1
|
Hernández-Valencia J, García-Villarreal R, Rodríguez-Jiménez M, Hernández-Avalos AD, Rivero IA, Vique-Sánchez JL, Chimal-Vega B, Pulido-Capiz A, García-González V. Lapatinib-Resistant HER2+ Breast Cancer Cells Are Associated with Dysregulation of MAPK and p70S6K/PDCD4 Pathways and Calcium Management, Influence of Cryptotanshinone. Int J Mol Sci 2025; 26:3763. [PMID: 40332401 PMCID: PMC12027730 DOI: 10.3390/ijms26083763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Resistance to HER2 tyrosine-kinase inhibitor Lapatinib (Lap) is one of the leading causes of cancer treatment failure in HER2+ breast cancer (BC), associated with an aggressive tumor phenotype. Cryptotanshinone (Cry) is a natural terpene molecule that could function as a chemosensitizer by disturbing estrogen receptor (ERα) signaling and inhibiting the protein translation factor-4A, eIF4A. Therefore, we evaluated Cry dual regulation on eIF4A and ERα. This study aimed to elucidate the underlying mechanisms of Lap chemoresistance and the impact of Cry on them. We generated two Lap-resistant BT474 cell HER2+ variants named BT474LapRV1 and BT474LapRV2 with high chemoresistance levels, with 7- and 11-fold increases in EC50, respectively, compared to BT474 parental cells. We found a PDCD4-p70S6Kβ axis association with Lap chemoresistance. However, a concomitant down-regulation of the RAF-MEK-ERK cell survival pathway and NF-κB was found in the chemoresistant cell variants; this phenomenon was exacerbated by joint treatment of Cry and Lap under a Lap plasmatic reported concentration. Optimized calcium management was identified as a compensatory mechanism contributing to chemoresistance, as determined by the higher expression of calcium pumps PMCA1/4 and SERCA2. Contrary to expectations, a combination of Lap and Cry did not affect the chemoresistance despite the ERα down-regulation; Cry-eIF4A binding possibly dampens this condition. Results indicated the pro-survival eIF4A/STAT/Bcl-xl pathway and that the down-regulation of the MAPK-NF-κB might function as an adaptive mechanism; this response may be compensated by calcium homeostasis in chemoresistance, highlighting new adaptations in HER2+ cells that lead to chemoresistance.
Collapse
Affiliation(s)
- Jorge Hernández-Valencia
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
| | - Ruth García-Villarreal
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
| | - Manuel Rodríguez-Jiménez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
| | - Alex Daniel Hernández-Avalos
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
| | - Ignacio A. Rivero
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Baja California, Mexico;
| | - José Luis Vique-Sánchez
- Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico;
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
- Centro de Innovación e Investigación en Salud (CIIS), Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico; (J.H.-V.); (R.G.-V.); (M.R.-J.); (A.D.H.-A.); (B.C.-V.); (A.P.-C.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico
- Centro de Innovación e Investigación en Salud (CIIS), Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico
| |
Collapse
|
2
|
Mo S, Zhong H, Dai W, Li Y, Qi B, Li T, Cai Y. ERBB3-related gene PBX1 is associated with prognosis in patients with HER2-positive breast cancer. BMC Genom Data 2025; 26:2. [PMID: 39794693 PMCID: PMC11720925 DOI: 10.1186/s12863-024-01292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND HER2-positive breast cancer (BC) is a subtype of breast cancer. Increased ERBB3 expression has been implicated as a potential cause of resistance to other HER-targeted therapies. Our study aimed to screen and validate prognostic markers associated with ERBB3 expression by bioinformatics and affecting the prognosis of HER2 staging. METHODS Analyzing differences in ERBB3-related groups. ERBB3 expression-related differentially expressed genes (DEGs) were identified and intersected with survival status-related DEGs to obtain intersected genes. Three algorithms, LASSO, RandomForest and XGBoost were combined to identify the signature genes. we construct risk models and generate ROC curves for prediction. Furthermore, we delve into the immunological traits, correlations, and expression patterns of signature genes by conducting a comprehensive analysis that encompasses immune infiltration analysis, correlation analysis, and differential expression analysis. RESULTS Significant variability in ERBB3 expression and prognosis in high and low ERBB3 expression groups. Twenty-five candidate DEGs were identified by intersecting ERBB3-related DEGs with survival-related DEGs. Utilizing three distinct machine learning algorithms, we identified three signature genes-PBX1, IGHM, and CXCL13-that exhibited significant diagnostic value within the diagnostic model. In addition, the risk model had better prognostic and predictive effects, and the immune infiltration analysis showed that IGHM, CXCL13 might affect the proliferation of BC cells through immune cells. Functional studies demonstrated that interference with PBX1 inhibited the proliferation, migration, and epithelial-mesenchymal transition process of HER2-positive BC cells. CONCLUSION PBX1, IGHM and CXCL13 are associated with the expression level of the ERBB3 and are prognostic markers for HER2-positive in BC, which may play an important role in the development and progression of BC.
