1
|
Jin Z, Wei Y, Zhou Z, Fan Z, Huang Y, Liu D. Mechanistic Insights into Maltol-Mediated Reversal of Postmenopausal Osteoporosis via Regulation of CDK14 Ubiquitination in Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11730-11755. [PMID: 40315161 DOI: 10.1021/acs.jafc.5c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Maltol, primarily derived from Korean red ginseng, exhibits anti-inflammatory properties by modulating macrophage polarization and has potential therapeutic effects on postmenopausal osteoporosis, a condition linked to inflammation. This study explored the molecular mechanisms underlying maltol's ability to inhibit M1 macrophage polarization and regulate osteoblast differentiation via macrophage-mediated pathways. Using in vitro and in vivo models, we demonstrated that maltol upregulates RNF213, which inhibits the CDK14-Pdgfrβ signaling pathway, suppressing M1 polarization and reducing NFκB phosphorylation and pro-inflammatory cytokine production. Additionally, maltol decreases TNFSF12 secretion, mitigating estrogen deficiency-induced osteoblast apoptosis and promoting differentiation. These findings highlight maltol's potential in managing postmenopausal osteoporosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuoru Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yufei Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zheng Fan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
2
|
Li X, Wu Y, Xie B, Xu M, Xie T, Yue W, Lin M, Lin Y, Chen Y. SPP1 Promotes NSCLC Brain Metastasis Via Sequestration of Ubiquitin Ligase RNF114 to Facilitate P85α Ubiquitination. Mol Carcinog 2025; 64:829-841. [PMID: 39918025 DOI: 10.1002/mc.23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 04/12/2025]
Abstract
Brain metastasis (BM) is a significant factor contributing to the poor prognosis of patients with non-small cell lung cancer (NSCLC). Secreted phosphoprotein 1 (SPP1) is implicated in the progression and metastasis of several cancers. The role of SPP1 in NSCLC remains unclear, especially in NSCLC BM. This study aimed to identify genes associated with NSCLC BM and to investigate the involvement of SPP1 in NSCLC BM. Integrated genomic analysis was utilized to identify candidate genes in NSCLC. The expression levels of SPP1 were evaluated in NSCLC tissues and cell lines. In vitro and in vivo experiments were conducted to assess the effect of SPP1 on NSCLC cell behavior and BM. The potential mechanisms of SPP1 were demonstrated by CO-IP and liquid chromatography-mass spectrometry (LC-MS). The underlying mechanism involving the PI3K/AKT/mTOR pathway was explored. The results showed that SPP1 expression was upregulated in NSCLC tissues and cell lines. Depletion of SPP1 using shRNA inhibited cell proliferation, migration, and invasion in vitro and suppressed BM in vivo. Mechanistically, SPP1 facilitates the ubiquitination of P85α by interacting with the ubiquitin ligase RNF114, thus playing a role in regulating NSCLC BM through the PI3K/AKT/mTOR signaling pathway. Moreover, immunohistochemistry staining confirmed higher expression of SPP1 in NSCLC tissues with BM compared to those without BM. In summary, elevated SPP1 expression was associated with poor clinical outcomes in NSCLC patients. This study highlights the role of SPP1 as a regulator of cell metastasis and suggests its potential as a novel therapeutic target for BM in NSCLC.
Collapse
Affiliation(s)
- Xiaoqin Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Yun Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Baosong Xie
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Tianjian Xie
- Xiapu County Hospital of Fujian Province, Ningde, China
| | - Wenxiang Yue
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ming Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Yusheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| |
Collapse
|
3
|
Liu Y, Yan X, Qu C, Tang F, Wang Q, Li Y. The role of TMEM119 in gastric adenocarcinoma and its specific effects on immunity. J Int Med Res 2025; 53:3000605241306668. [PMID: 40219804 PMCID: PMC12033527 DOI: 10.1177/03000605241306668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/25/2024] [Indexed: 04/14/2025] Open
Abstract
ObjectiveTo investigate the prognostic significance and immunological implication of transmembrane protein 119 (TMEM119) in stomach adenocarcinoma (STAD).MethodsThis study included STAD-associated data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In addition, TMEM119 expression levels were analysed by immunohistochemistry in tissue samples from patients with STAD (with microsatellite instability or microsatellite stability). Gene Set Enrichment Analysis (GSEA) was conducted to explore signalling pathways related to TMEM119 in STAD. Additionally, CIBERSORT and ESTIMATE algorithms were applied to examine the relationship between TMEM119 expression and tumour-infiltrating immune cells, as well as the tumour microenvironment.ResultsSurgical specimens from 100 patients with STAD (50 each with microsatellite stability or microsatellite instability); TCGA RNA-sequence and clinical data from 375 STAD tumour tissues and 32 paracancerous tissues; and two GEO datasets (GSE27342, comprising 80 paracancerous tissues and 80 tumour tissues; and GSE84437, comprising 433 tumour samples) were analysed. TMEM119 was found to be elevated in STAD, and associated with poor prognosis. Clinical gastric cancer tissues exhibited increased TMEM119 expression. TMEM119 was enriched in immune-related functions and pathways. TMEM119 correlated with immune checkpoint genes, tumour mutational burden, and microsatellite instability. TMEM119 was positively correlated with tumour-infiltrating immune cells, tumour microenvironment, mannose receptor C-type I (CD206), and programmed cell death-ligand 1 (PD-L1), while inversely related to nitric oxide synthase 2.ConclusionsTMEM119 may be a potential immune-related biomarker for STAD prognosis and therapeutic targeting.
Collapse
Affiliation(s)
- Yating Liu
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Yan
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Caihao Qu
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Futian Tang
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Qian Wang
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Shen C, Han X, Liu Q, Lu T, Wang W, Wang X, Ou Z, Zhang S, Cheng X. The emerging role of transmembrane proteins in tumorigenesis and therapy. Transl Cancer Res 2025; 14:1447-1466. [PMID: 40104699 PMCID: PMC11912080 DOI: 10.21037/tcr-24-1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Transmembrane proteins (TMEMs) are a kind of proteins that can cross the phospholipid bilayer one or multiple times and remain permanently anchored. They are involved in the regulation of many biological functions, and their dysregulation is associated with many human diseases and even cancer. Abnormal expression alterations of TMEMs widely exist in tumor tissues compared with paracancerous tissues. They are associated with the clinicopathological features of cancer patients by promoting or inhibiting the development of cancer, thus affecting survival. This review summarized the structure and physiological functions of TMEMs, as well as their roles in tumorigenesis, such as cell proliferation, apoptosis, autophagy, adhesion, metastasis, metabolism and drug resistance. In addition, we elaborated on the potentiality of TMEMs for tumor immunity. Moreover, the advances of TMEMs were subsequently retrospected in several common types of human cancers, including breast cancer, gastric cancer, and lung cancer. Subsequently, we outlined the targeted therapeutic strategies against TMEMs proposed based on existing studies. To date, there are still many TMEMs whose functions and mechanisms have not been well known due to their special structures. Since the important roles TMEMs plays in the development of human cancers, it is urgent to portray their structure and function in carcinogenesis, providing potential biomarkers for cancer patients in the future.
