG, Evtushenko VI. Principles and Problems of Exosome Isolation from Biological Fluids. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022; 16:115-126. [PMID: 35730027 PMCID: PMC9202659 DOI: 10.1134/s1990747822030096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/03/2022]
Abstract
Exosomes, the subclass of small membrane extracellular vesicles, have great diagnostic and therapeutic potential, but the lack of standardized methods for their efficient isolation and analysis limits the introduction of exosomal technologies into clinical practice. This review discusses the problems associated with the isolation of exosomes from biological fluids, as well as the principles of traditional and alternative methods of isolation. The aim of the presented review is to illustrate the variety of approaches based on the physical and biochemical properties of exosomes that can be used for exosome isolation. The advantages and disadvantages of different methods are discussed.
Collapse
Affiliation(s)
- E. I. Yakubovich
- Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 197758 St. Petersburg, Russia
| | - A. G. Polischouk
- Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 197758 St. Petersburg, Russia
| | - V. I. Evtushenko
- Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 197758 St. Petersburg, Russia
| |
Collapse
|
25
|
miR-138-5p Inhibits Vascular Mimicry by Targeting the HIF-1α/VEGFA Pathway in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:7318950. [PMID: 35669101 PMCID: PMC9167126 DOI: 10.1155/2022/7318950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour vascular mimicry (VM) is the process by which new blood vessels are formed by tumour cells rather than endothelial cells. An increasing number of studies have revealed that the VM process is associated with cancer progression and metastasis. MiR-138-5p has been reported to act as a tumour suppressor in many cancers. However, the role and underlying mechanism of miR-138-5p in hepatocellular carcinoma (HCC) VM remain unclear. In this study, VM density was detected by CD31/periodic acid-Schiff double staining in HCC clinical specimens. We found that miR-138-5p expression correlated strongly and negatively with microvessel density. Additionally, the miR-138-5p mimic or inhibitor decreased or increased, respectively, tube formation capacity in HepG2 and Hep3B cells. Consistent with this finding, miR-138-5p repressed vessel density in vivo. Moreover, miR-138-5p targeted hypoxia-inducible factor 1α (HIF-1α) and regulated the expression of HIF-1α and vascular endothelial growth factor A (VEGFA), which are established classical master regulators for angiogenesis. Consistent with these findings, the HIF-1α inhibitor CAY10585 effectively blocked HCC cell VM and VEGFA expression. In conclusion, miR-138-5p inhibits HepG2 and Hep3B cell VM by blocking the HIF-1α/VEGFA pathway. Therefore, miR-138-5p may serve as a useful therapeutic target for miRNA-based HCC therapy.
Collapse
|
26
|
The theranostic roles of extracellular vesicles in pregnancy disorders. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
27
|
Rajagopal R, Baltazar MT, Carmichael PL, Dent MP, Head J, Li H, Muller I, Reynolds J, Sadh K, Simpson W, Spriggs S, White A, Kukic P. Beyond AOPs: A Mechanistic Evaluation of NAMs in DART Testing. FRONTIERS IN TOXICOLOGY 2022; 4:838466. [PMID: 35295212 PMCID: PMC8915803 DOI: 10.3389/ftox.2022.838466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
New Approach Methodologies (NAMs) promise to offer a unique opportunity to enable human-relevant safety decisions to be made without the need for animal testing in the context of exposure-driven Next Generation Risk Assessment (NGRA). Protecting human health against the potential effects a chemical may have on embryo-foetal development and/or aspects of reproductive biology using NGRA is particularly challenging. These are not single endpoint or health effects and risk assessments have traditionally relied on data from Developmental and Reproductive Toxicity (DART) tests in animals. There are numerous Adverse Outcome Pathways (AOPs) that can lead to DART, which means defining and developing strict testing strategies for every AOP, to predict apical outcomes, is neither a tenable goal nor a necessity to ensure NAM-based safety assessments are fit-for-purpose. Instead, a pragmatic approach is needed that uses the available knowledge and data to ensure NAM-based exposure-led safety assessments are sufficiently protective. To this end, the mechanistic and biological coverage of existing NAMs for DART were assessed and gaps to be addressed were identified, allowing the development of an approach that relies on generating data relevant to the overall mechanisms involved in human reproduction and embryo-foetal development. Using the knowledge of cellular processes and signalling pathways underlying the key stages in reproduction and development, we have developed a broad outline of endpoints informative of DART. When the existing NAMs were compared against this outline to determine whether they provide comprehensive coverage when integrated in a framework, we found them to generally cover the reproductive and developmental processes underlying the traditionally evaluated apical endpoint studies. The application of this safety assessment framework is illustrated using an exposure-led case study.
