1
|
Du ZW, Li YS, Jiang XC, Gao JQ. Nanoparticles Designed Based on the Blood-Brain Barrier for the Treatment of Cerebral Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410404. [PMID: 40042407 DOI: 10.1002/smll.202410404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is currently considered a significant factor affecting the prognosis of ischemic stroke. The blood-brain barrier (BBB) plays multiple roles in the treatment ofCI/RI. BBB leakage allows bloodborne toxins to exacerbate the stroke pathology. Yet as the physiological barrier that separates the blood from the brain, BBB also poses a significant obstacle to therapeutic drug delivery. Therefore, it is essential to consider both crossing and repairing the BBB in the process of the treatment of CI/RI. Leveraging the exceptional benefits of nanoparticles (NPs) for BBB penetration and targeted repair, numerous NPs are developed as promising drug delivery platforms. Considering the complex role of the BBB in CI/RI, this review delves into the strategies for designing NPs to cross the BBB, focusing on peptide-modified NPs, cell-mediated NPs, cell membrane-derived NPs, and BBB-modulating NPs. Additionally, it summarizes design strategies of NPs targeting endothelial cells (ECs), astrocytes, and those aimed at regulating the microenvironment to repair the BBB. On this basis, it reveals the prospects and challenges of NPs designed around the BBB in CI/RI treatment. And it highlights the need to combine BBB permeability promotion and BBB repair in nanoparticle strategies designed based on the BBB to achieve more effective treatment.
Collapse
Affiliation(s)
- Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A, Nadeau A, Juncker D, Nerguizian V, Burnier JV. Leveraging nature's nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. SCIENCE ADVANCES 2025; 11:eads5249. [PMID: 40009680 PMCID: PMC11864201 DOI: 10.1126/sciadv.ads5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Naturally occurring extracellular vesicles (EVs) and synthetic nanoparticles like liposomes have revolutionized precision diagnostics and medicine. EVs excel in biocompatibility and cell targeting, while liposomes offer enhanced drug loading capacity and scalability. The clinical translation of EVs is hindered by challenges including low yield and heterogeneity, whereas liposomes face rapid immune clearance and limited targeting efficiency. To bridge these gaps, biomimetic synthetic vesicles (SVs) have emerged as innovative platforms, combining the advantageous properties of EVs and liposomes. This review emphasizes critical aspects of EV biology, such as mechanisms of EV-cell interaction and source-dependent functionalities in targeting, immune modulation, and tissue regeneration, informing biomimetic SV engineering. We reviewed a broad array of biomimetic SVs, with a focus on lipid bilayered vesicles functionalized with proteins. These include cell-derived nanovesicles, protein-functionalized liposomes, and hybrid vesicles. By addressing current challenges and highlighting opportunities, this review aims to advance biomimetic SVs for transformative biomedical applications.
Collapse
Affiliation(s)
- Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering and Victor Philippe Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Tad Wu
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Ishman Kaur
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- École de technologie supérieure ÉTS, Montreal, QC, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Armen Erzingatzian
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - David Juncker
- Department of Biomedical Engineering and Victor Philippe Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | | | - Julia V. Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Chen S, Qi Z, Bai Y, Zhang Y, Zhan Q, Xia J. Inhibition of lncEPS by TLR4/NF-κB pathway induces ventilator-induced lung injury by decreasing its binding to and upregulating Hspa5. Int J Biol Macromol 2025; 286:138238. [PMID: 39617220 DOI: 10.1016/j.ijbiomac.2024.138238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Whether LincRNA erythroid prosurvival (LncEPS) reduces VILI remains unclear. A GSE200932 microarray was used to screen differentially expressed genes (DEGs). A VILI mouse model was constructed by mechanical ventilation (MV), with or without TAK242 or SN50 pretreatment. Airway transfection with adeno-associated virus (AAV) was used to overexpress lncEPS in alveolar macrophages (AMs). Lung tissues were collected to assess pathological injury and macrophage polarization. NLRP3 inflammasome, TLR4/NF-κB pathway activation and heat shock protein family A member 5 (Hspa5) in lung tissue and AMs wre evaluated. LncEPS localization and regulatory changes were assessed using in situ hybridization and RT-PCR. Lung tissues after lncEPS overexpression were subjected to transcriptomics. Chromatin isolation and mass spectrometry (MS) were performed to identify proteins interacting with lncEPS. GSE200932 microarray showed that the DEGs were related to NF-κB pathway, Toll-like receptor pathway and NOD-like receptor pathway. TAK242 or SN50 treatment increased polarization of M2 macrophages and decreased NLRP3 inflammasome activation by inhibiting TLR4/NF-κB pathway in VILI. Inhibition of TLR4/NF-κB pathway upregulated lncEPS expression in AMs. Overexpression of lncEPS increased polarization of M2 macrophages and decreased NLRP3 inflammasome activation, eventually alleviating VILI in mice. Mechanistically, lncEPS bound to Hspa5 and downregulated its expression to inhibit inflammatory response.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Peking Union Medical College, Chinese Academy of Medical Sciences, No 9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China
| | - Zhijiang Qi
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Peking Union Medical College, Chinese Academy of Medical Sciences, No 9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China.
