1
|
Shen W, Hu D, Gong C, Fang C, Luo J, Wang L, Yao C, Wu H, Zhao C, Zhu S. Grain-sized moxibustion activates dendritic cells to enhance the antitumor immunity of cancer vaccines. Chin Med 2025; 20:73. [PMID: 40426190 PMCID: PMC12107723 DOI: 10.1186/s13020-025-01134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Moxibustion, a traditional Chinese medicine (TCM) therapy, employs thermal stimulation from the combustion of Artemisia argyi H.Lév. & Vaniot at acupoints to treat "deficiency-cold syndromes" (xuhan zheng), historically linked to immune dysfunction and chronic inflammation. Modern pharmacological studies showed that grain-sized moxibustion (gM) enhances innate immune surveillance such as natural killer (NK) cell recruitment. However, its synergy with vaccine-induced adaptive immunity remains unexplored. Guided by the TCM principle of fu zheng qu xie ("fortify the host to dispel pathogens"), this study investigated whether gM augments cancer vaccine efficacy and validate the mechanistic basis of thermal acupoint stimulation in amplifying adaptive antitumor immunity. METHODS In tumor-bearing mice model, gM was applied to the ST36 (Zusanli) acupoint. Adjuvant effects on the cancer vaccine were evaluated through flow cytometry, β-adrenergic receptor blockade, and cell depletion. RESULTS gM synergized with the cancer vaccine, significantly suppressing tumor growth. Mechanistically, gM inhibited β-adrenergic signaling, driving DC maturation and subsequent coordination of CD4+ T cell, CD8+ T cell and NK cell responses. CD4+ T cells as primary effectors, with NK cells playing a secondary role. Propranolol mirrored gM's effects, further enhancing DC activation and tumor suppression when combined with vaccination. CONCLUSION Both gM and β-blockers enhance cancer vaccine efficacy through β-adrenergic suppression and maturation of DC. These findings mechanistically bridge TCM's fu zheng qu xie strategy with modern immunotherapy, positioning β-adrenergic modulation as a convergent target for traditional and pharmacological interventions.
Collapse
Affiliation(s)
- Weiming Shen
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School, Shanghai, 200030, China
| | - Dan Hu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Jiaojiao Luo
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Chao Yao
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Chen Zhao
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China.
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China.
- Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
2
|
Lee DH, Kwon Y, Um KH, Yoo JK, Ha W, Kim KS, Cha J, Cho HE, Park KS, Kye MJ, Choi JW. Transferrin-binding domain inserted-adenovirus hexon engineering enables systemic immune evasion and intratumoral T-cell activation. Theranostics 2025; 15:1221-1237. [PMID: 39816694 PMCID: PMC11729563 DOI: 10.7150/thno.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. Methods: In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain. The coding sequence was employed from Neisseria Meningitides and inserted in the experimentally-optimized site within the adenovirus capsid protein. Result: This engineered antibody-evading oncolytic adenovirus overcame the reduction in productivity and infectivity typically caused by the insertion of a foreign domain. We observed decreased immune recognition and compromised formation of anti-adenovirus antibodies. Furthermore, the anti-tumor efficacy was demonstrated both in vitro and in vivo, with increased recruitment of CD8+ T cells. Conclusion: This novel antibody-evading strategy effectively evades neutralizing antibodies and innate immunity while boosting cytotoxic immunity by recruiting CD8+ T cells at the tumor site. Additionally, this strategy holds potential for application in other gene therapies and adenovirus vectors.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngtae Kwon
- R&D Center of Curigin Ltd. Seoul 04778, Republic of Korea
| | - Ki Hwan Um
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung Ki Yoo
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- R&D Center of Curigin Ltd. Seoul 04778, Republic of Korea
| | - Wootae Ha
- R&D Center of Curigin Ltd. Seoul 04778, Republic of Korea
| | - Ki-Su Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- R&D Center of Curigin Ltd. Seoul 04778, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jintak Cha
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ha-Eun Cho
- Department of Laboratory Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Kyung Sun Park
- Department of Laboratory Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Min Jeong Kye