Collapse
Affiliation(s)
- Shufen Mo
- Medical Oncology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Haiming Zhong
- Medical Oncology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Weiping Dai
- Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Yuanyuan Li
- Medical Oncology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Bin Qi
- Pathology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Taidong Li
- Thoracic Surgery, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China.
- Central Hospital of Guangdong Provincial Nongken, No.2 Renmin Avenue Middle, Xiashan District, Zhanjiang, Guangdong, 524002, China.
| | - Yongguang Cai
- Medical Oncology, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China.
- Central Hospital of Guangdong Provincial Nongken, No.2 Renmin Avenue Middle, Xiashan District, Zhanjiang, Guangdong, 524002, China.
| |
Collapse
|
3
|
Khamrui E, Banerjee S, Mukherjee DD, Biswas K. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. Glycoconj J 2024; 41:343-360. [PMID: 39368037 DOI: 10.1007/s10719-024-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Elora Khamrui
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Dipanwita Das Mukherjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Yoon J, Oh DY. HER2-targeted therapies beyond breast cancer - an update. Nat Rev Clin Oncol 2024; 21:675-700. [PMID: 39039196 DOI: 10.1038/s41571-024-00924-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
The receptor tyrosine-kinase HER2 (also known as ErbB2) is a well-established therapeutic target in patients with breast or gastric cancer selected on the basis of HER2 overexpression on immunohistochemistry and/or ERBB2 amplification on in situ hybridization. With advances in cancer molecular profiling and increased implementation of precision medicine approaches into oncology practice, actionable HER2 alterations in solid tumours have expanded to include ERBB2 mutations in addition to traditional HER2 overexpression and ERBB2 amplification. These various HER2 alterations can be found in solid tumour types beyond breast and gastric cancer, although few HER2-targeted therapeutic options have been established for the other tumour types. Nevertheless, during the 5 years since our previous Review on this topic was published in this journal, obvious and fruitful progress in the development of HER2-targeted therapies has been made, including new disease indications, innovative drugs with diverse mechanisms of action and novel frameworks for approval by regulatory authorities. These advances have culminated in the recent histology-agnostic approval of the anti-HER2 antibody-drug conjugate trastuzumab deruxtecan for patients with HER2-overexpressing solid tumours. In this new Review, we provide an update on the current development landscape of HER2-targeted therapies beyond breast cancer, as well as anticipated future HER2-directed treatment strategies to overcome resistance and thereby improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Jeesun Yoon
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Mo C, Sterpi M, Jeon H, Bteich F. Resistance to Anti-HER2 Therapies in Gastrointestinal Malignancies. Cancers (Basel) 2024; 16:2854. [PMID: 39199625 PMCID: PMC11352490 DOI: 10.3390/cancers16162854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Human epidermal growth factor 2 (HER2) is a tyrosine kinase receptor that interacts with multiple signaling pathways related to cellular growth and proliferation. Overexpression or amplification of HER2 is linked to various malignancies, and there have been decades of research dedicated to targeting HER2. Despite the landmark ToGA trial, progress in HER2-positive gastrointestinal malignancies has been hampered by drug resistance. This review examines current HER2 expression patterns and therapies for gastroesophageal, colorectal, biliary tract, and small bowel cancers, while dissecting potential resistance mechanisms that limit treatment effectiveness.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
6