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Peking Union Medical College, Chinese Academy of Medical Sciences, No 9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China.
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
4
|
Tian W, Zhang P, Yu N, Zhu J, Liu C, Liu X, Liu Y. Role of COX6C and NDUFB3 in septic shock and stroke. Open Med (Wars) 2024; 19:20241050. [PMID: 39655053 PMCID: PMC11627056 DOI: 10.1515/med-2024-1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 12/12/2024] Open
Abstract
Background Septic shock is a clinical syndrome characterized by acute circulatory disturbance. Stroke is an acute cerebrovascular disease caused by brain tissue damage. However, the relationship of COX6C and NDUFB3 to them is unclear. Method The stroke dataset GSE58294 and the septic shock dataset GSE15491 were downloaded from the gene expression omnibus database. Screening of differentially expressed genes (DEGs), weighted gene co-expression network analysis, construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis, and comparative toxicogenomics database (CTD) analysis were performed. Gene expression heat map was drawn. TargetScan screened miRNAs regulating central DEGs. Results A total of 664 DEGs were obtained. Gene ontology analysis showed that they were mainly enriched in leukocyte activation, intracellular vesicle, neutrophil activation, and cytokine receptor activity. According to Kyoto Encyclopedia of Genes and Genomes analysis, they are mainly enriched in metabolic pathways, phagosomes, and Staphylococcus aureus infection. Core genes (UQCRQ, USMG5 [ATP5MD], COX6C, NDUFB3, ATP5L [ATP5MG], COX7C, NDUFA1, NDUFA4) were highly expressed in septic shock and stroke samples. CTD analysis found that eight core genes are associated with liver enlargement, inflammation, proliferation, fibrosis, and necrosis. Conclusion COX6C and NDUFB3 genes are highly expressed in septic shock and stroke. The higher the COX6C and NDUFB3 genes, the worse the prognosis.
Collapse
Affiliation(s)
- Wenbin Tian
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junyu Zhu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuefang Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
6
|
Tikhonov A, Kachanov A, Yudaeva A, Danilik O, Ponomareva N, Karandashov I, Kostyusheva A, Zamyatnin AA, Parodi A, Chulanov V, Brezgin S, Kostyushev D. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024; 16:1306. [PMID: 39458635 PMCID: PMC11510494 DOI: 10.3390/pharmaceutics16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both "top-down" and "bottom-up" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.
Collapse
Affiliation(s)
- Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
7
|
Song C, Li Y, Han H, Zhang Y, Wang N. Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. Neurol Res 2024; 46:706-716. [PMID: 38735062 DOI: 10.1080/01616412.2024.2345024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/13/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. METHODS LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed. RESULTS LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis. CONCLUSION Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiying Han
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yueyue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zhang L, Wang IC, Meng S, Xu J. LincRNA-EPS Promotes Proliferation of Aged Dermal Fibroblast by Inducing CCND1. Int J Mol Sci 2024; 25:7677. [PMID: 39062918 PMCID: PMC11276818 DOI: 10.3390/ijms25147677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aging process is linked to numerous cellular changes, among which are modifications in the functionality of dermal fibroblasts. These fibroblasts play a crucial role in sustaining the healing of skin wounds. Reduced cell proliferation is a hallmark feature of aged dermal fibroblasts. Long intergenic non-coding RNA (lincRNAs), such as LincRNA-EPS (Erythroid ProSurvival), has been implicated in various cellular processes. However, its role in aged dermal fibroblasts and its impact on the cell cycle and its regulator, Cyclin D1 (CCND1), remains unclear. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of LincRNA-EPS was achieved through plasmid transfection. Cell proliferation was detected using the MTT assay. Real-time PCR was used to quantify relative gene expressions. Our findings indicate a noteworthy decline in the expression of LincRNA-EPS in aged dermal fibroblasts, accompanied by reduced levels of CCND1 and diminished cell proliferation in these aging cells. Significantly, the overexpression of LincRNA-EPS in aged dermal fibroblasts resulted in an upregulation of CCND1 expression and a substantial increase in cell proliferation. Mechanistically, LincRNA-EPS induces CCND1 expression by sequestering miR-34a, which was dysregulated in aged dermal fibroblasts, and directly targeting CCND1. These outcomes underscore the crucial role of LincRNA-EPS in regulating CCND1 and promoting cell proliferation in aged dermal fibroblasts. Our study provides novel insights into the molecular mechanisms underlying age-related changes in dermal fibroblasts and their implications for skin wound healing. The significant reduction in LincRNA-EPS expression in aged dermal fibroblasts and its ability to induce CCND1 expression and enhance cell proliferation highlight its potential as a therapeutic target for addressing age-related skin wound healing.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (I.C.W.); (S.M.)
| | - Iris C. Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (I.C.W.); (S.M.)