- R&D Center of Curigin Ltd. Seoul 04778, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- R&D Center of Curigin Ltd. Seoul 04778, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Calvillo-Rodriguez KM, Gonzalez-Flores MN, Tamez-Guerra R, Rodriguez-Padilla C, Antunes-Ricardo M, Martinez-Torres AC. Use of drug-killed cancer cells: A method to assess the therapeutic effectiveness of immunogenic cell death. Methods Cell Biol 2024; 191:211-220. [PMID: 39824557 DOI: 10.1016/bs.mcb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment by harnessing the immune system's potential to combat cancer. Among the various strategies in this field, the use of killed tumor cells (KC) induced by immunogenic cell death (ICD) inducers has gained attraction. This approach involves the treatment of cancer cells in vitro, followed by the subcutaneous injection of these killed cells into tumor-bearing mice. ICD induction triggers the exposure and release of damage-associated molecular patterns (DAMPs) and neoantigens, activating both innate and adaptive immune responses against cancer. Vaccination assays with immunocompetent mice and syngeneic cancer cells are considered the gold standard for identifying ICD inductors, as they effectively demonstrate the immunized host's capacity to achieve tumor rejection, typically showing more than 50% of protection. Despite significant progress in understanding ICD mechanisms, translating these findings into clinical practice faces challenges. Controversially, some reports indicate ICD induction with <50% protection in prophylactic vaccination. This variability in ICD interpretation can lead to "false positives" or overestimations of the immunogenicity of cell death induced by antitumor treatments, potentially complicating its clinical translation. Thus, rigorous adherence to the gold standard is necessary, and complementary experiments to assess the immunogenicity of cell death are advantageous. Here, we present a protocol to confirm the immunogenicity and therapeutic effectiveness of cell death induced by an ICD-inducer and evaluate its ability to reduce tumor burden in an established syngeneic mouse model.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodriguez
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Maria Norma Gonzalez-Flores
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Monterreey, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cristina Rodriguez-Padilla
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Monterreey, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Ana Carolina Martinez-Torres
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
4
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Wolff A, Krone P, Maennicke J, Henne J, Oehmcke-Hecht S, Redwanz C, Bergmann-Ewert W, Junghanss C, Henze L, Maletzki C. Prophylaxis with abemaciclib delays tumorigenesis in dMMR mice by altering immune responses and reducing immunosuppressive extracellular vesicle secretion. Transl Oncol 2024; 47:102053. [PMID: 38986222 PMCID: PMC11296063 DOI: 10.1016/j.tranon.2024.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The CDK4/6 inhibitor abemaciclib is an FDA-approved agent and induces T-cell-mediated immunity. Previously, we confirmed the therapeutic potential of abemaciclib on mismatch repair-deficient (dMMR) tumors in mice. Here, we applied a prophylactic administration/dosage setting using two preclinical mouse models of dMMR-driven cancer. METHODS Mlh1-/- and Msh2loxP/loxP mice received repeated prophylactic applications of abemaciclib mesylate (75 mg/kg bw, per oral) as monotherapy or were left untreated. Blood phenotyping and multiplex cytokine measurements were performed regularly. The tumor microenvironment was evaluated by immunofluorescence and Nanostring-based gene expression profiling. Numbers, size and immune composition and activity of extracellular vesicles (EVs) were studied at the endpoint. FINDINGS Prophylactic abemaciclib-administration delayed tumor development and significantly prolonged overall survival in both mouse strains (Mlh1-/-: 50.0 wks vs. control: 33.9 wks; Msh2loxP/loxP;TgTg(Vil1-cre: 58.4 wks vs. control 44.4 wks). In Mlh1-/- mice, pro-inflammatory cytokines (IL-2, IL-6) significantly increased, whereas IL-10 and IL-17A decreased. Circulating and splenic exhausted and regulatory T cell numbers were significantly lower in the abemaciclib groups. Deeper analysis of late-onset tumors revealed activation of the Hedgehog and Notch signaling in Mlh1-/- mice, and activation of the MAPK pathway in Msh2loxP/loxP;TgTg(Vil1-cre mice. Still, arising tumors had fewer infiltrating myeloid-derived suppressor cells (vs. control). Notably, prophylactic abemaciclib-administration prevented secretion of procoagulant EVs but triggered release of immunomodulatory EVs in Mlh1-/- mice. INTERPRETATION Prophylactic abemaciclib prolongs survival via global immunomodulation. Prophylactic use of abemaciclib should be considered further for individuals with inherited dMMR. FUNDING This work was supported by grants from the German research foundation [DFG grant number: MA5799/2-2] and the Brigitte und Dr. Konstanze Wegener-Stiftung to CM.