Collapse
Affiliation(s)
- Chenlu Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiao Han
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qi Liu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tao Lu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weiwei Wang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xinyi Wang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy for Gastrointestinal Cancer, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Modafferi C, Tabolacci E, Grippaudo C, Chiurazzi P. Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview. Genes (Basel) 2025; 16:147. [PMID: 40004475 PMCID: PMC11855040 DOI: 10.3390/genes16020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Primary failure of tooth eruption (PFE) is a rare genetic disorder characterized by the failure of teeth to erupt in the absence of obvious physical obstructions, often resulting in a progressive open bite that is resistant to orthodontic treatment. While PFE can be caused by genetic or systemic factors (such as cysts, tumors, and endocrine imbalances), the non-syndromic causes are primarily genetic, with an autosomal dominant inheritance pattern with variable expressivity. Several genes have been closely associated with the non-syndromic PFE form. The PTH1R (parathyroid hormone 1 receptor) is the most commonly PFE-associated gene. Additional genes associated with minor frequency are Transmembrane protein 119 (TMEM119), which reduces the glycolytic efficiency of bone cells, limiting their mineralization capacity and causing bone fragility; Periostin (POSTN), which regulates the extracellular matrix and the bone's response to mechanical stress; and Lysine (K)-specific methyltransferase 2C (KMT2C), which establishes histone methylation near the Wnt Family Member 5A (WNT5A) gene involved in dental development (odontogenesis). Syndromic forms of PFE are typically associated with complex multisystem disorders, where dental eruption failure is one of the clinical features of the spectrum. These syndromes are often linked to genetic variants that affect ectodermal development, craniofacial patterning, and skeletal growth, leading to abnormal tooth development and eruption patterns. Notable syndromes include GAPO syndrome, ectodermal dysplasia, and cleidocranial dysplasia, each contributing to PFE through distinct molecular mechanisms, such as disruptions in dental structure development, cranial abnormalities, or systemic developmental delays. The main aim of this review is to provide a comprehensive overview of the genetic basis underlying both syndromic and non-syndromic forms of PFE to facilitate precision diagnosis, foster the development of personalized therapeutic strategies, and offer new insights into managing this complex dental anomaly.
Collapse
Affiliation(s)
- Clarissa Modafferi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.M.); (P.C.)
| | - Elisabetta Tabolacci
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cristina Grippaudo
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- UOC Clininica Odontoiatrica, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Odontoiatria e Protesi Dentaria, Dipartimento Testa Collo ed Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.M.); (P.C.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Huang T, Chen H, Pan H, Wu T, Ren X, Qin L, Yuan K, He F. Comprehensive analysis of bioinformatics and system biology reveals the association between Girdin and hepatocellular carcinoma. PLoS One 2024; 19:e0315534. [PMID: 39671369 PMCID: PMC11642971 DOI: 10.1371/journal.pone.0315534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the leading causes of cancer-related mortality worldwide. The actin-binding protein Girdin is overexpressed in various tumors, promoting tumorigenesis and progression. However, the exact mechanisms by which Girdin regulates liver cancer remain poorly understood. METHODS This study comprehensively analyzed the expression level of Girdin in liver cancer and adjacent tissue, along with the correlation between Girdin expression and the clinical characteristics and prognosis of liver cancer. The analysis integrated data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Subsequently, Girdin expression was knocked down to elucidate its role in the progression of liver cancer. Transcriptome sequencing was employed to investigate the mechanistic underpinnings of Girdin's regulatory impact on liver cancer. Additionally, the Comparative Toxicogenomics Database (CTD) was utilized to identify potential drugs or molecules for liver cancer treatment. RESULTS The findings revealed elevated Girdin expression in liver cancer tissues, and heightened Girdin expression correlating with adverse clinical features and prognosis. Silencing of Girdin markedly impeded the proliferation and migration of hepatocellular carcinoma cells. Moreover, transcriptome sequencing demonstrated that silencing Girdin led to differential expression of 176 genes and inhibition of the PI3K/Akt signaling pathway, as well as its upstream pathways-Cytokine-cytokine receptor interaction and Chemokine signaling pathway. Ultimately, we propose that Imatinib Mesylate, Orantinib, Resveratrol, Sorafenib, and Curcumin may interact with Girdin, potentially contributing to the treatment of liver cancer. CONCLUSION This study reveals the association between Girdin and hepatocellular carcinoma, providing novel clues for future research and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Chen
- Cytology and Molecular Platform, Core Facilities of West China Hospital, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Wu
- NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Liwen Qin
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Shi J, Lin Z, Zheng Z, Chen M, Huang X, Wang J, Li M, Shao J. Glutamine metabolism promotes human trophoblast cell invasion via COL1A1 mediated by PI3K-AKT pathway. J Reprod Immunol 2024; 166:104321. [PMID: 39243705 DOI: 10.1016/j.jri.2024.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Abnormal trophoblast invasion function is an important cause of recurrent spontaneous abortion (RSA). Recent research has revealed a connection between glutamine metabolism and RSA. However, the interplay between these three factors and their related mechanisms remains unclear. To address this issue, we collected villus tissues from 10 healthy women with induced abortion and from 10 women with RSA to detect glutamine metabolism. Then, the trophoblast cell line HTR-8/SVneo was used in vitro to explore the effect of glutamine metabolism on trophoblast cells invasion, which was tested by transwell assay. We found that the concentration of glutamine in the villi of the normal pregnancy group was significantly higher than that in the RSA group. Correspondingly, the expression levels of key enzymes involved in glutamine synthesis and catabolism, including glutamine synthetase and glutaminase, were significantly higher in the villi of the normal pregnancy group. Regarding trophoblast cells, glutamine markedly enhanced the proliferative and invasive abilities of HTR-8/SVneo cells. Additionally, collagen type I alpha 1 (COL1A1) was confirmed to be a downstream target of glutamine, and glutamine also activated the PI3K-AKT pathway in HTR-8/SVneo cells. These findings indicate that glutamine metabolism facilitates the invasion of trophoblasts by up-regulating COL1A1 expression through the activation of the PI3K-AKT pathway, but the specific mechanism of COL1A1 requires further study.
Collapse
Affiliation(s)
- Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, China
| | - Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jiarui Wang
- Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China.
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China.
| |
Collapse
|
9
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
10
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
11
|
Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H, Wang H. IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther 2024; 31:1221-1236. [PMID: 38778089 PMCID: PMC11327104 DOI: 10.1038/s41417-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed, single-stranded RNAs and have been linked to cancer progression. N6-methyladenosine (m6A) methylation is a ubiquitous RNA modification in cancer cells. Increasing evidence suggests that m6A can mediate the effects of circRNAs in cancer biology. In contrast, the post-transcriptional systems of m6A and circRNA in the progression of endometrial cancer (EC) remain obscure. The current study identified a novel circRNA with m6A modification, hsa_circ_0084582 (circCHD7), which was upregulated in EC tissues. Functionally, circCHD7 was found to promote the proliferation of EC cells. Mechanistically, circCHD7 interacted with insulin-like growth factor 2 mRNA-binding protein (IGF2BP2) to amplify its enrichment. Moreover, circCHD7 increased the mRNA stability of platelet-derived growth factor receptor beta (PDGFRB) in an m6A-dependent manner, thereby enhancing its expression. In addition, the circCHD7/IGF2BP2/PDGFRB axis activated the JAK/STAT signaling pathway and promoted EC cell proliferation. In conclusion, these findings provide new insights into the regulation of circRNA-mediated m6A modification, and the new "circCHD7-PDGFRB" model of regulation offers new perspectives on circCHD7 as a potential target for EC therapy.
Collapse
Affiliation(s)
- Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Yan Shen
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Hua Teng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
12
|
Lu D, Yuan L, Ma X, Meng F, Xu D, Jia S, Wang Z, Li Y, Zhang Z, Nan Y. The mechanism of polyphyllin in the treatment of gastric cancer was verified based on network pharmacology and experimental validation. Heliyon 2024; 10:e31452. [PMID: 38831826 PMCID: PMC11145480 DOI: 10.1016/j.heliyon.2024.e31452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Background Polyphyllin is a class of saponins extracted from Paris polyphylla rhizomes and has been used in clinical application in China for more than 2000 years. However, the mechanism for treating gastric cancer (GC) is still unclear. This study was designed to predict the targets and mechanisms of total Polyphyllin from Paris polyphylla rhizomes for the treatment of GC. Method Firstly, PubChem and Swiss Target Prediction databases were utilized to collect the 12 ingredients of total Polyphyllin from Paris polyphylla rhizomes and their targets. GC-related genes were obtained from the GEO database. Then the intersecting targets to all these molecules that identified using Venny. Secondly, the intersecting targets were imported into STRING platform for protein-protein interaction (PPI) network. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted in DAVID website. In addition, the GEPIA was applied to perform the expression levels, transcript levels, staging, and overall survival of hub genes. In addition, we used AutoDock Vina to evaluate binding affinity of molecular docking between key ingredients and anti-GC targets. In vitro cell experiments, we detected the cell viability of gastric cancer cells at 24, 36, and 48 h using CCK-8 assay. The G0/G1 of cell cycle and apoptosis were detected by flow cytometry. Finally, quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the level of hub genes, and Western blot was used to detect the changes of PI3K/Akt signal pathway. Results Firstly, we identified 12 ingredients and 286 targets of total Polyphyllin. A total of 2653 GC-related differentially expressed genes (DEGs) were collected, including 1366 up-regulated genes and 1287 down-regulated genes. Moreover, 45 targets were obtained after intersection. Secondly, results of the GO enrichment suggested that these genes were closely related to cell proliferation, migration and aging. KEGG analysis suggested that Polyphyllin in GC therapy were mostly regulated by multiple pathways, including the pathways in cancer, calcium signaling pathway, Rap1 signaling pathway, phospholipase D signaling pathway, etc. In addition, GEPIA results exhibited that PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A were associated with GC progression, stage, and survival. Besides, the molecular docking results further confirmed that the binding energy of Polyphyllin Ⅲ with HIF1A was minimal. In vitro cell experiments, Polyphyllin Ⅲ inhibited the cell viability of gastric cancer cells, blocked the cell cycle G0/G1 phase, and induced cell apoptosis. In addition, Polyphyllin Ⅲ down-regulated the mRNA levels of PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A, and regulated the PI3K/Akt signal pathway. Conclusions The results revealed that total Polyphyllin treated GC through multiple targets, multiple channels, and multiple pathways. In addition, Polyphyllin Ⅲ played an anti-gastric cancer role by inhibiting the proliferation of gastric cancer.