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Songmei Meng
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (I.C.W.); (S.M.)
| | - Junwang Xu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (I.C.W.); (S.M.)
| |
Collapse
|
9
|
Hao W, Yang W, Yang Y, Cheng T, Wei T, Tang L, Qian N, Yang Y, Li X, Jiang H, Wang M. Identification of lncRNA-miRNA-mRNA Networks in the Lenticular Nucleus Region of the Brain Contributes to Hepatolenticular Degeneration Pathogenesis and Therapy. Mol Neurobiol 2024; 61:1673-1686. [PMID: 37759104 PMCID: PMC10896925 DOI: 10.1007/s12035-023-03631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a recently discovered group of non-coding RNAs that play a crucial role in the regulation of various human diseases, especially in the study of nervous system diseases which has garnered significant attention. However, there is limited knowledge on the identification and function of lncRNAs in hepatolenticular degeneration (HLD). The objective of this study was to identify novel lncRNAs and determine their involvement in the networks associated with HLD. We conducted a comprehensive analysis of RNA sequencing (RNA-seq) data, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and computational biology to identify novel lncRNAs and explore their potential mechanisms in HLD. We identified 212 differently expressed lncRNAs, with 98 upregulated and 114 downregulated. Additionally, 32 differently expressed mRNAs were found, with 15 upregulated and 17 downregulated. We obtained a total of 1131 pairs of co-expressed lncRNAs and mRNAs by Pearson correlation test and prediction and annotation of the lncRNA-targeted miRNA-mRNA network. The differential lncRNAs identified in this study were found to be involved in various biological functions and signaling pathways. These include translational initiation, motor learning, locomotors behavior, dioxygenase activity, integral component of postsynaptic membrane, neuroactive ligand-receptor interaction, nuclear factor-kappa B (NF-κB) signaling pathway, cholinergic synapse, sphingolipid signaling pathway, and Parkinson's disease signaling pathway, as revealed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Six lncRNAs, including XR_001782921.1 (P < 0.01), XR_ 001780581.1 (P < 0.01), ENSMUST_00000207119 (P < 0.01), XR_865512.2 (P < 0.01), TCONS_00005916 (P < 0.01), and TCONS_00020683 (P < 0.01), showed significant differences in expression levels between the model group and normal group by RT-qPCR. Among these, four lncRNAs (TCONS_00020683, XR_865512.2, XR_001780581.1, and ENSMUST00000207119) displayed a high degree of conservation. This study provides a unique perspective for the pathogenesis and therapy of HLD by constructing the lncRNA-miRNA-mRNA network. This insight provides a foundation for future exploration in this field.
Collapse
Affiliation(s)
- Wenjie Hao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Cheng
- Department of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nannan Qian
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hailin Jiang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Meixia Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Hao C, Sha M, Ye Y, Wang C. Cell Membrane-Derived Nanovehicles for Targeted Therapy of Ischemic Stroke: From Construction to Application. Pharmaceutics 2023; 16:6. [PMID: 38276484 PMCID: PMC10819970 DOI: 10.3390/pharmaceutics16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS) is a prevalent form of stroke and a leading cause of mortality and disability. Recently, cell membrane-derived nanovehicles (CMNVs) derived from erythrocytes, thrombocytes, neutrophils, macrophages, neural stem cells, and cancer cells have shown great promise as drug delivery systems for IS treatment. By precisely controlling drug release rates and targeting specific sites in the brain, CMNVs enable the reduction in drug dosage and minimization of side effects, thus significantly enhancing therapeutic strategies and approaches for IS. While there are some reviews regarding the applications of CMNVs in the treatment of IS, there has been limited attention given to important aspects such as carrier construction, structural design, and functional modification. Therefore, this review aims to address these key issues in CMNVs preparation, structural composition, modification, and other relevant aspects, with a specific focus on targeted therapy for IS. Finally, the challenges and prospects in this field are discussed.
Collapse
Affiliation(s)
- Cui Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
| | - Ma Sha
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
| | - Yang Ye
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| |
Collapse
|
11
|
Liu Z, Xia Q, Ma D, Wang Z, Li L, Han M, Yin X, Ji X, Wang S, Xin T. Biomimetic nanoparticles in ischemic stroke therapy. DISCOVER NANO 2023; 18:40. [PMID: 36969494 PMCID: PMC10027986 DOI: 10.1186/s11671-023-03824-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
Abstract Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed. Graphic abstract
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Longji Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
12
|
Wu W, Hu A, Xu H, Su J. LincRNA-EPS Alleviates Inflammation in TMJ Osteoarthritis by Binding to SRSF3. J Dent Res 2023; 102:1141-1151. [PMID: 37464762 DOI: 10.1177/00220345231180464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common inflammatory disease that can cause pain, cartilage degradation, and subchondral bone loss. However, the key regulatory factors and new targets for the treatment of TMJOA have yet to be determined. Long noncoding RNAs (lncRNAs) have shown remarkable potential in regulating tissue homeostasis and disease development. The long intergenic RNA-erythroid prosurvival (lincRNA-EPS) is reported to be an effective inhibitor of inflammation, but its role in TMJOA is unexplored. Here, we found that lincRNA-EPS is downregulated and negatively correlated with inflammatory factors in the condyles of TMJOA mice. LincRNA-EPS knockout aggravated inflammation and tissue destruction after TMJOA modeling. The in vitro studies confirmed that loss of lincRNA-EPS facilitated inflammatory factor expression in condylar chondrocytes, while recovered expression of lincRNA-EPS showed anti-inflammatory effects. Mechanistically, RNA sequencing revealed that the inflammatory response pathway nuclear factor-kappa B (NF-κB) was mostly affected by lincRNA-EPS deficiency. Moreover, lincRNA-EPS was proved to effectively bind to serine/arginine-rich splicing factor 3 (SRSF3) and inhibit its function in pyruvate kinase isoform M2 (PKM2) formation, thus restraining the PKM2/NF-κB pathway and the expression of inflammatory factors. In addition, local injection of the lincRNA-EPS overexpression lentivirus significantly alleviated inflammation, cartilage degradation, and subchondral bone loss in TMJOA mice. Overall, lincRNA-EPS regulated the inflammatory process of condylar chondrocytes by binding to SRSF3 and showed translational application potential in the treatment of TMJOA.