Collapse
Affiliation(s)
- Annabell Wolff
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Paula Krone
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Johanna Maennicke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Julia Henne
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
6
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Kono M, Wakisaka R, Komatsuda H, Hayashi R, Kumai T, Yamaki H, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Kobayashi H, Hayashi T, Takahara M. Immunotherapy targeting tumor-associated antigen in a mouse model of head and neck cancer. Head Neck 2024; 46:2056-2067. [PMID: 38390628 DOI: 10.1002/hed.27703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The identification of epitope peptides from tumor-associated antigens (TAAs) is informative for developing tumor-specific immunotherapy. However, only a few epitopes have been detected in mouse TAAs of head and neck cancer (HNSCC). METHODS Novel mouse c-Met-derived T-cell epitopes were predicted by computer-based algorithms. Mouse HNSCC cell line-bearing mice were treated with a c-Met peptide vaccine. The effects of CD8 and/or CD4 T-cell depletion, and vaccine combination with immune checkpoint inhibitors (ICIs) were evaluated. Tumor re-inoculation was performed to assess T-cell memory. RESULTS We identified c-Met-derived short and long epitopes that elicited c-Met-reactive antitumor CD8 and/or CD4 T-cell responses. Vaccination using these peptides showed remarkable antitumor responses via T cells in which ICIs were not required. The c-Met peptide-vaccinated mice rejected the re-inoculated tumors. CONCLUSIONS We demonstrated that novel c-Met peptide vaccines can induce antitumor T-cell response, and could be a potent immunotherapy in a syngeneic mouse HNSCC model.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
8
|
Cui G, Sun Y, Qu L, Shen C, Sun Y, Meng F, Zheng Y, Zhong Z. Uplifting Antitumor Immunotherapy with Lymph-Node-Targeted and Ratio-Controlled Codelivery of Tumor Cell Lysate and Adjuvant. Adv Healthc Mater 2024; 13:e2303690. [PMID: 38458152 DOI: 10.1002/adhm.202303690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cancer vaccines provide a potential strategy to cure patients. Their clinical utilization and efficacy is, however, limited by incomplete coverage of tumor neoantigens and unspecific and restricted activation of dendritic cells (DCs). Tumor cell lysates (TCLs) containing a broad spectrum of neoantigens, while are considered ideal in formulating personalized vaccines, induce generally poor antigen presentation and transient antitumor immune response. Here, intelligent polymersomal nanovaccines (PNVs) that quantitatively coload, efficiently codeliver, and responsively corelease TCL and CpG adjuvant to lymph node (LN) DCs are developed to boost antigen presentation and to induce specific and robust antitumor immunity. PNVs carrying CpG and ovalbumin (OVA) markedly enhance the maturation, antigen presentation, and downstream T cell activation ability of bone-marrow-derived dendritic cells and induce strong systemic immune response after tail base injection. Remarkably, PNVs carrying CpG and TCL cure 85% of B16-F10 melanoma-bearing mice and generate long-lasting anticancer immune memory at a low dose, protecting all cured mice from tumor rechallenge. These LN-directed PNVs being highly versatile and straightforward opens a new door for personalized cancer vaccines.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Liping Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Cui Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
9
|
Wang K, Gao Y, Wu S, Zhang J, Zhu M, Chen X, Fu X, Duan X, Men K. Dual-mRNA Delivery Using Tumor Cell Lysate-Based Multifunctional Nanoparticles as an Efficient Colon Cancer Immunogene Therapy. Int J Nanomedicine 2024; 19:4779-4801. [PMID: 38828196 PMCID: PMC11141578 DOI: 10.2147/ijn.s452548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background Messenger RNA (mRNA)-based immunogene therapy holds significant promise as an emerging tumor therapy approach. However, the delivery efficiency of existing mRNA methods and their effectiveness in stimulating anti-tumor immune responses require further enhancement. Tumor cell lysates containing tumor-specific antigens and biomarkers can trigger a stronger immune response to tumors. In addition, strategies involving multiple gene therapies offer potential optimization paths for tumor gene treatments. Methods Based on the previously developed ideal mRNA delivery system called DOTAP-mPEG-PCL (DMP), which was formed through the self-assembly of 