Collapse
Affiliation(s)
- Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaoyan Ma
- The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong 751100, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shumin Jia
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhaozhao Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yahong Li
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
13
|
夏 勇, 王 炼, 陈 孝, 张 雨, 孙 奥, 陈 德. [TSR2 overexpression inhibits proliferation and invasion of gastric cancer cells by downregulating the PI3K/AKT signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:913-919. [PMID: 38862449 PMCID: PMC11166721 DOI: 10.12122/j.issn.1673-4254.2024.05.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the expression of TSR2 in gastric cancer and explore its correlation with progression of gastric cancer and the possible mechanism. METHODS We retrospectively analyzed TSR2 expression in clinical specimens from 105 gastric cancer patients and the impact of TSR2 expression level on disease progression and 5-year postoperative survival of the patients. GO and KEGG enrichment analyses were used to predict the biological functions and mechanisms of TSR2. In gastric cancer MGC-803 cells with lentivirus-mediated TSR2 overexpression or knockdown, the changes in cell proliferation, invasion, and migration were assessed with CCK-8 and Transwell assays, and the expressions of p-PI3K and p-AKT were detected using Western blotting. RESULTS TSR2 expression was significantly lower in gastric cancer tissues than in the adjacent tissues with significant correlations with CEA level, CA19-9 level, and T and N staging (P < 0.05). A low TSR2 expression, CEA≥5 μg/L, CA19-9≥37 kU/L, T3-T4 stages, and N2-N3 staged were identified as independent risk factors affecting 5-year survival rate of the patients following radical surgery (P < 0.05), and a high TSR2 expression was associated with a higher 5-year survival rate of the patients (P < 0.001). Bioinformatics analysis suggested the functional involvement of TSR2 with the PI3K/AKT signaling pathway. MGC-803 cells overexpressing TSR2 showed significantly lowered proliferation, migration, and invasion capacities (P < 0.05), while TSR2 knockdown produced the opposite effects (P < 0.05). Western blotting showed that TSR2 overexpression reduced the phosphorylation of PI3K and AKT, and TSR2 knockdown caused the opposite changes in MGC-803 cells (P < 0.05). CONCLUSION TSR2 is lowly expressed in gastric cancer tissues to adversely affect the patients' prognosis, and its overexpression inhibits gastric cancer cell proliferation, invasion, and migration possibly by downregulating the PI3K/AKT pathway.
Collapse
|
14
|
Gong W, Liu J, Mu Q, Chahaer T, Liu J, Ding W, Bou T, Wu Z, Zhao Y. Melatonin promotes proliferation of Inner Mongolia cashmere goat hair follicle papilla cells through Wnt10b. Genomics 2024; 116:110844. [PMID: 38608737 DOI: 10.1016/j.ygeno.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.
Collapse
Affiliation(s)
- Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Jiasen Liu
- Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Wenqi Ding
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Tugeqin Bou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Zixian Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China.
| |
Collapse
|
15
|
Kraft T, Grützmann K, Meinhardt M, Meier F, Westphal D, Seifert M. Personalized identification and characterization of genome-wide gene expression differences between patient-matched intracranial and extracranial melanoma metastasis pairs. Acta Neuropathol Commun 2024; 12:67. [PMID: 38671536 PMCID: PMC11055243 DOI: 10.1186/s40478-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most serious type of skin cancer that frequently spreads to other organs of the human body. Especially melanoma metastases to the brain (intracranial metastases) are hard to treat and a major cause of death of melanoma patients. Little is known about molecular alterations and altered mechanisms that distinguish intra- from extracranial melanoma metastases. So far, almost all existing studies compared intracranial metastases from one set of patients to extracranial metastases of an another set of melanoma patients. This neglects the important facts that each melanoma is highly individual and that intra- and extracranial melanoma metastases from the same patient are more similar to each other than to melanoma metastases from other patients in the same organ. To overcome this, we compared the gene expression profiles of 16 intracranial metastases to their corresponding 21 patient-matched extracranial metastases in a personalized way using a three-state Hidden Markov Model (HMM) to identify altered genes for each individual metastasis pair. This enabled three major findings by considering the predicted gene expression alterations across all patients: (i) most frequently altered pathways include cytokine-receptor interaction, calcium signaling, ECM-receptor interaction, cAMP signaling, Jak-STAT and PI3K/Akt signaling, (ii) immune-relevant signaling pathway genes were downregulated in intracranial metastases, and (iii) intracranial metastases were associated with a brain-like phenotype gene expression program. Further, the integration of all differentially expressed genes across the patient-matched melanoma metastasis pairs led to a set of 103 genes that were consistently down- or up-regulated in at least 11 of the 16 of the patients. This set of genes contained many genes involved in the regulation of immune responses, cell growth, cellular signaling and transport processes. An analysis of these genes in the TCGA melanoma cohort showed that the expression behavior of 11 genes was significantly associated with survival. Moreover, a comparison of the 103 genes to three closely related melanoma metastasis studies revealed a core set of eight genes that were consistently down- or upregulated in intra- compared to extracranial metastases in at least two of the three related studies (down: CILP, DPT, FGF7, LAMP3, MEOX2, TMEM119; up: GLDN, PMP2) including FGF7 that was also significantly associated with survival. Our findings contribute to a better characterization of genes and pathways that distinguish intra- from extracranial melanoma metastasis and provide important hints for future experimental studies to identify potential targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Theresa Kraft
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Konrad Grützmann
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden and the National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
16
|
Qu H, Mao M, Wang K, Mu Z, Hu B. Knockdown of ADAM8 inhibits the proliferation, migration, invasion, and tumorigenesis of renal clear cell carcinoma cells to enhance the immunotherapy efficacy. Transl Res 2024; 266:32-48. [PMID: 37992987 DOI: 10.1016/j.trsl.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The current study performed bioinformatics and in vitro and in vivo experiments to explore the effects of ADAM8 on the malignant behaviors and immunotherapeutic efficacy of renal clear cell carcinoma (ccRCC) Cells. The modular genes most associated with immune cells were screened. Then, prognostic risk models were constructed by univariate COX analysis, LASSO regression analysis and multivariate COX analysis, and their diagnostic value was determined. The correlation between tumor mutation load (TMB) scores and the prognosis of ccRCC patients was clarified. Finally, six key genes (ABI3, ADAM8, APOL3, MX2, CCDC69, and STAC3) were analyzed for immunotherapy efficacy. Human and mouse ccRCC cell lines and human proximal tubular epithelial cell lines were used for in vitro cell experiments. The effect of ADAM8 overexpression or knockdown on tumor formation and survival in ccRCC cells was examined by constructing subcutaneous transplanted tumor model. Totally, 636 Black module genes were screened as being most associated with immune cell infiltration. Six genes were subsequently confirmed for the construction of prognostic risk models, of which ABI3, APOL3 and CCDC69 were low-risk factors, while ADAM8, MX2 and STAC3 were high-risk factors. The constructed risk model based on the identified six genes could accurately predict the prognosis of ccRCC patients. Besides, TMB was significantly associated with the prognosis of ccRCC patients. Furthermore, ABI3, ADAM8, APOL3, MX2, CCDC69 and STAC3 might play important roles in treatment concerning CTLA4 inhibitors or PD-1 inhibitors or combined inhibitors. Finally, we confirmed that ADAM8 could promote the proliferation, migration and invasion of ccRCC cells through in vitro experiments, and further found that in in vivo experiments, ADAM8 knockdown could inhibit tumor formation in ccRCC cells, improve the therapeutic effect of anti-PD1, and prolong the survival of mice. Our study highlighted the alleviative role of silencing ADAM8 in ccRCC patients.