Collapse
Affiliation(s)
- W Wu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - A Hu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Xu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - J Su
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
13
|
Tanaka MD, Geubels BM, Grotenhuis BA, Marijnen CAM, Peters FP, van der Mierden S, Maas M, Couwenberg AM. Validated Pretreatment Prediction Models for Response to Neoadjuvant Therapy in Patients with Rectal Cancer: A Systematic Review and Critical Appraisal. Cancers (Basel) 2023; 15:3945. [PMID: 37568760 PMCID: PMC10417363 DOI: 10.3390/cancers15153945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pretreatment response prediction is crucial to select those patients with rectal cancer who will benefit from organ preservation strategies following (intensified) neoadjuvant therapy and to avoid unnecessary toxicity in those who will not. The combination of individual predictors in multivariable prediction models might improve predictive accuracy. The aim of this systematic review was to summarize and critically appraise validated pretreatment prediction models (other than radiomics-based models or image-based deep learning models) for response to neoadjuvant therapy in patients with rectal cancer and provide evidence-based recommendations for future research. MEDLINE via Ovid, Embase.com, and Scopus were searched for eligible studies published up to November 2022. A total of 5006 studies were screened and 16 were included for data extraction and risk of bias assessment using Prediction model Risk Of Bias Assessment Tool (PROBAST). All selected models were unique and grouped into five predictor categories: clinical, combined, genetics, metabolites, and pathology. Studies generally included patients with intermediate or advanced tumor stages who were treated with neoadjuvant chemoradiotherapy. Evaluated outcomes were pathological complete response and pathological tumor response. All studies were considered to have a high risk of bias and none of the models were externally validated in an independent study. Discriminative performances, estimated with the area under the curve (AUC), ranged per predictor category from 0.60 to 0.70 (clinical), 0.78 to 0.81 (combined), 0.66 to 0.91 (genetics), 0.54 to 0.80 (metabolites), and 0.71 to 0.91 (pathology). Model calibration outcomes were reported in five studies. Two collagen feature-based models showed the best predictive performance (AUCs 0.83-0.91 and good calibration). In conclusion, some pretreatment models for response prediction in rectal cancer show encouraging predictive potential but, given the high risk of bias in these studies, their value should be evaluated in future, well-designed studies.
Collapse
Affiliation(s)
- Max D. Tanaka
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Barbara M. Geubels
- Department of Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Surgery, Catharina Hospital, 5602 ZA Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Brechtje A. Grotenhuis
- Department of Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Corrie A. M. Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Femke P. Peters
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stevie van der Mierden
- Scientific Information Service, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Monique Maas
- GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Alice M. Couwenberg
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
14
|
Wu Y, Liu X, Liu F, Li Y, Xiong X, Sun H, Lin B, Li Y, Xu B. A multi-class classification algorithm based on hematoxylin-eosin staining for neoadjuvant therapy in rectal cancer: a retrospective study. PeerJ 2023; 11:e15408. [PMID: 37334122 PMCID: PMC10269576 DOI: 10.7717/peerj.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Neoadjuvant therapy (NAT) is a major treatment option for locally advanced rectal cancer. With recent advancement of machine/deep learning algorithms, predicting the treatment response of NAT has become possible using radiological and/or pathological images. However, programs reported thus far are limited to binary classifications, and they can only distinguish the pathological complete response (pCR). In the clinical setting, the pathological NAT responses are classified as four classes: (TRG0-3), with 0 as pCR, 1 as moderate response, 2 as minimal response and 3 as poor response. Therefore, the actual clinical need for risk stratification remains unmet. By using ResNet (Residual Neural Network), we developed a multi-class classifier based on Hematoxylin-Eosin (HE) images to divide the response to three groups (TRG0, TRG1/2, and TRG3). Overall, the model achieved the AUC 0.97 at 40× magnification and AUC 0.89 at 10× magnification. For TRG0, the model under 40× magnification achieved a precision of 0.67, a sensitivity of 0.67, and a specificity of 0.95. For TRG1/2, a precision of 0.92, a sensitivity of 0.86, and a specificity of 0.89 were achieved. For TRG3, the model obtained a precision of 0.71, a sensitivity of 0.83, and a specificity of 0.88. To find the relationship between the treatment response and pathological images, we constructed a visual heat map of tiles using Class Activation Mapping (CAM). Notably, we found that tumor nuclei and tumor-infiltrating lymphocytes appeared to be potential features of the algorithm. Taken together, this multi-class classifier represents the first of its kind to predict different NAT responses in rectal cancer.