1.2-dioleoyl-3-trimethylammonium-propane (DOTAP) and methoxypoly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL), we introduced a fused cell-penetrating peptide (fCPP) into the framework and encapsulated tumor cell lysates to form a novel nanovector, termed CLSV system (CLS: CT26 tumor cell lysate, V: nanovector). This system served a dual purpose of facilitating the delivery of two mRNAs and enhancing tumor immunogene therapy through tumor cell lysates. Results The synthesized CLSV system had an average size of 241.17 nm and a potential of 39.53 mV. The CLSV system could not only encapsulate tumor cell lysates, but also deliver two mRNAs to tumor cells simultaneously, with a transfection efficiency of up to 60%. The CLSV system effectively activated the immune system such as dendritic cells to mature and activate, leading to an anti-tumor immune response. By loading Bim-encoded mRNA and IL-23A-encoded mRNA, CLSV/Bim and CLSV/IL-23A complexes were formed, respectively, to further induce apoptosis and anti-tumor immunity. The prepared CLSV/dual-mRNA complex showed significant anti-cancer effects in multiple CT26 mouse models. Conclusion Our results suggest that the prepared CLSV system is an ideal delivery system for dual-mRNA immunogene therapy.
Collapse
Affiliation(s)
- Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shan Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xiayu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xizi Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
10
|
Zhang W, Sun S, Zhu W, Meng D, Hu W, Yang S, Gao M, Yao P, Wang Y, Wang Q, Ji J. Birinapant Reshapes the Tumor Immunopeptidome and Enhances Antigen Presentation. Int J Mol Sci 2024; 25:3660. [PMID: 38612472 PMCID: PMC11011986 DOI: 10.3390/ijms25073660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143, USA;
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Delan Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Weiyi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Siqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Mingjie Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Pengju Yao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Yuhao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| |
Collapse
|
11
|
Rahimmanesh I, Esmaili Y, Ghafouri E, Hejazi SH, Khanahmad H. Enhanced in vivo anti-tumor efficacy of whole tumor lysate in combination with whole tumor cell-specific polyclonal antibody. Res Pharm Sci 2023; 18:138-148. [PMID: 36873278 PMCID: PMC9976059 DOI: 10.4103/1735-5362.367793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Despite the widespread utilization of cancer vaccines with specified antigens, the use of whole tumor cell lysates in tumor immunotherapy would be a very promising approach that can overcome several significant obstacles in vaccine production. Whole tumor cells provide a broad source of tumor-associated antigens and can activate cytotoxic T lymphocytes and CD4+ T helper cells concurrently. On the other hand, as an effective immunotherapy strategy, recent investigations have shown that the multi-targeting of tumor cells with polyclonal antibodies, which are also more effective than monoclonal antibodies at mediating effector functions for target elimination, might minimize the escape variants. Experimental approach We prepared polyclonal antibodies by immunizing rabbits with the highly invasive 4T1 breast cancer cell line. Findings/Results In vitro investigation indicated that the immunized rabbit serum inhibited cell proliferation and induced apoptosis in target tumor cells. Moreover, in vivo analysis showed enhanced anti-tumor efficacy of whole tumor cell lysate in combination with tumor cell-immunized serum. This combination therapy proved beneficial in significant inhibition of the tumor growth and the established tumor was entirely eradicated in treated mice. Conclusion and implications Serial intravenous injections of tumor cell immunized rabbit serum significantly inhibited tumor cell proliferation and induced apoptosis in vitro and in vivo in combination with whole tumor lysate. This platform could be a promising method for developing clinical-grade vaccines and open up the possibility of addressing the effectiveness and safety of cancer vaccines.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Yasaman Esmaili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
12
|
Biswas K, Mohammed A, Sharan SK, Shoemaker RH. Genetically engineered mouse models for hereditary cancer syndromes. Cancer Sci 2023; 114:1800-1815. [PMID: 36715493 PMCID: PMC10154891 DOI: 10.1111/cas.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.