Collapse
Affiliation(s)
- Hongchen Qu
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China
| | - Minghuan Mao
- Department of Urological Surgery, Fourth affiliated Hospital of China Medical University, Shenyang 110000, PR China
| | - Kai Wang
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China
| | - Zhongyi Mu
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China
| | - Bin Hu
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China.
| |
Collapse
|
17
|
Xu M, Wang D, Li K, Ma T, Wang Y, Xia B. TMEM119 (c.G143A, p.S48L) Mutation Is Involved in Primary Failure of Eruption by Attenuating Glycolysis-Mediated Osteogenesis. Int J Mol Sci 2024; 25:2821. [PMID: 38474068 DOI: 10.3390/ijms25052821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Primary failure of eruption (PFE) is a rare oral disease with an incidence rate of 0.06%. It is characterized by abnormal eruption mechanisms that disrupt tooth eruption. The underlying pathogenic genetic variant and mechanism of PFE remain largely unknown. The purpose of this study was to explore the role of a novel transmembrane protein 119 (TMEM119) mutation in two PFE patients in a Chinese family. Information collection was performed on the family with a diagnosis of PFE, and blood samples from patients and healthy family members were extracted. Whole-exome sequencing was performed. Bioinformatics analysis revealed that a heterozygous variant in the TMEM119 gene (c.G143A, p.S48L) was a disease-associated mutation in this family. Recombinant pcDNA3.1 plasmid-containing wild-type and mutant TMEM119 expression cassettes were successfully constructed and transfected into MC3T3-E1 cells, respectively. The results of in vitro analysis suggested that the subcellular distribution of the TMEM119 protein was transferred from the cell cytoplasm to the nucleus, and the ability of cells to proliferate and migrate as well as glycolytic and mineralized capacities were reduced after mutation. Furthermore, rescue assays showed that activating transcription factor 4 (ATF4) overexpression rescued the attenuated glycolysis and mineralization ability of cells. Results of in vivo analysis demonstrated that TMEM119 was mainly expressed in the alveolar bone around the mouse molar germs, and the expression level increased with tooth eruption, demonstrated using immunohistochemistry and immunofluorescence. Collectively, the novel TMEM119 mutation is potentially pathogenic in the PFE family by affecting the glucose metabolism and mineralized function of osteoblasts, including interaction with ATF4. Our findings broaden the gene mutation spectrum of PFE and further elucidate the pathogenic mechanism of PFE.
Collapse
Affiliation(s)
- Mindi Xu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Kefan Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Tianyu Ma
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| |
Collapse
|
18
|
Wang Z, Chen G, Yuan D, Wu P, Guo J, Lu Y, Wang Z. Caveolin-1 promotes glioma proliferation and metastasis by enhancing EMT via mediating PAI-1 activation and its correlation with immune infiltrates. Heliyon 2024; 10:e24464. [PMID: 38298655 PMCID: PMC10827802 DOI: 10.1016/j.heliyon.2024.e24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Glioma is typically characterized by a poor prognosis and is associated with a decline in the quality of life as the disease advances. However, the development of effective therapies for glioma has been inadequate. Caveolin-1 (CAV-1) is a membrane protein that plays a role in caveolae formation and interacts with numerous signaling proteins, compartmentalizing them in caveolae and frequently exerting direct control over their activity through binding to its scaffolding domain. Although CAV-1 is a vital regulator of tumour progression, its role in glioma remains unclear. Our findings indicated that the knockdown of CAV-1 significantly inhibits the proliferation and metastasis of glioma. Subsequent mechanistic investigations demonstrated that CAV-1 promotes proliferation and metastasis by activating the photoshatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Furthermore, we demonstrated that CAV-1 overexpression upregulates the expression of serpin peptidase inhibitor, class E, member 1 (SERPINE1, also known as PAI-1), which serves as a marker for the epithelial-mesenchymal transition (EMT) process. Further research showed that PAI-1 knockdown abolished the CAV-1 mediated activation of PI3K/Akt signaling pathway. In glioma tissues, CAV-1 expression exhibited a correlation with unfavorable prognosis and immune infiltration among glioma patients. In summary, our study provided evidence that CAV-1 activates the PI3K/Akt signaling pathway by upregulating PAI-1, thereby promoting the proliferation and metastasis of glioma through enhanced epithelial-mesenchymal transition (EMT) and angiogenesis, and CAV-1 is involved in the immune infiltration.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Debin Yuan
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Peizhang Wu
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Jun Guo
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Yisheng Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, 226001, China
| | - Zhenyu Wang
- Department of Pediatric General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, Shanghai, China
| |
Collapse
|
19
|
Lei H, Fang F, Yang C, Chen X, Li Q, Shen X. Lifting the veils on transmembrane proteins: Potential anticancer targets. Eur J Pharmacol 2024; 963:176225. [PMID: 38040080 DOI: 10.1016/j.ejphar.2023.176225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Cancer, as a prevalent cause of mortality, poses a substantial global health burden and hinders efforts to enhance life expectancy. Nevertheless, the prognosis of patients with malignant tumors remains discouraging, owing to the lack of specific diagnostic and therapeutic targets. Therefore, the development of early diagnostic indicators and novel therapeutic drugs for the prevention and treatment of cancer is essential. Transmembrane proteins (TMEMs) are a class of proteins that can span the phospholipid bilayer and are stably anchored. They are associated with fibrotic diseases, neurodegenerative diseases, autoimmune diseases, developmental disorders, and cancer. It has been found that the expression levels of TMEMs were elevated or reduced in cancer cells, exerting pro/anticancer effects. These aberrant expression levels have also been linked to the prognostic and clinicopathological features of diverse tumors. In this review, the structures, functions, and roles of TMEMs in cancer were discussed, and the scientific perspectives were described. This review also explored the potential of TMEMs as tumor drug candidates from the perspective of targeted therapies, and the challenges that need to be overcome in a wide range of preclinical and clinical anticancer research were summarized.