Collapse
Affiliation(s)
- Yihan Wu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Liu
- Bioengineering College of Chongqing University, Chongqing, China
| | - Fang Liu
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Li
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
- Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaomin Xiong
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
- Bioengineering College of Chongqing University, Chongqing, China
| | - Hao Sun
- Department of Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Lin
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
15
|
Li YH, Zhang S, Tang L, Feng J, Jia J, Chen Y, Liu L, Zhou J. The Role of LincRNA-EPS/Sirt1/Autophagy Pathway in the Neuroprotection Process by Hydrogen against OGD/R-Induced Hippocampal HT22 Cells Injury. J Pers Med 2023; 13:631. [PMID: 37109017 PMCID: PMC10143835 DOI: 10.3390/jpm13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cerebral ischemia/reperfusion (CI/R) injury causes high disability and mortality. Hydrogen (H2) enhances tolerance to an announced ischemic event; however, the therapeutic targets for the effective treatment of CI/R injury remain uncertain. Long non-coding RNA lincRNA-erythroid prosurvival (EPS) (lincRNA-EPS) regulate various biological processes, but their involvement in the effects of H2 and their associated underlying mechanisms still needs clarification. Herein, we examine the function of the lincRNA-EPS/Sirt1/autophagy pathway in the neuroprotection of H2 against CI/R injury. HT22 cells and an oxygen-glucose deprivation/reoxygenation (OGD/R) model were used to mimic CI/R injury in vitro. H2, 3-MA (an autophagy inhibitor), and RAPA (an autophagy agonist) were then administered, respectively. Autophagy, neuro-proinflammation, and apoptosis were evaluated by Western blot, enzyme-linked immunosorbent assay, immunofluorescence staining, real-time PCR, and flow cytometry. The results demonstrated that H2 attenuated HT22 cell injury, which would be confirmed by the improved cell survival rate and decreased levels of lactate dehydrogenase. Furthermore, H2 remarkably improved cell injury after OGD/R insult via decreasing pro-inflammatory factors, as well as suppressing apoptosis. Intriguingly, the protection of H2 against neuronal OGD/R injury was abolished by rapamycin. Importantly, the ability of H2 to promote lincRNA-EPS and Sirt1 expression and inhibit autophagy were abrogated by the siRNA-lincRNA-EPS. Taken together, the findings proved that neuronal cell injury caused by OGD/R is efficiently prevented by H2 via modulating lincRNA-EPS/Sirt1/autophagy-dependent pathway. It was hinted that lincRNA-EPS might be a potential target for the H2 treatment of CI/R injury.
Collapse
Affiliation(s)
- Ya-Hong Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646600, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
16
|
Du J, Li Y, Su Y, Zhi W, Zhang J, Zhang C, Wang J, Deng W, Zhao S. LncRNA Pnky Positively Regulates Neural Stem Cell Migration by Modulating mRNA Splicing and Export of Target Genes. Cell Mol Neurobiol 2023; 43:1199-1218. [PMID: 35748966 PMCID: PMC11414454 DOI: 10.1007/s10571-022-01241-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.
Collapse
Affiliation(s)
- Jiannan Du
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuting Su
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Jiale Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| |
Collapse
|
17
|
Jiang XC, Zhang T, Gao JQ. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv Drug Deliv Rev 2022; 187:114324. [PMID: 35640803 DOI: 10.1016/j.addr.2022.114324] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Exosomes and biomimetic vesicles are widely used for gene delivery because of their excellent gene loading capacity and stability and their natural targeting delivery potential. These vesicles take advantages of both cell-based bioactive delivery system and synthetical lipid-derived nanovectors to form crossover characteristics. To further optimize the specific targeting properties of crossover vesicles, studies of their in vivo fate and various engineering approaches including nanobiotechnology are required. This review describes the preparation process of exosomes and biomimetic vesicles, and summarizes the mechanism of loading and delivery of nucleic acids or gene editing systems. We provide a comprehensive overview of the techniques employed for preparing the targeting crossover vesicles based on their cellular uptake and targeting mechanism. To delineate the future prospects of crossover vesicle gene delivery systems, various challenges and clinical applications of vesicles have also been discussed.