Collapse
Affiliation(s)
- Ramya Rajagopal
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shepherd MC, Radnaa E, Tantengco OA, Kechichian T, Urrabaz-Garza R, Kammala AK, Sheller-Miller S, Menon R. Extracellular vesicles from maternal uterine cells exposed to risk factors cause fetal inflammatory response. Cell Commun Signal 2021; 19:100. [PMID: 34620169 PMCID: PMC8499538 DOI: 10.1186/s12964-021-00782-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Background Fetal cell-derived exosomes (extracellular vesicles, 40–160 nm) are communication channels that can signal parturition by inducing inflammatory changes in maternal decidua and myometrium. Little is known about maternal cell-derived exosomes and their functional roles on the fetal side. This study isolated and characterized exosomes from decidual and myometrial cells grown under normal and inflammatory/oxidative stress conditions and determined their impact on fetal membrane cells. Methods Decidual and myometrial cells were grown under standard culture conditions (control) or exposed for 48 h to cigarette smoke extract or tumor necrosis factor-α, as proxies for oxidative stress and inflammation, respectively. Exosomes were isolated from media (differential ultra-centrifugation followed by size exclusion chromatography), quantified (nano particle tracking analysis), and characterized in terms of their size and morphology (cryo-electron microscopy), markers (dot blot), and cargo contents (proteomics followed by bioinformatics analysis). Maternal exosomes (109/mL) were used to treat amnion epithelial cells and chorion trophoblast cells for 24 h. The exosome uptake by fetal cells (confocal microscopy) and the cytokine response (enzyme-linked immunosorbent assays for IL-6, IL-10, and TNF-α) was determined. Results Exosomes from both decidual and myometrial cells were round and expressed tetraspanins and endosomal sorting complexes required for transport (ESCRT) protein markers. The size and quantity was not different between control and treated cell exosomes. Proteomic analysis identified several common proteins in exosomes, as well as unique proteins based on cell type and treatment. Compared to control exosomes, pro-inflammatory cytokine release was higher in both amnion epithelial cell and chorion trophoblast cell media when the cells had been exposed to exosomes from decidual or myometrial cells treated with either cigarette smoke extract or tumor necrosis factor-α. In chorion trophoblast cells, anti-inflammatory IL-10 was increased by exosomes from both decidual and myometrial cells. Conclusion Various pathophysiological conditions cause maternal exosomes to carry inflammatory mediators that can result in cell type dependent fetal inflammatory response. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00782-3.
Collapse
Affiliation(s)
- Megan C Shepherd
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ourlad Alzeus Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
29
|
Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021; 9:1061. [PMID: 34440265 PMCID: PMC8393483 DOI: 10.3390/biomedicines9081061] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by cells, both constitutively and after cell activation, and are present in different types of biological fluid. Exosomes are involved in the pathogenesis of diseases, such as cancer, neurodegenerative diseases, pregnancy disorders and cardiovascular diseases, and have emerged as potential non-invasive biomarkers for the detection, prognosis and therapeutics of a myriad of diseases. In this review, we describe recent advances related to the regulatory mechanisms of exosome biogenesis, release and molecular composition, as well as their role in health and disease, and their potential use as disease biomarkers and therapeutic targets. In addition, the advantages and disadvantages of their main isolation methods, characterization and cargo analysis, as well as the experimental methods used for exosome-mediated drug delivery, are discussed. Finally, we present potential perspectives for the use of exosomes in future clinical practice.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| |
Collapse
|
30
|
Reza Karimzadeh M, Ehtesham N, Mortazavi D, Azhdari S, Mosallaei M, Nezamnia M. Alterations of epigenetic landscape in Down syndrome carrying pregnancies: A systematic review of case-control studies. Eur J Obstet Gynecol Reprod Biol 2021; 264:189-199. [PMID: 34325214 DOI: 10.1016/j.ejogrb.2021.