Collapse
Affiliation(s)
- Kajal Biswas
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
13
|
Sobhani N, Scaggiante B, Morris R, Chai D, Catalano M, Tardiel-Cyril DR, Neeli P, Roviello G, Mondani G, Li Y. Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat Rev 2022; 109:102429. [PMID: 35759856 PMCID: PMC9217071 DOI: 10.1016/j.ctrv.2022.102429] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Therapeutic vaccines are currently at the forefront of medical innovation. Various endeavors have been made to develop more consolidated approaches to producing nucleic acid-based vaccines, both DNA and mRNA vaccines. These innovations have continued to propel therapeutic platforms forward, especially for mRNA vaccines, after the successes that drove emergency FDA approval of two mRNA vaccines against SARS-CoV-2. These vaccines use modified mRNAs and lipid nanoparticles to improve stability, antigen translation, and delivery by evading innate immune activation. Simple alterations of mRNA structure- such as non-replicating, modified, or self-amplifying mRNAs- can provide flexibility for future vaccine development. For protein vaccines, the use of long synthetic peptides of tumor antigens instead of short peptides has further enhanced antigen delivery success and peptide stability. Efforts to identify and target neoantigens instead of antigens shared between tumor cells and normal cells have also improved protein-based vaccines. Other approaches use inactivated patient-derived tumor cells to elicit immune responses, or purified tumor antigens are given to patient-derived dendritic cells that are activated in vitro prior to reinjection. This review will discuss recent developments in therapeutic cancer vaccines such as, mode of action and engineering new types of anticancer vaccines, in order to summarize the latest preclinical and clinical data for further discussion of ongoing clinical endeavors in the field.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA.
| | - Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | - Giuseppina Mondani
- Royal Infirmary Hospital, Foresterhill Health Campus, Foresterhill Rd, Aberdeen AB25 2ZN, United Kingdom.
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy 2022; 14:639-654. [PMID: 35481358 DOI: 10.2217/imt-2022-0036] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole tumor cell-based vaccines include all potential antigen-rich cell lysates to target a specific type of tumor without the need to find the best antigen candidate in protein- or peptide-based vaccines. Preparation of whole tumor cell lysates inducing cell death and inactivating immunosuppressive cytokine secretion from the tumor cells is highly enviable. Generally, modified whole tumor cells, tumor cell-derived exosomes, autologous tumor cell-derived ribonucleic acid, and personalized mutanome-derived tumor antigen are promising immunotherapeutic approaches. Autologous dendritic cells loaded with tumor-associated antigens also induce the generation of immunological memory and antitumor response as an effective method for the treatment of cancer. The present review briefly describes tumor cell-based vaccines as a promising strategy for eradication of cancer cells.
Collapse
Affiliation(s)
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | | |
Collapse
|
15
|
Seaver K, Kourko O, Gee K, Greer PA, Basta S. IL-27 Improves Prophylactic Protection Provided by a Dead Tumor Cell Vaccine in a Mouse Melanoma Model. Front Immunol 2022; 13:884827. [PMID: 35529885 PMCID: PMC9069009 DOI: 10.3389/fimmu.2022.884827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The protocol used to induce cell death for generating vaccines from whole tumor cells is a critical consideration that impacts vaccine efficacy. Here we compared how different protocols used to induce cell death impacted protection provided by a prophylactic whole tumor cell vaccine in a mouse melanoma model. We found that melanoma cells exposed to γ-irradiation or lysis combined with UV-irradiation (LyUV) provided better protection against tumor challenge than lysis only or cells exposed to UV-irradiation. Furthermore, we found that the immunoregulatory cytokine, IL-27 enhanced protection against tumor growth in a dose-dependent manner when combined with either LyUV or γ-irradiated whole tumor cell vaccine preparations. Taken together, this data supports the use of LyUV as a potential protocol for developing whole tumor cell prophylactic cancer vaccines. We also showed that IL-27 can be used at low doses as a potent adjuvant in combination with LyUV or γ-irradiation treated cancer cells to improve the protection provided by a prophylactic cancer vaccine in a mouse melanoma model.