Collapse
|
18
|
Guo H, Guo X, Jiang S. Long non-coding RNA lincRNA-erythroid prosurvival (EPS) alleviates cerebral ischemia/reperfusion injury by maintaining high-temperature requirement protein A1 (Htra1) stability through recruiting heterogeneous nuclear ribonucleoprotein L (HNRNPL). Bioengineered 2022; 13:12248-12260. [PMID: 35549989 PMCID: PMC9275866 DOI: 10.1080/21655979.2022.2074738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed at investigating the role and mechanism of lincRNA-EPS (erythroid prosurvival) in cerebral ischemia/reperfusion (CIR) injury. The results showed that the overexpression of lincRNA-EPS was able to reduce the levels of interleukin-6, tumor necrosis factor-alpha and interleukin-1β stimulated in the OGD-treated Neuro-2a (N-2a) cells. The levels of reactive oxygen species and malondialdehyde were enhanced while the superoxide dismutase levels were reduced by oxygen and glucose deprivation (OGD) treatment, in which the lincRNA-EPS overexpression could reverse this effect in the cells. LincRNA-EPS interacted with high-temperature requirement protein A1 (Htra1) and heterogeneous nuclear ribonucleoprotein L (HNRNPL), and their depletion inhibited the Htra1 mRNA stability in N-2a cells. HNRNPL knockdown blocked lincRNA-EPS overexpression-induced Htra1 expression in the cells. The depletion of Htra1 could rescue lincRNA-EPS overexpression-mediated N-2a cell injury, inflammation, and oxidative stress induced by OGD. Functionally, lincRNA-EPS alleviates CIR injury of the middle cerebral artery occlusion/reperfusion mice in vivo. In conclusion, lincRNA-EPS attenuates CIR injury by maintaining Htra1 stability through recruiting HNRNPL.
Collapse
Affiliation(s)
- Haifeng Guo
- Department of encephalopathy, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, P.R.China
| | - Xia Guo
- Department of Obstetrics, Dongying People's Hospital, Dongying, Shandong, P.R.China
| | - Shiting Jiang
- Department of Internal Medicine-Neurology, Dongping People's Hospital, Taian, Shandong, P.R.China
| |
Collapse
|
19
|
Li Y, Xi Z, Yu Z, Yang C, Tan C. LincRNA‑EPS increases TGF‑β expression to inhibit the Wnt/β‑catenin pathway, VSMC osteoblastic differentiation and vascular calcification in diabetic mice. Exp Ther Med 2022; 23:425. [PMID: 35607373 PMCID: PMC9121197 DOI: 10.3892/etm.2022.11352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/27/2021] [Indexed: 11/15/2022] Open
Abstract
In patients with diabetes, the Wnt/β-catenin pathway in vascular smooth muscle cells (VSMCs) is continuously activated by low-intensity inflammation, which leads to the osteoblastic differentiation of these cells and the deposition of calcium and phosphorus in blood vessels. The aim of the present study was to determine whether long intergenic non-coding RNA-erythroid pro-survival (lincRNA-EPS) was able to ameliorate vascular calcification (VC) associated with diabetes. VSMCs isolated from C57BL/6 mice were transfected with lincRNA-EPS overexpression vector in vitro and their osteoblastic differentiation was evaluated under high-glucose conditions. In addition, a mouse model of diabetes was established, which included a lincRNA-EPS knockout group and a lincRNA-EPS high expression group. Blood vessel samples from the mice were examined to determine the degree of calcification. The levels of inflammatory factors in serum were also detected. The VSMCs transfected with lincRNA-EPS overexpression vector exhibited less osteoblastic differentiation and migration and significantly lower levels of Wnt pathway-associated proteins than those transfected with empty control. Furthermore, the in vivo experiments revealed that the overexpression of lincRNA-EPS significantly reduced VC in diabetic mice. Therefore, on the basis of these findings, it is suggested that lincRNA-EPS overexpression may provide a novel and effective method for the treatment of VC in patients with diabetes.
Collapse
Affiliation(s)
- Yibo Li
- Department of Orthopedics, General Hospital of Central Theater Command (Hankou District), Wuhan, Hubei 430000, P.R. China
| | - Ziwei Xi
- School of Medical Sciences, Army Medical University, Chongqing 400038, P.R. China
| | - Zheng Yu
- Department of Hematoendocrinology, 32295 Army Hospital, Liaoyang, Liaoning 111000, P.R. China
| | - Chaoyue Yang
- School of Medical Sciences, Army Medical University, Chongqing 400038, P.R. China
| | - Chunhua Tan
- Department of Orthopedics, General Hospital of Central Theater Command (Hankou District), Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
20
|
Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, Liu X, Zhang J, Wei G, Hua F. Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. Front Mol Neurosci 2021; 14:745066. [PMID: 34675776 PMCID: PMC8523841 DOI: 10.3389/fnmol.2021.745066] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Microglia and astrocytes maintain tissue homeostasis in the nervous system. Both microglia and astrocytes have pro-inflammatory phenotype and anti-inflammatory phenotype. Activated microglia and activated astrocytes can contribute to several neurological diseases. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two groups of non-coding RNAs (ncRNAs), can function as competing endogenous RNAs (ceRNAs) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). LncRNAs and circRNAs are involved in various neurological disorders. In this review, we summarized that lncRNAs and circRNAs participate in microglia dysfunction, astrocyte dysfunction, neuron damage, and inflammation. Thereby, lncRNAs and circRNAs can positively or negatively regulate neurological diseases, including spinal cord injury (SCI), traumatic brain injury (TBI), ischemia-reperfusion injury (IRI), stroke, neuropathic pain, epilepsy, Parkinson’s disease (PD), multiple sclerosis (MS), and Alzheimer’s disease (AD). Besides, we also found a lncRNA/circRNA-miRNA-mRNA regulatory network in microglia and astrocyte mediated neurological diseases. Through this review, we hope to cast light on the regulatory mechanisms of lncRNAs and circRNAs in microglia and astrocyte mediated neurological diseases and provide new insights for neurological disease treatment.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xingning Lai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