Collapse
Affiliation(s)
- Huan Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
20
|
Tian Q, Mu Q, Liu S, Huang K, Tang Y, Zhang P, Zhao J, Shu C. m6A-modified circASXL1 promotes proliferation and migration of ovarian cancer through the miR-320d/RACGAP1 axis. Carcinogenesis 2023; 44:859-870. [PMID: 37738681 DOI: 10.1093/carcin/bgad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. Circular RNAs (circRNAs) can potentially regulate the development of OC. Therefore, this study investigated the role of circASXL1 in OC progression. Cell functions were assessed by MTT, colony formation, wound healing, and transwell assays. RIP and dual luciferase reporter assays confirmed the relationship between miR-320d and circASXL1 or RACGAP1. MeRIP was utilized to detect m6A levels. Xenograft tumor was established for in vivo experiments. CircASXL1 and RACGAP1 levels were increased in OC tissues and cells, whereas miR-320d expression was decreased. Upregulation of circASXL1 was associated with poor prognosis in OC patients. CircASXL1 silencing suppressed OC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, METTL3/IGF2BP1-mediated m6A modification maintained circASXL1 stability and upregulated its expression. CircASXL1 was a ceRNA that sequestrated miR-320d from RACGAP1, leading to increased RACGAP1 expression. CircASXL1 promoted OC cell proliferation, migration and invasion via the miR-320d/RACGAP1 axis. Therefore, m6A-modified circASXL1 acts as an oncogene in OC by targeting miR-320d and activating RACGAP1/PI3K/Akt pathway, which provides novel promising biomarkers for OC diagnosis.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan Province, P.R. China
| | - Qingling Mu
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Qingdao 266000, Shandong Province, P.R. China
| | - Shuang Liu
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Kui Huang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Yi Tang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Pu Zhang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Chuqiang Shu
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
21
|
LI TINGTING, ZHONG WEI, YANG LIU, ZHAO ZHIYU, WANG LI, LIU CONG, LI WANYUN, LV HAIYAN, WANG SHENGYU, YAN JIANGHUA, WU TING, SONG GANG, LUO FANGHONG. GIPC1 promotes tumor growth and migration in gastric cancer via activating PDGFR/PI3K/AKT signaling. Oncol Res 2023; 32:361-371. [PMID: 38186571 PMCID: PMC10765124 DOI: 10.32604/or.2023.043807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024] Open
Abstract
The high mortality rate associated with gastric cancer (GC) has resulted in an urgent need to identify novel therapeutic targets for GC. This study aimed to investigate whether GAIP interacting protein, C terminus 1 (GIPC1) represents a therapeutic target and its regulating mechanism in GC. GIPC1 expression was elevated in GC tissues, liver metastasis tissues, and lymph node metastases. GIPC1 knockdown or GIPC1 blocking peptide blocked the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway, and inhibited the proliferation and migration of GC cells. Conversely, GIPC1 overexpression markedly activated the PDGFR/PI3K/AKT signaling pathway, and promoted GC cell proliferation and migration. Furthermore, platelet-derived growth factor subunit BB (PDGF-BB) cytokines and the AKT inhibitor attenuated the effect of differential GIPC1 expression. Moreover, GIPC1 silencing decreased tumor growth and migration in BALB/c nude mice, while GIPC1 overexpression had contrasting effects. Taken together, our findings suggest that GIPC1 functions as an oncogene in GC and plays a central role in regulating cell proliferation and migration via the PDGFR/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- TINGTING LI
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - WEI ZHONG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - LIU YANG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - ZHIYU ZHAO
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - LI WANG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - CONG LIU
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - WANYUN LI
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - HAIYAN LV
- Department of Pharmacy, Xiamen Mental Health Center, Xiamen Xianyue Hospital, Xiamen, 361000, China
| | - SHENGYU WANG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - JIANGHUA YAN
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - TING WU
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - GANG SONG
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - FANGHONG LUO
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, China
| |
Collapse
|
22
|
He Q, Kong L, Shi W, Ma D, Liu K, Yang S, Xin Q, Jiang C, Wu J. Ezetimibe inhibits triple-negative breast cancer proliferation and promotes cell cycle arrest by targeting the PDGFR/AKT pathway. Heliyon 2023; 9:e21343. [PMID: 38027998 PMCID: PMC10651468 DOI: 10.1016/j.heliyon.2023.e21343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cholesterol levels were strongly associated with tumor progression and metastasis. Targeted cholesterol metabolism has broad prospects in tumor treatment. Ezetimibe, the only FDA-approved inhibitor of cholesterol absorption, has been reported to be able to inhibit angiogenesis in liver cancer. However, the efficacy and specific mechanisms of Ezetimibe in the treatment of Triple-Negative Breast Cancer (TNBC)have not been reported. Our research shows Ezetimibe inhibits TNBC cell proliferation and blocks the cell cycle in the G1 phase. Mechanistically, Ezetimibe inhibits the activation of PDGFRβ/AKT pathway, thereby promoting cell cycle arrest and inhibiting cell proliferation. By overexpressing PDGFRβ in TNBC cells, we found that PDGFRβ significantly reduced the inhibitory effect of Ezetimibe on TNBC cell proliferation and the cell cycle. Similarly, SC79, an AKT agonist, can reduce the proliferation inhibitory and cycle-blocking effects of Ezetimibe on TNBC cells. Furthermore, the AKT inhibitor MK2206 enhanced the inhibitory effect of Ezetimibe on the cell cycle and proliferation ability of TNBC cells overexpressing PDGFRβ. In xenograft tumor models, we also found that Ezetimibe inhibited TNBC growth, an effect that can be blocked by overexpression of PDGFR or activation of AKT. In summary, we have demonstrated that EZ inhibits the PDGFR/AKT pathway, thereby halting TNBC cycle progression and tumor growth.
Collapse
Affiliation(s)
- Qinyu He
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Weiwei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Shuwei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| |
Collapse
|
23
|
Herrera-Quiterio GA, Encarnación-Guevara S. The transmembrane proteins (TMEM) and their role in cell proliferation, migration, invasion, and epithelial-mesenchymal transition in cancer. Front Oncol 2023; 13:1244740. [PMID: 37936608 PMCID: PMC10627164 DOI: 10.3389/fonc.2023.1244740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023] Open
Abstract
Transmembrane proteins (TMEM) are located in the different biological membranes of the cell and have at least one passage through these cellular compartments. TMEM proteins carry out a wide variety of functions necessary to maintain cell homeostasis TMEM165 participates in glycosylation protein, TMEM88 in the development of cardiomyocytes, TMEM45A in epidermal keratinization, and TMEM74 regulating autophagy. However, for many TMEM proteins, their physiological function remains unknown. The role of these proteins is being recently investigated in cancer since transcriptomic and proteomic studies have revealed that exits differential expression of TMEM proteins in different neoplasms concerning cancer-free tissues. Among the cellular processes in which TMEM proteins have been involved in cancer are the promotion or suppression of cell proliferation, epithelial-mesenchymal transition, invasion, migration, intravasation/extravasation, metastasis, modulation of the immune response, and response to antineoplastic drugs. Inclusive data suggests that the participation of TMEM proteins in these cellular events could be carried out through involvement in different cell signaling pathways. However, the exact mechanisms not clear. This review shows a description of the involvement of TMEM proteins that promote or decrease cell proliferation, migration, and invasion in cancer cells, describes those TMEM proteins for which both a tumor suppressor and a tumor promoter role have been identified, depending on the type of cancer in which the protein is expressed. As well as some TMEM proteins involved in chemoresistance. A better characterization of these proteins is required to improve the understanding of the tumors in which their expression and function are altered; in addition to improving the understanding of the role of these proteins in cancer will show those TMEM proteins be potential candidates as biomarkers of response to chemotherapy or prognostic biomarkers or as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
24
|
Li Z, Liu Y, Ma T, Lv C, Li Y, Duan H, Zhao X, Wang J, Zhang Y. Smart-seq2 Technology Reveals a Novel Mechanism That Zearalenone Inhibits the In Vitro Maturation of Ovine Oocytes by Influencing TNFAIP6 Expression. Toxins (Basel) 2023; 15:617. [PMID: 37888648 PMCID: PMC10611292 DOI: 10.3390/toxins15100617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic fungal toxin widely present in forage, food, and their ingredients, poses a serious threat to animal and human reproductive health. ZEN also threatens ovine, a major source of human food and breeding stock. However, the mechanisms underlying the impact of ZEN on the in vitro maturation (IVM) of ovine oocytes remain unclear. This study aimed to elucidate these mechanisms using the Smart-seq2 technology. A total of 146 differentially expressed genes were obtained, using Smart-seq2, from sheep oocytes cultured in vitro after ZEN treatment. ZEN treatment inhibited RUNX2 and SPP1 expression in the PI3K signaling pathway, leading to the downregulation of THBS1 and ultimately the downregulation of TNFAIP6; ZEN can also decrease TNFAIP6 by reducing PTPRC and ITGAM. Both inhibit in vitro maturation of ovine oocytes and proliferation of cumulus cells by downregulating TNFAIP6. These findings provide data and a theoretical basis for elucidating ZEN's toxicity mechanisms, screening therapeutic drugs, and reducing ZEN-related losses in the ovine industry.