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Great attention is currently paid to both the pathogenetic mechanisms and non-invasive prenatal diagnosis (NIPD) of Down syndrome (DS). It has been posited that dysregulation of epigenetic signatures including DNA methylation and microRNAs (miRNAs) crucially contribute to the pathomechanism of DS. Therefore, we aimed to perform a systematic review of case-control publications that have examined the differences in epigenetic landscape between pregnancies bearing euploid fetuses and those affected with DS to provide a focused insight into the pathophysiology of DS and also novel biomarkers for NIPD of DS. STUDY DESIGN Pertinent keywords were utilized to search into PubMed, Scopus, and Google Scholar. We enrolled studies that have compared the pattern of miRNAs expression profile or DNA methylation between pregnant women who carries DS fetuses and those with euploid fetuses. RESULTS An assessment of 599 articles resulted in, finally, 18 eligible studies (12 miRNAs and 6 DNA methylation). The most investigated miRNAs were those that are encoded by genes on chromosome 21 and more hypermethylation regions in DS fetuses than euploids with nearly evenly distribution on all chromosomes were found. Distinct mechanisms with potential therapeutic purposes have been put forward for the involvement of epigenetic perturbations in the etiopathogenesis of DS. CONCLUSION There is a disagreement in the recruiting of epigenetic biomarkers for NIPD of DS. This heterogeneity in results of the qualified publications emanates from confounding factors such as differences in demographic data of participants, analytical platforms, and study design. Hence, before harnessing epigenetic signatures for NIPD of DS, more experiments are required.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences , Tehran, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
31
|
Extracellular vesicle-enriched miRNA profiles across pregnancy in the MADRES cohort. PLoS One 2021; 16:e0251259. [PMID: 33979365 PMCID: PMC8115775 DOI: 10.1371/journal.pone.0251259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) circulating in plasma have been proposed as biomarkers for a variety of conditions and diseases, including complications during pregnancy. During pregnancy, about 15-25% of maternal plasma exosomes, a small size-class of EVs, are hypothesized to originate in the placenta, and may play a role in communication between the fetus and mother. However, few studies have addressed changes in miRNA over the course of pregnancy with repeated measures, nor focused on diverse populations. We describe changes in miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, CA. miRNA derived from extracellular-vesicles (EVs) were isolated from maternal blood plasma samples collected in early and late pregnancy. In this study, we identified 64 of 130 detectable miRNA which significantly increased with gestational age at the time of collection (GA), and 26 which decreased with GA. Possible fetal sex-specific associations were observed for 30 of these 90 significant miRNA. Predicted gene targets for miRNA significantly associated with GA were identified using MirDIP and were found to be enriched for Gene Ontology categories that included energetic and metabolic processes but were underrepresented in immune-related categories. Circulating EV-associated miRNA during pregnancy are likely important for maternal-fetal communication, and may play roles in supporting and maintaining a healthy pregnancy, given the changing needs of the fetus.
Collapse
|
32
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
33
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|
34
|
Chen M, Han H, Zhou S, Wen Y, Chen L. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model. Stem Cell Res Ther 2021; 12:173. [PMID: 33712069 PMCID: PMC7953707 DOI: 10.1186/s13287-021-02239-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a metabolic bone disease due to the imbalance of osteogenesis and bone resorption, in which, bone marrow mesenchymal stem cells (BMSCs) have a significant effect as the seed cells. Recent research has shown the function of Morusin on inhibiting osteoclast differentiation in vitro. However, whether Morusin can regulate the osteogenic differentiation in addition to the proliferation of BMSCs remains unclear. METHODS BMSCs were isolated from 4-week-old Wistar rats and then treated with different concentrations of Morusin for 3, 5, 7, and 14 days. The proliferation of BMSCs was detected by MTT assay. The effect of Morusin on osteogenic differentiation of BMSCs was detected by RT-qPCR, Western blotting, ALP, and Alizarin Red staining. The effect of Morusin on Wnt/β-catenin signaling pathway was analyzed by RT-qPCR, Western blotting, and immunofluorescence. Finally, in the ovariectomy-induced osteoporosis model, the anti-osteoporosis activity of Morusin was determined by micro-CT, HE, and immunohistochemistry. RESULTS The results showed the function of 2.5-10 μM Morusin in the promotion of the proliferation in addition to osteogenic differentiation of BMSCs. Moreover, it also has an impact in activating the Wnt/β-catenin signaling pathway via inhibition of β-catenin phosphorylation as well as promotion of its nuclear translocation. Upon Dickkopf-related protein-1 (DKK-1, an inhibitor of the Wnt/β-catenin signaling pathway) was added to the Morusin, Morusin had a decreased stimulatory osteogenic effect on BMSCs. Finally, in the rat OP model, we found that Morusin could also exert anti-osteoporosis activity in vivo. CONCLUSIONS This study indicates the ability of Morusin in the promotion of osteogenic differentiation of BMSCs via the activation of Wnt/β-catenin signaling pathway and also shows the potential of Morusin to be an agent for osteoporosis treatment.