21
|
Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W. Emerging Role of LncRNAs in Ischemic Stroke-Novel Insights into the Regulation of Inflammation. J Inflamm Res 2021; 14:4467-4483. [PMID: 34522116 PMCID: PMC8434908 DOI: 10.2147/jir.s327291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
As a crucial kind of pervasive gene, long noncoding RNAs (lncRNAs) are abundant and key players in brain function as well as numerous neurological disorders, especially ischemic stroke. The mechanisms underlying ischemic stroke include angiogenesis, autophagy, apoptosis, cell death, and neuroinflammation. Inflammation plays a vital role in the pathological process of ischemic stroke, and systemic inflammation affects the patient’s prognosis. Although a great deal of research has illustrated that various lncRNAs are closely relevant to regulate neuroinflammation and microglial activation in ischemic stroke, the specific interactional relationships and mechanisms between lncRNAs and neuroinflammation have not been described clearly. This review aimed to summarize the therapeutic effects and action mechanisms of lncRNAs on ischemia by regulating inflammation and microglial activation. In addition, we emphasize that lncRNAs have the potential to modulate inflammation by inhibiting and activating various signaling pathways, such as microRNAs, NF‐κB and ERK.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Gucheng, Hebei, People's Republic of China
| | - Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People's Republic of China
| | - Tianyang Zheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Pucher PH, Wijnhoven BPL, Underwood TJ, Reynolds JV, Davies AR. Thinking through the multimodal treatment of localized oesophageal cancer: the point of view of the surgeon. Curr Opin Oncol 2021; 33:353-361. [PMID: 33966001 DOI: 10.1097/cco.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW This review examines current developments and controversies in the multimodal management of oesophageal cancer, with an emphasis on surgical dilemmas and outcomes from the surgeon's perspective. RECENT FINDINGS Despite the advancement of oncological neoadjuvant treatments, there is still no consensus on what regimen is superior. The majority of patients may still fail to respond to neoadjuvant therapy and suffer potential harm without any survival advantage as a result. In patients who do not respond, adjuvant therapy is still often recommended after surgery despite any evidence for its benefit. We examine the implications of different regimens and treatment approaches for both squamous cell cancer and adenocarcinoma of the oesophagus. SUMMARY The efficacy of neoadjuvant treatment is highly variable and likely relates to variability of tumour biology. Ongoing work to identify responders, or optimize treatment on an individual patient, should increase the efficacy of multimodal therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Philip H Pucher
- Department of Surgery, Guy's and St Thomas' NHS Foundation Trust, London
- Department of Surgery, Portsmouth University Hospitals NHS Trust, Portsmouth, UK
| | - Bas P L Wijnhoven
- Department of Surgery, Erasmus MC-Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - John V Reynolds
- Department of Surgery, National Oesophageal and Gastric Center, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Andrew R Davies
- Department of Surgery, Guy's and St Thomas' NHS Foundation Trust, London
- King's College London, London, UK
| |
Collapse
|
23
|
Chen Z, Wu H, Zhang M. Long non-coding RNA: An underlying bridge linking neuroinflammation and central nervous system diseases. Neurochem Int 2021; 148:105101. [PMID: 34139298 DOI: 10.1016/j.neuint.2021.105101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) diseases are responsible for a large proportion of morbidity and mortality worldwide. CNS diseases caused by intrinsic and extrinsic stimuli stimulate the resident immune cells including microglia and astrocyte, resulting in neuroinflammation that exacerbates the progression of diseases. Recent evidence reveals the aberrant expression patterns of long non-coding RNAs (lncRNAs) in the damaged tissues following CNS diseases. It was also proposed that lncRNAs possessed immune-modulatory activities by directly or indirectly affecting various effector proteins including transcriptional factor, acetylase, protein kinase, phosphatase, etc. In addition, lncRNAs can form a sophisticated network by interacting with other molecules to regulate the expression or activation of downstream immune response pathways. However, the major roles of lncRNAs in CNS pathophysiologies are still elusive, especially in neuroinflammation. Herein, we tend to review some potential roles of lncRNAs in modulating neuroinflammation based on current evidence in various CNS diseases, in order to provide novel explanations for the initiation and progression of CNS diseases and help to establish therapeutic strategies targeting neuroinflammation.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
24
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
25
|