Collapse
Affiliation(s)
- Zongshuai Li
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yali Liu
- Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Tian Ma
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Chen Lv
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Yina Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Hongwei Duan
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro–Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (C.L.); (Y.L.); (H.D.); (X.Z.)
| |
Collapse
|
25
|
Guo A, Lin J, Zhong P, Chen J, Wang L, Lin X, Feng M. Phellopterin attenuates ovarian cancer proliferation and chemoresistance by inhibiting the PU.1/CLEC5A/PI3K-AKT feedback loop. Toxicol Appl Pharmacol 2023; 477:116691. [PMID: 37708916 DOI: 10.1016/j.taap.2023.116691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ovarian cancer is known as the second leading cause of gynecologic cancer-associated deaths in women worldwide. Developing new and effective compounds to alleviate chemoresistance is an urgent priority in ovarian cancer. Here, we aimed to reveal the biological function and underlying mechanisms of phellopterin, a naturally sourced ingredient of Angelica dahurica, in ovarian cancer progression as well as evaluate the therapeutic potential of phellopterin in ovarian cancer patients. In this investigation, we found that phellopterin mitigated DNA replication and induced cell cycle arrest, apoptosis, and DNA damage, attenuating cell proliferation and chemoresistance of ovarian cancer. Interestingly, bioinformatics analyses of data from our RNA sequencing and The Cancer Genome Atlas ovarian cancer dataset suggested that phellopterin presented anti-cancer activities in ovarian cancer cells by modulating signals affecting ovarian cancer progression and identified phellopterin as a potential compound in improving ovarian cancer patients' prognosis. In addition, the C-Type Lectin Domain Containing 5A (CLEC5A) was demonstrated as a downstream effector of phellopterin and involved in a positive PU.1/CLEC5A/PI3K-AKT feedback loop. Interestingly, phellopterin might inactivate the positive feedback circuit to suppress ovarian cancer progression. Collectively, our investigation revealed that phellopterin mitigated ovarian cancer proliferation and chemoresistance through suppressing the PU.1/CLEC5A/PI3K-AKT feedback loop, and predicted phellopterin as a new and effective cytotoxic drug and CLEC5A as a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Aihua Guo
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Peilin Zhong
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jiyun Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Linghua Wang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Xiurong Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Mei Feng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
26
|
Zheng J, Wang X, Li J, Wu Y, Chang J, Xin J, Wang M, Wang T, Wei Q, Wang M, Zhang R. Rare variants confer shared susceptibility to gastrointestinal tract cancer risk. Front Oncol 2023; 13:1161639. [PMID: 37483484 PMCID: PMC10358854 DOI: 10.3389/fonc.2023.1161639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Cancers arising within the gastrointestinal tract are complex disorders involving genetic events that cause the conversion of normal tissue to premalignant lesions and malignancy. Shared genetic features are reported in epithelial-based gastrointestinal cancers which indicate common susceptibility among this group of malignancies. In addition, the contribution of rare variants may constitute parts of genetic susceptibility. Methods A cross-cancer analysis of 38,171 shared rare genetic variants from genome-wide association assays was conducted, which included data from 3,194 cases and 1,455 controls across three cancer sites (esophageal, gastric and colorectal). The SNP-level association was performed by multivariate logistic regression analyses for single cancer, followed by association analysis for SubSETs (ASSET) to adjust the bias of overlapping controls. Gene-level analyses were conducted by SKAT-O, with multiple comparison adjustments by false discovery rate (FDR). Based on the significant genes indicated by SKATO analysis, pathways analysis was conducted using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Results Meta-analysis in three gastrointestinal (GI) cancers identified 13 novel susceptibility loci that reached genome-wide significance (P ASSET< 5×10-8). SKAT-O analysis revealed EXOC6, LRP5L and MIR1263/LINC01324 to be significant genes shared by GI cancers (P adj<0.05, P FDR<0.05). Furthermore, GO pathway analysis identified significant enrichment of synaptic transmission and neuron development pathways shared by all three cancer types. Conclusion Rare variants and the corresponding genes potentially contribute to shared susceptibility in different GI cancer types. The discovery of these novel variants and genes offers new insights for the carcinogenic mechanisms and missing heritability of GI cancers.
Collapse
Affiliation(s)
- Ji Zheng
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingrao Li
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yuanna Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, United States
| | - Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Mengyun Wang
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ruoxin Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
27
|
Balog S, Fujiwara R, Pan SQ, El-Baradie KB, Choi HY, Sinha S, Yang Q, Asahina K, Chen Y, Li M, Salomon M, Ng SWK, Tsukamoto H. Emergence of highly profibrotic and proinflammatory Lrat+Fbln2+ HSC subpopulation in alcoholic hepatitis. Hepatology 2023; 78:212-224. [PMID: 36181700 PMCID: PMC10977045 DOI: 10.1002/hep.32793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Relative roles of HSCs and portal fibroblasts in alcoholic hepatitis (AH) are unknown. We aimed to identify subpopulations of collagen type 1 alpha 1 (Col1a1)-expressing cells in a mouse AH model by single-cell RNA sequencing (scRNA-seq) and filtering the cells with the HSC (lecithin retinol acyltransferase [Lrat]) and portal fibroblast (Thy-1 cell surface antigen [Thy1] and fibulin 2 [Fbln2]) markers and vitamin A (VitA) storage. APPROACH AND RESULTS Col1a1-green fluorescent protein (GFP) mice underwent AH, CCl 4 , and bile duct ligation (BDL) procedures to have comparable F1-F2 liver fibrosis. Col1a1-expressing cells were sorted via FACS by VitA autofluorescence and GFP for single-cell RNA sequencing. In AH, approximately 80% of Lrat+Thy1-Fbln2- activated HSCs were VitA-depleted (vs. ~13% in BDL and CCl 4 ). Supervised clustering identified a subset co-expressing Lrat and Fbln2 (Lrat+Fbln2+), which expanded 44-fold, 17-fold, and 1.3-fold in AH, BDL, and CCl 4 . Lrat+Fbln2+ cells had 3-15-times inductions of profibrotic, myofibroblastic, and immunoregulatory genes versus Lrat+Fbln2- cells, but 2-4-times repressed HSC-selective genes. AH activated HSCs had up-regulated inflammatory (chemokine [C-X-C motif] ligand 2 [Cxcl2], chemokine [C-C motif] ligand 2), antimicrobial (Il-33, Zc3h12a), and antigen presentation (H2-Q6, H2-T23) genes versus BDL and CCl 4 . Computational deconvolution of AH versus normal human bulk-liver RNA-sequencing data supported an expansion of LRAT+FBLN2+ cells in AH; AH patient liver immunohistochemistry showed FBLN2 staining along fibrotic septa enriched with LRAT+ cells; and in situ hybridization confirmed co-expression of FBLN2 with CXCL2 and/or human leukocyte antigen E in patient AH. Finally, HSC tracing in Lrat-Cre;Rosa26mTmG mice detected GFP+FBLN2+ cells in AH. CONCLUSION A highly profibrotic, inflammatory, and immunoregulatory Lrat+Fbln2+ subpopulation emerges from HSCs in AH and may contribute to the inflammatory and immunoreactive nature of AH.
Collapse
Affiliation(s)
- Steven Balog
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Reika Fujiwara
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie Q. Pan
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Khairat B. El-Baradie
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hye Yeon Choi
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Sonal Sinha
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Qihong Yang
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Central Research Laboratory, Shiga University of Medical Sciences, Seta Tsukinowa-cho Otsu, Shiga, Japan
| | - Yibu Chen
- USC Libraries Bioinformatic Services of the University of Southern California, Los Angeles, California, USA
| | - Meng Li
- USC Libraries Bioinformatic Services of the University of Southern California, Los Angeles, California, USA
| | - Matthew Salomon
- Department Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Stanley W.-K. Ng
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- University of Michigan, Ann Arbor, Michigan, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
28
|
Cai J, Hu Q, He Z, Chen X, Wang J, Yin X, Ma X, Zeng J. Scutellaria baicalensis Georgi and Their Natural Flavonoid Compounds in the Treatment of Ovarian Cancer: A Review. Molecules 2023; 28:5082. [PMID: 37446743 DOI: 10.3390/molecules28135082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer in women with a high mortality rate, and the treatment of OC is prone to high recurrence rates and side effects. Scutellaria baicalensis (SB) is a herbal medicine with good anti-cancer activity, and several studies have shown that SB and its flavonoids have some anti-OC properties. This paper elucidated the common pathogenesis of OC, including cell proliferation and cell cycle regulation, cell invasion and metastasis, apoptosis and autophagy, drug resistance and angiogenesis. The mechanisms of SB and its flavonoids, wogonin, baicalein, baicalin, Oroxylin A, and scutellarein, in the treatment of OC, are revealed, such as wogonin inhibits proliferation, induces apoptosis, inhibits invasion and metastasis, and increases the cytotoxicity of the drug. Baicalein also inhibits vascular endothelial growth factor (VEGF) expression etc. Analyzing their advantages and disadvantages in treating OC provides a new perspective on the role of SB and its flavonoids in OC treatment. It serves as a resource for future OC research and development.