Collapse
Affiliation(s)
- Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Sameh Basta,
| |
Collapse
|
16
|
Calvillo-Rodríguez KM, Mendoza-Reveles R, Gómez-Morales L, Uscanga-Palomeque AC, Karoyan P, Martínez-Torres AC, Rodríguez-Padilla C. PKHB1, a thrombospondin-1 peptide mimic, induces anti-tumor effect through immunogenic cell death induction in breast cancer cells. Oncoimmunology 2022; 11:2054305. [PMID: 35402082 PMCID: PMC8986196 DOI: 10.1080/2162402x.2022.2054305] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in women worldwide. Recent advances in the field of immuno-oncology demonstrate the beneficial immunostimulatory effects of the induction of immunogenic cell death (ICD). ICD increases tumor infiltration by T cells and is associated with improved prognosis in patients affected by triple negative breast cancer (TNBC) with residual disease. The aim of this study was to evaluate the antitumoral effect of PKHB1, a thrombospondin-1 peptide mimic, against breast cancer cells, and the immunogenicity of the cell death induced by PKHB1 in vitro, ex vivo, and in vivo. Our results showed that PKHB1 induces mitochondrial alterations, ROS production, intracellular Ca2+ accumulation, as well calcium-dependent cell death in breast cancer cells, including triple negative subtypes. PKHB1 has antitumor effect in vivo leading to a reduction of tumor volume and weight and promotes intratumoral CD8 + T cell infiltration. Furthermore, in vitro, PKHB1 induces calreticulin (CALR), HSP70, and HSP90 exposure and release of ATP and HMGB1. Additionally, the killed cells obtained after treatment with PKHB1 (PKHB1-KC) induced dendritic cell maturation, and T cell antitumor responses, ex vivo. Moreover, PKHB1-KC in vivo were able to induce an antitumor response against breast cancer cells in a prophylactic application, whereas in a therapeutic setting, PKHB1-KC induced tumor regression; both applications induced a long-term antitumor response. Altogether our data shows that PKHB1, a thrombospondin-1 peptide mimic, has in vivo antitumor effect and induce immune system activation through immunogenic cell death induction in breast cancer cells.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, DRUG Lab, Site OncoDesign, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Rodolfo Mendoza-Reveles
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Luis Gómez-Morales
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, DRUG Lab, Site OncoDesign, 25-27 Avenue du Québec, 91140 Les Ulis, France
- Kaybiotix, GmbH, Zugerstrasse 32, 6340 Baar, Switzerland
| | | | - Philippe Karoyan
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, DRUG Lab, Site OncoDesign, 25-27 Avenue du Québec, 91140 Les Ulis, France
- Kaybiotix, GmbH, Zugerstrasse 32, 6340 Baar, Switzerland
- Kayvisa, AG, Industriestrasse, 44, 6300 Zug, Switzerland
- χ-Pharma, 25 Avenue du Québec, 91140 Les Ulis, France
| | - Ana Carolina Martínez-Torres
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- LONGEVEDEN SA de CV, Monterrey, Mexico
| |
Collapse
|
17
|
Wang J, Zhang Y, Pi J, Xing D, Wang C. Localized delivery of immunotherapeutics: A rising trend in the field. J Control Release 2021; 340:149-167. [PMID: 34699871 DOI: 10.1016/j.jconrel.2021.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
Immunotherapy is becoming a new standard of care for multiple cancers, while several limitations are impending its further clinical success. Immunotherapeutic agents often have inappropriate pharmacokinetics on their own and/or exhibit limited specificity to tumor cells, leading to severe immuno-related adverse effects and limited efficacy. Suitable formulating strategies that confer prolonged contact with or efficient proliferation in tumors while reducing exposure to normal tissues are highly worthy to explore. With the assistance of biomaterial carriers, targeted therapy can be achieved artificially by implanting or injecting drug depots into desired sites, about which the wisdoms in literature have been rich. The relevant results have suggested a "local but systemic" effect, that is, local replenishment of immune modulators achieves a high treatment efficacy that also governs distant metastases, thereby building another rationale for localized delivery. Particularly, implantable scaffolds have been further engineered to recruit disseminated tumor cells with an efficiency high enough to reduce tumor burdens at typical metastatic organs, and simultaneously provide diagnostic signals. This review introduces recent advances in this emerging area along with a perspective on the opportunities and challenges in the way to clinical application.