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Scheck MK, Hofheinz RD, Lorenzen S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers (Basel) 2024; 16:1336. [PMID: 38611014 PMCID: PMC11010911 DOI: 10.3390/cancers16071336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Despite a decreasing incidence in Western countries, gastric cancer is among the most common cancer subtypes globally and is associated with one of the highest tumor-related mortality rates. Biomarkers play an increasing role in the treatment against gastric cancer. HER2 was one of the first biomarkers that found its way into clinical practice. Since the ToGA trial, trastuzumab has been part of first-line palliative chemotherapy in metastatic or unresectable gastric cancer. HER2-targeting agents, such as the tyrosine kinase inhibitor lapatinib, the antibody drug conjugate (ADC) trastuzumab-emtansine or dual HER2 inhibition (pertuzumab and trastuzumab), have been investigated in the second-line setting but led to negative study results. More recently, the ADC trastuzumab-deruxtecan was authorized after the failure of trastuzumab-based treatment. However, further improvements in HER2-directed therapy are required as resistance mechanisms and HER2 heterogeneity limit the existing treatment options. This review aims to give an overview of the current standard-of-care HER2-directed therapy in gastric cancer, as well as its challenges and future developments.
Collapse
Affiliation(s)
- Magdalena K. Scheck
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| | - Ralf D. Hofheinz
- Mannheim Cancer Center, Universitätsklinikum Mannheim, 68167 Mannheim, Germany;
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| |
Collapse
|
8
|
Tang D, Huang Y, Che Y, Yang C, Pu B, Liu S, Li H. Identification of platelet-related subtypes and diagnostic markers in pediatric Crohn's disease based on WGCNA and machine learning. Front Immunol 2024; 15:1323418. [PMID: 38420127 PMCID: PMC10899512 DOI: 10.3389/fimmu.2024.1323418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background The incidence of pediatric Crohn's disease (PCD) is increasing worldwide every year. The challenges in early diagnosis and treatment of PCD persist due to its inherent heterogeneity. This study's objective was to discover novel diagnostic markers and molecular subtypes aimed at enhancing the prognosis for patients suffering from PCD. Methods Candidate genes were obtained from the GSE117993 dataset and the GSE93624 dataset by weighted gene co-expression network analysis (WGCNA) and differential analysis, followed by intersection with platelet-related genes. Based on this, diagnostic markers were screened by five machine learning algorithms. We constructed predictive models and molecular subtypes based on key markers. The models were evaluated using the GSE101794 dataset as the validation set, combined with receiver operating characteristic curves, decision curve analysis, clinical impact curves, and calibration curves. In addition, we performed pathway enrichment analysis and immune infiltration analysis for different molecular subtypes to assess their differences. Results Through WGCNA and differential analysis, we successfully identified 44 candidate genes. Following this, employing five machine learning algorithms, we ultimately narrowed it down to five pivotal markers: GNA15, PIK3R3, PLEK, SERPINE1, and STAT1. Using these five key markers as a foundation, we developed a nomogram exhibiting exceptional performance. Furthermore, we distinguished two platelet-related subtypes of PCD through consensus clustering analysis. Subsequent analyses involving pathway enrichment and immune infiltration unveiled notable disparities in gene expression patterns, enrichment pathways, and immune infiltration landscapes between these subtypes. Conclusion In this study, we have successfully identified five promising diagnostic markers and developed a robust nomogram with high predictive efficacy. Furthermore, the recognition of distinct PCD subtypes enhances our comprehension of potential pathogenic mechanisms and paves the way for future prospects in early diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Dadong Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingtao Huang
- First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuhui Che
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengjun Yang
- Department of Otorhinolaryngology, Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Baoping Pu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiru Liu