Collapse
Affiliation(s)
- Jiaying Cai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhelin He
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
29
|
Duan Y, Xu X. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1193622. [PMID: 37383389 PMCID: PMC10295154 DOI: 10.3389/fendo.2023.1193622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Ovarian cancer (OC) is a highly lethal and aggressive gynecologic cancer, with an overall survival rate that has shown little improvement over the decades. Robust models are urgently needed to distinguish high-risk cases and predict reliable treatment options for OC. Although anoikis-related genes (ARGs) have been reported to contribute to tumor growth and metastasis, their prognostic value in OC remains unknown. The purpose of this study was to construct an ARG pair (ARGP)-based prognostic signature for patients with OC and elucidate the potential mechanism underlying the involvement of ARGs in OC progression. Methods The RNA-sequencing and clinical information data of OC patients were obtained from The Center Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A novel algorithm based on pairwise comparison was utilized to select ARGPs, followed by the Least Absolute Shrinkage and Selection Operator Cox analysis to construct a prognostic signature. The predictive ability of the model was validated using an external dataset, a receiver operating characteristic curve, and stratification analysis. The immune microenvironment and the proportion of immune cells were analyzed in high- and low-risk OC cases using seven algorithms. Gene set enrichment analysis and weighted gene co-expression network analysis were performed to investigate the potential mechanisms of ARGs in OC occurrence and prognosis. Results The 19-ARGP signature was identified as an important prognostic predictor for 1-, 2-, and 3-year overall survival of patients with OC. Gene function enrichment analysis showed that the high-risk group was characterized by the infiltration of immunosuppressive cells and the enrichment of adherence-related signaling pathway, suggesting that ARGs were involved in OC progression by mediating immune escape and tumor metastasis. Conclusion We constructed a reliable ARGP prognostic signature of OC, and our findings suggested that ARGs exerted a vital interplay in OC immune microenvironment and therapeutic response. These insights provided valuable information regarding the molecular mechanisms underlying this disease and potential targeted therapies.
Collapse
Affiliation(s)
- Yiqi Duan
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Chang YF, Wang HH, Shu CW, Tsai WL, Lee CH, Chen CL, Liu PF. TMEM211 Promotes Tumor Progression and Metastasis in Colon Cancer. Curr Issues Mol Biol 2023; 45:4529-4543. [PMID: 37367036 DOI: 10.3390/cimb45060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Colon cancer is the third most important cancer type, leading to a remarkable number of deaths, indicating the necessity of new biomarkers and therapeutic targets for colon cancer patients. Several transmembrane proteins (TMEMs) are associated with tumor progression and cancer malignancy. However, the clinical significance and biological roles of TMEM211 in cancer, especially in colon cancer, are still unknown. In this study, we found that TMEM211 was highly expressed in tumor tissues and the increased TMEM211 was associated with poor prognosis in colon cancer patients from The Cancer Genome Atlas (TCGA) database. We also showed that abilities regarding migration and invasion were reduced in TMEM211-silenced colon cancer cells (HCT116 and DLD-1). Moreover, TMEM211-silenced colon cancer cells showed decreased levels of Twist1, N-cadherin, Snail and Slug but increased levels of E-cadherin. Levels of phosphorylated ERK, AKT and RelA (NF-κB p65) were also decreased in TMEM211-silenced colon cancer cells. Our findings indicate that TMEM211 regulates epithelial-mesenchymal transition for metastasis through coactivating the ERK, AKT and NF-κB signaling pathways, which might provide a potential prognostic biomarker or therapeutic target for colon cancer patients in the future.
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsing-Hsang Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
31
|
Zhang Y, Zhang W, Yuan Q, Hong W, Yin P, Shen T, Fang L, Jiang J, Shi F, Chen W. Illustrating the biological functions and diagnostic value of transmembrane protein family members in glioma. Front Oncol 2023; 13:1145676. [PMID: 37064154 PMCID: PMC10102456 DOI: 10.3389/fonc.2023.1145676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundIt is well-established that patients with glioma have a poor prognosis. Although the past few decades have witnessed unprecedented medical advances, the 5-year survival remains dismally low.ObjectiveThis study aims to investigate the role of transmembrane protein-related genes in the development and prognosis of glioma and provide new insights into the pathogenesis of the diseaseMethodsThe datasets of glioma patients, including RNA sequencing data and relative clinical information, were obtained from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) databases. Prognostic transmembrane protein-related genes were identified by univariate Cox analysis. New disease subtypes were recognized based on the consensus clustering method, and their biological uniqueness was verified via various algorithms. The prognosis signature was constructed using the LASSO-Cox regression model, and its predictive power was validated in external datasets by receiver operating characteristic (ROC) curve analysis. An independent prognostic analysis was conducted to evaluate whether the signature could be considered a prognostic factor independent of other variables. A nomogram was constructed in conjunction with traditional clinical variables. The concordance index (C-index) and Decision Curve Analysis (DCA) were used to assess the net clinical benefit of the signature over traditional clinical variables. Seven different softwares were used to compare the differences in immune infiltration between the high- and low-risk groups to explore potential mechanisms of glioma development and prognosis. Hub genes were found using the random forest method, and their expression was based on multiple single-cell datasets.ResultsFour molecular subtypes were identified, among which the C1 group had the worst prognosis. Principal Component Analysis (PCA) results and heatmaps indicated that prognosis-related transmembrane protein genes exhibited differential expression in all four groups. Besides, the microenvironment of the four groups exhibited significant heterogeneity. The 6 gene-based signatures could predict the 1-, 2-, and 3-year overall survival (OS) of glioma patients. The signature could be used as an independent prognosis factor of glioma OS and was superior to traditional clinical variables. More immune cells were infiltrated in the high-risk group, suggesting immune escape. According to our signature, many genes were associated with the content of immune cells, which revealed that transmembrane protein-related genes might influence the development and prognosis of glioma by regulating the immune microenvironment. TMEM158 was identified as the most important gene using the random forest method. The single-cell datasets consistently showed that TMEM158 was expressed in multiple malignant cells.ConclusionThe expression of transmembrane protein-related genes is closely related to the immune status and prognosis of glioma patients by regulating tumor progression in various ways. The interaction between transmembrane protein-related genes and immunity during glioma development lays the groundwork for future studies on the molecular mechanism and targeted therapy of glioma.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiyou Yuan
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenqing Hong
- Department of Health Management Center, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Yin
- School of Materials & Science, Beijing Institute of Technology, Beijing, China
| | - Tingting Shen
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lutong Fang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Junlan Jiang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangxiao Shi
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiwei Chen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Weiwei Chen,
| |
Collapse
|
32
|
Hickman AR, Hang Y, Pauly R, Feltus FA. Identification of condition-specific biomarker systems in uterine cancer. G3 GENES|GENOMES|GENETICS 2022; 12:6427626. [PMID: 34791179 PMCID: PMC8727964 DOI: 10.1093/g3journal/jkab392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022]
Abstract
Uterine cancer is the fourth most common cancer among women, projected to affect 66,000 US women in 2021. Uterine cancer often arises in the inner lining of the uterus, known as the endometrium, but can present as several different types of cancer, including endometrioid cancer, serous adenocarcinoma, and uterine carcinosarcoma. Previous studies have analyzed the genetic changes between normal and cancerous uterine tissue to identify specific genes of interest, including TP53 and PTEN. Here we used Gaussian Mixture Models to build condition-specific gene coexpression networks for endometrial cancer, uterine carcinosarcoma, and normal uterine tissue. We then incorporated uterine regulatory edges and investigated potential coregulation relationships. These networks were further validated using differential expression analysis, functional enrichment, and a statistical analysis comparing the expression of transcription factors and their target genes across cancerous and normal uterine samples. These networks allow for a more comprehensive look into the biological networks and pathways affected in uterine cancer compared with previous singular gene analyses. We hope this study can be incorporated into existing knowledge surrounding the genetics of uterine cancer and soon become clinical biomarkers as a tool for better prognosis and treatment.