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Yukun Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jiuchan Pi
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
18
|
Combined Gemcitabine and Immune-Checkpoint Inhibition Conquers Anti-PD-L1 Resistance in Low-Immunogenic Mismatch Repair-Deficient Tumors. Int J Mol Sci 2021; 22:ijms22115990. [PMID: 34206051 PMCID: PMC8199186 DOI: 10.3390/ijms22115990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/11/2023] Open
Abstract
Tumors arising in the context of Lynch Syndrome or constitutional mismatch repair deficiency are hypermutated and have a good response towards immune-checkpoint inhibitors (ICIs), including α-PD-L1 antibodies. However, in most cases, resistance mechanisms evolve. To improve outcomes and prevent resistance development, combination approaches are warranted. Herein, we applied a combined regimen with an α-PD-L1 antibody and gemcitabine in a preclinical tumor model to activate endogenous antitumor immune responses. Mlh1−/− mice with established gastrointestinal tumors received the α-PD-L1 antibody (clone 6E11; 2.5 mg/kg bw, i.v., q2wx3) and gemcitabine (100 mg/kg bw, i.p., q4wx3) in mono- or combination therapy. Survival and tumor growth were recorded. Immunological changes in the blood were routinely examined via multi-color flow cytometry and complemented by ex vivo frameshift mutation analysis to identify alterations in Mlh1−/−-tumor-associated target genes. The combined therapy of α-PD-L1 and gemcitabine prolonged median overall survival of Mlh1−/− mice from four weeks in the untreated control group to 12 weeks, accompanied by therapy-induced tumor growth inhibition, as measured by [18F]-FDG PET/CT. Plasma cytokine levels of IL13, TNFα, and MIP1β were increased and also higher than in mice receiving either monotherapy. Circulating splenic and intratumoral myeloid-derived suppressor cells (MDSCs), as well as M2 macrophages, were markedly reduced. Besides, residual tumor specimens from combi-treated mice had increased numbers of infiltrating cytotoxic T-cells. Frameshift mutations in APC, Tmem60, and Casc3 were no longer detectable upon treatment, likely because of the successful eradication of single mutated cell clones. By contrast, novel mutations appeared. Collectively, we herein confirm the safe application of combined chemo-immunotherapy by long-term tumor growth control to prevent the development of resistance mechanisms.
Collapse
|
19
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
20
|
Wang P, Chen Y, Wang C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front Oncol 2021; 11:672677. [PMID: 33996601 PMCID: PMC8117238 DOI: 10.3389/fonc.2021.672677] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has significantly improved the clinical outcome of patients with cancer. However, the immune response rate varies greatly, possibly due to lack of effective biomarkers that can be used to distinguish responders from non-responders. Recently, clinical studies have associated high tumor neoantigen burden (TNB) with improved outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a biomarker for immunotherapy and other types of therapy. In the present review, the potential application of TNB as a biomarker was evaluated. The methods of neoantigen prediction were summarized and the mechanisms involved in TNB were investigated. The impact of high TNB and increased number of infiltrating immune cells on the efficacy of immunotherapy was also addressed. Finally, the future challenges of TNB were discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chun Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|