Collapse
Affiliation(s)
- Ming Chen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Han
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Siqi Zhou
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
- Department of Orthopedics Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinxian Wen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
35
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA, Ponsuksili S. MicroRNA-mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int J Mol Sci 2021; 22:2313. [PMID: 33669156 PMCID: PMC7956714 DOI: 10.3390/ijms22052313] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad W Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
37
|
Jia S, Zhang Q, Wang Y, Wang Y, Liu D, He Y, Wei X, Gu H, Ma W, Luo W, Yuan Z. PIWI-interacting RNA sequencing profiles in maternal plasma-derived exosomes reveal novel non-invasive prenatal biomarkers for the early diagnosis of nonsyndromic cleft lip and palate. EBioMedicine 2021; 65:103253. [PMID: 33639402 PMCID: PMC7921467 DOI: 10.1016/j.ebiom.2021.103253] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Congenital malformations are common birth defects with high neonatal morbidity and mortality. It is essential to find simpler and more efficient biomarkers for early prenatal diagnosis. Therefore, we investigated PIWI-interacting RNAs (piRNAs) as potential prenatal biomarkers in plasma-derived exosomes from pregnant women carrying foetuses with congenital malformations. Methods Small RNA sequencing was used to screen piRNA biomarkers in plasma-derived exosomes of five pregnant women carrying foetuses with nonsyndromic cleft lip and palate (nsCLP) and five women carrying normal foetuses. Differentially expressed piRNAs were verified in 270 pregnant women, including 111 paired women carrying foetuses with congenital malformations and normal foetuses (at 24 gestational weeks), 10 paired women carrying foetuses with nsCLP and normal foetuses (at 15–19 gestational weeks), and 28 women at different stages of normal pregnancy. piRNA biomarkers were also verified in placentas, umbilical cords, fetal medial calf muscles, and lip tissues of nsCLP and normal foetuses. Findings We identified a biomarker panel of three pregnancy-associated exosomal piRNAs (hsa-piR-009228, hsa-piR-016659, and hsa-piR-020496) could distinguish nsCLP foetuses from normal foetuses. These three piRNAs had better diagnostic accuracy for nsCLP at the early gestational stage, at which time typical malformations were not detected upon prenatal ultrasound screening, and had diagnostic value for neural tube defects (NTDs) and congenital heart defects (CHDs). Interpretation Our work revealed the potential clinical applications of piRNAs for predicting nsCLP, NTDs, and CHDs. Funding National Key Research and Development Program, National Natural Science Foundation of China, and LiaoNing Revitalization Talents Program .
Collapse
Affiliation(s)
- Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Qiang Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China; Department of Pulmonary and Critical Care Medicine, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China; Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China.
| |
Collapse
|
38
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Mosaad E, Peiris HN, Holland O, Morean Garcia I, Mitchell MD. The Role(s) of Eicosanoids and Exosomes in Human Parturition. Front Physiol 2020; 11:594313. [PMID: 33424622 PMCID: PMC7786405 DOI: 10.3389/fphys.2020.594313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The roles that eicosanoids play during pregnancy and parturition are crucial to a successful outcome. A better understanding of the regulation of eicosanoid production and the roles played by the various end products during pregnancy and parturition has led to our view that accurate measurements of a panel of those end products has exciting potential as diagnostics and prognostics of preterm labor and delivery. Exosomes and their contents represent an exciting new area for research of movement of key biological factors circulating between tissues and organs akin to a parallel endocrine system but involving key intracellular mediators. Eicosanoids and enzymes regulating their biosynthesis and metabolism as well as regulatory microRNAs have been identified within exosomes. In this review, the regulation of eicosanoid production, abundance and actions during pregnancy will be explored. Additionally, the functional significance of placental exosomes will be discussed.
Collapse
Affiliation(s)
- Eman Mosaad
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Hassendrini N. Peiris
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Olivia Holland
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Isabella Morean Garcia
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D. Mitchell
- School of Biomedical Science, Institute of Health and Biomedical Innovation – Centre for Children’s Health Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|