Zhao K, Wu L, Huang Y, Yao S, Xu Z, Lin H, Wang H, Liang Y, Xu Y, Chen X, Zhao M, Peng J, Huang Y, Liang C, Li Z, Li Y, Liu Z. Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images. PRECISION CLINICAL MEDICINE 2021; 4:17-24. [PMID: 35693123 PMCID: PMC8982603 DOI: 10.1093/pcmedi/pbab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background In colorectal cancer (CRC), mucinous adenocarcinoma differs from other adenocarcinomas in gene-phenotype, morphology, and prognosis. However, mucinous components are present in a large number of adenocarcinomas, and the prognostic value of mucus proportion has not been investigated. Artificial intelligence provides a way to quantify mucus proportion on whole-slide images (WSIs) accurately. We aimed to quantify mucus proportion by deep learning and further investigate its prognostic value in two CRC patient cohorts. Methods Deep learning was used to segment WSIs stained with hematoxylin and eosin. Mucus-tumor ratio (MTR) was defined as the proportion of mucinous component in the tumor area. A training cohort (N = 419) and a validation cohort (N = 315) were used to evaluate the prognostic value of MTR. Survival analysis was performed using the Cox proportional hazard model. Result Patients were stratified to mucus-low and mucus-high groups, with 24.1% as the threshold. In the training cohort, patients with mucus-high had unfavorable outcomes (hazard ratio for high vs. low 1.88, 95% confidence interval 1.18-2.99, P = 0.008), with 5-year overall survival rates of 54.8% and 73.7% in mucus-high and mucus-low groups, respectively. The results were confirmed in the validation cohort (2.09, 1.21-3.60, 0.008; 62.8% vs. 79.8%). The prognostic value of MTR was maintained in multivariate analysis for both cohorts. Conclusion The deep learning quantified MTR was an independent prognostic factor in CRC. With the advantages of advanced efficiency and high consistency, our method is suitable for clinical application and promotes precision medicine development.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Lin Wu
- Department of Pathology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China
| | - Yanqi Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510080, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zeyan Xu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Huan Lin
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Huihui Wang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Yanting Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yao Xu
- School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Minning Zhao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510080, China
| | - Jiaming Peng
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Yuli Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhenhui Li
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China
| | - Yong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
26
|
Fan J, Saft M, Sadanandan N, Gonzales-Portillo B, Park YJ, Sanberg PR, Borlongan CV, Luo Y. LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Front Aging Neurosci 2020; 12:594571. [PMID: 33192490 PMCID: PMC7604318 DOI: 10.3389/fnagi.2020.594571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is a major public health problem worldwide with a high burden of neurological disability and mortality. Long noncoding RNAs (lncRNAs) have attracted much attention in the past decades because of their newly discovered roles in pathophysiological processes in many diseases. The abundance of lncRNAs in the nervous system indicates that they may be part of a complex regulatory network governing physiology and pathology of the brain. In particular, lncRNAs have been shown to play pivotal roles in the pathogenesis of stroke. In this article, we provide a review of the multifaceted functions of lncRNAs in the pathogenesis of ischemic stroke and intracerebral hemorrhage, highlighting their promising use as stroke diagnostic biomarkers and therapeutics. To this end, we discuss the potential of stem cells in aiding lncRNA applications in stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Madeline Saft
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Sun L, Han R, Guo F, Chen H, Wang W, Chen Z, Liu W, Sun X, Gao C. Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov 2020; 6:74. [PMID: 32818074 PMCID: PMC7417740 DOI: 10.1038/s41420-020-00298-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the exact effect of IL-17 on regulating neural stem cells (NSCs) stemness and adult neurogenesis in ischemic cortex after stroke, how Astragaloside IV(As-IV) regulated IL-17 expression and the underlying mechanism. Photochemical brain ischemia model was established and IL-17 protein expression was observed at different time after stroke in WT mice. At 3 days after stroke, when IL-17 expression peaked, IL-17 knock out (KO) mice were used to observe cell proliferation and neurogenesis in ischemic cortex. Then, As-IV was administered intravenously to assess cell apoptosis, proliferation, neurogenesis, and cognitive deficits by immunochemistry staining, western blots, and animal behavior tests in WT mice. Furthermore, IL-17 KO mice and As-IV were used simultaneously to evaluate the mechanism of cell apoptosis and proliferation after stroke in vivo. Besides, in vitro, As-IV and recombinant mouse IL-17A was administered, respectively, into NSCs culture, and then their diameters, viable cell proliferation and pathway relevant protein was assessed. The results showed knocking out IL-17 contributed to regulating PI3K/Akt pathway, promoting NSCs proliferation, and neurogenesis after ischemic stroke. Moreover, As-IV treatment helped inhibit neural apoptosis, promote the neurogenesis and eventually relieve mice anxiety after stroke. Unsurprisingly, IL-17 protein expression could be downregulated by As-IV in vivo and in vitro and they exerted antagonistic effect on neurogenesis by regulating Akt/GSK-3β pathway, with significant regulation for apoptosis. In conclusion, IL-17 exerts negative effect on promoting NSCs proliferation, neurogenesis and cognitive deficits after ischemic stroke, which could be reversed by As-IV.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Ruili Han
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Hai Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, 710032 Xi’an, Shaanxi Province China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wei Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| |
Collapse
|