Collapse
Affiliation(s)
- Allison R Hickman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Yuqing Hang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Rini Pauly
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 29634, USA
| | - Frank A Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 29634, USA
- College of Science, Center for Human Genetics, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
33
|
Liang ZQ, Zhong LY, Li J, Shen JH, Tu XY, Zhong ZH, Zeng JJ, Chen JH, Wei ZX, Dang YW, Huang SN, Chen G. Clinicopathological significance and underlying molecular mechanism of downregulation of basonuclin 1 expression in ovarian carcinoma. Exp Biol Med (Maywood) 2022; 247:106-119. [PMID: 34644201 PMCID: PMC8777474 DOI: 10.1177/15353702211052036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we aim to identify the clinical significance of basonuclin 1 (BNC1) expression in ovarian carcinoma (OV) and to explore its latent mechanisms. Via integrating in-house tissue microarrays, gene chips, and RNA-sequencing data, we explored the expression and clinical value of BNC1 in OV. Immunohistochemical staining was utilized to confirm the protein expression status of BNC1. A combined SMD of -2.339 (95% CI: -3.649 to -1.028, P < 0.001) identified that BNC1 was downregulated based on 1346 samples, and the sROC (AUC = 0.93) showed a favorable discriminatory ability of BNC1 in OV patients. We used univariate and multivariate Cox regulation to evaluate the prognostic role of BNC1 for OV patients, and a combined hazard ratio of 0.717 (95% CI: 0.445-0.989, P < 0.001) revealed that BNC1 was a protective factor for OV. Furthermore, the fraction of infiltrating naive B cells, memory B cells, and other immune cells showed statistical differences between the high- and low-BNC1 expression groups through cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Enrichment analysis showed that BNC1 may have a relationship with immune-related items in OV. By predicting the potential regulatory transcription factors (TFs) of BNC1, friend leukemia virus integration 1 (FLI1) may be a potential upstream TF of BNC1. Corporately, a decreasing trend of BNC1 may serve as a tumor suppressor and prognostic biomarker in OV patients. Moreover, BNC1 may take part in immune-related pathways and influence the fraction of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Lu-Yang Zhong
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jie Li
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jin-Hai Shen
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Xin-Yue Tu
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Zheng-Hong Zhong
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Jun-Hong Chen
- Department of Pathology, Maternal and Child Health Hospital of
Guangxi Zhuang Autonomous Region, Nanning 530003, P. R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer
Hospital, Nanning 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of
Guangxi Medical University, Nanning 530021, P. R. China
- Gang Chen.
| |
Collapse
|
34
|
Koteluk O, Bielicka A, Lemańska Ż, Jóźwiak K, Klawiter W, Mackiewicz A, Kazimierczak U, Kolenda T. The Landscape of Transmembrane Protein Family Members in Head and Neck Cancers: Their Biological Role and Diagnostic Utility. Cancers (Basel) 2021; 13:cancers13194737. [PMID: 34638224 PMCID: PMC8507526 DOI: 10.3390/cancers13194737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transmembrane proteins (TMEM) are a large group of integral membrane proteins whose molecular and biological functions are not fully understood. It is known that some of them are involved in tumor formation and metastasis. Here, we performed a panel of TCGA data analyses to investigate the role of different TMEM genes in head and neck squamous cell carcinoma (HNSCC) and define their potential as biomarkers. Based on changes in the expression levels in HNSCC tumors, we selected four TMEM genes: ANO1, TMEM156, TMEM173, and TMEM213 and associated them with patient survival. We also demonstrated that the expression of those TMEMs highly correlates with the enrichment of genes involved in numerous biological processes, especially metastasis formation and immune response. Thus, we propose ANO1, TMEM156, TMEM173, and TMEM213 as new biomarkers and potential targets for personalized therapy of HNSCC. Abstract Background: Transmembrane proteins (TMEM) constitute a large family of proteins spanning the entirety of the lipid bilayer. However, there is still a lack of knowledge about their function or mechanism of action. In this study, we analyzed the expression of selected TMEM genes in patients with head and neck squamous cell carcinoma (HNSCC) to learn their role in tumor formation and metastasis. Materials and Methods: Using TCGA data, we analyzed the expression levels of different TMEMs in both normal and tumor samples and compared those two groups depending on clinical-pathological parameters. We selected four TMEMs whose expression was highly correlated with patient survival status and subjected them to further analysis. The pathway analysis using REACTOME and the gene set enrichment analysis (GSEA) were performed to evaluate the association of those TMEMs with genes involved in hallmarks of cancer as well as in oncogenic and immune-related pathways. In addition, the fractions of different immune cell subpopulations depending on TMEM expression were estimated in analyzed patients. The results for selected TMEMs were validated using GEO data. All analyses were performed using the R package, Statistica, and Graphpad Prism. Results: We demonstrated that 73% of the analyzed TMEMs were dysregulated in HNSCC and depended on tumor localization, smoking, alcohol consumption, or HPV infection. The expression levels of ANO1, TMEM156, TMEM173, and TMEM213 correlated with patient survival. The four TMEMs were also upregulated in HPV-positive patients. The elevated expression of those TMEMs correlated with the enrichment of genes involved in cancer-related processes, including immune response. Specifically, overexpression of TMEM156 and TMEM173 was associated with immune cell mobilization and better survival rates, while the elevated ANO1 expression was linked with metastasis formation and worse survival. Conclusions: In this work, we performed a panel of in silico analyses to discover the role of TMEMs in head and neck squamous cell carcinoma. We found that ANO1, TMEM156, TMEM173, and TMEM213 correlated with clinical status and immune responses in HNSCC patients, pointing them as biomarkers for a better prognosis and treatment. This is the first study describing such the role of TMEMs in HNSCC. Future clinical trials should confirm the potential of those genes as targets for personalized therapy of HNSCC.
Collapse
Affiliation(s)
- Oliwia Koteluk
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Correspondence: (O.K.); (A.B.)
| | - Antonina Bielicka
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Correspondence: (O.K.); (A.B.)
| | - Żaneta Lemańska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Kacper Jóźwiak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Weronika Klawiter
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
35
|
Yang B, Wang F, Zheng G. Transmembrane protein TMEM119 facilitates the stemness of breast cancer cells by activating Wnt/β-catenin pathway. Bioengineered 2021; 12:4856-4867. [PMID: 34334123 PMCID: PMC8806430 DOI: 10.1080/21655979.2021.1960464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The effects of transmembrane protein 119 (TMEM119) on breast cancer progression have not been elucidated. This study aims to investigate the roles of TMEM119 in breast cancer progression. Clinical samples and online datasets were used to determine TMEM119 expression and its correlation between patients’ survival. Wound healing, transwell invasion, mammary spheroid formation, and ALDH activity were performed to detect the effects of TMEM119. RNA-sequencing, Luciferase report analysis, Co-IP, and ChIP analysis were constructed to reveal the underlying mechanisms. We found that TMEM119 was highly expressed in breast cancer tissues and cells compared to that in normal tissues and cells. Additionally, TMEM119 expression was negatively correlated with the survival of breast cancer patients. TMEM119 knockdown reduced the expression of stemness markers, mammary spheroid-formation ability and ALDH activity. RNA-sequencing analysis indicated that Wnt/β-catenin signaling was enriched in cells with TMEM119 overexpression. Further co-IP experiments indicated that TMEM119 interacted with β-catenin and maintained its protein stability. Conversely, β-catenin directly bound to TMEM119 gene promoter and thus increased TMEM119 transcriptional activity and its expression. Finally, we demonstrated that TMEM119-mediated effects depended on Wnt/β-catenin signaling. Thus, this work reveals a novel TMEM119-β-catenin positive feedback loop essential for breast cancer cell stemness.
Collapse
Affiliation(s)
- Ben Yang
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Fengling Wang
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Gang Zheng
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| |
Collapse
|