- Anorectal Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- Anorectal Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE, Nica RI. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int J Mol Sci 2024; 25:1848. [PMID: 38339127 PMCID: PMC10856016 DOI: 10.3390/ijms25031848] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of death worldwide, with more than 1 million cases diagnosed every year. Helicobacter pylori represents the main risk factor, being responsible for 78% of the cases. Increased amounts of salt, pickled food, red meat, alcohol, smoked food, and refined sugars negatively affect the stomach wall, contributing to GC development. Several gene mutations, including PIK3CA, TP53, ARID1A, CDH1, Ras, Raf, and ERBB3 are encountered in GC pathogenesis, leading to phosphatidylinositol 3-kinase (PI3K) protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-PI3K/AKT/mTOR-and mitogen-activated protein kinase (MAPK) signaling pathway activation and promoting tumoral activity. Helicobacter pylori, growth factors, cytokines, hormones, and oxidative stress also activate both pathways, enhancing GC development. In clinical trials, promising results have come from monoclonal antibodies such as trastuzumab and ramucirumab. Dual inhibitors targeting the PI3K/AKT/mTOR and MAPK signaling pathways were used in vitro studies, also with promising results. The main aim of this review is to present GC incidence and risk factors and the dysregulations of the two protein kinase complexes together with their specific inhibitors.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Elena-Claudia Coculescu
- Discipline of Oral Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Dragos-Eugen Georgescu
- Department of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania;
- Department of General Surgery, “Dr. Ion Cantacuzino” Clinical Hospital, 020475 Bucharest, Romania
| | - Remus Iulian Nica
- Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Lee CL, Cremona M, Farrelly A, Workman JA, Kennedy S, Aslam R, Carr A, Madden S, O’Neill B, Hennessy BT, Toomey S. Preclinical evaluation of the CDK4/6 inhibitor palbociclib in combination with a PI3K or MEK inhibitor in colorectal cancer. Cancer Biol Ther 2023; 24:2223388. [PMID: 37326340 PMCID: PMC10281467 DOI: 10.1080/15384047.2023.2223388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Studies have demonstrated the efficacy of Palbociclib (CDK 4/6 inhibitor), Gedatolisib (PI3K/mTOR dual inhibitor) and PD0325901 (MEK1/2 inhibitor) in colorectal cancer (CRC), however single agent therapeutics are often limited by the development of resistance. METHODS We compared the anti-proliferative effects of the combination of Gedatolisib and Palbociclib and Gedatolisib and PD0325901 in five CRC cell lines with varying mutational background and tested their combinations on total and phosphoprotein levels of signaling pathway proteins. RESULTS The combination of Palbociclib and Gedatolisib was superior to the combination of Palbociclib and PD0325901. The combination of Palbociclib and Gedatolisib had synergistic anti-proliferative effects in all cell lines tested [CI range: 0.11-0.69] and resulted in the suppression of S6rp (S240/244), without AKT reactivation. The combination of Palbociclib and Gedatolisib increased BAX and Bcl-2 levels in PIK3CA mutated cell lines. The combination of Palbociclib and Gedatolisib caused MAPK/ERK reactivation, as seen by an increase in expression of total EGFR, regardless of the mutational status of the cells. CONCLUSION This study shows that the combination of Palbociclib and Gedatolisib has synergistic anti-proliferative effects in both wild-type and mutated CRC cell lines. Separately, the phosphorylation of S6rp may be a promising biomarker of responsiveness to this combination.
Collapse
Affiliation(s)
- Cha Len Lee
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Angela Farrelly
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Julie A. Workman
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Kennedy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Razia Aslam
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aoife Carr
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian O’Neill
- Department of Radiation Oncology, St. Luke’s Radiation Oncology Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Bryan T. Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
11
|
Peippo M, Gardberg M, Kronqvist P, Carpén O, Heuser VD. Characterization of Expression and Function of the Formins FHOD1, INF2, and DAAM1 in HER2-Positive Breast Cancer. J Breast Cancer 2023; 26:525-543. [PMID: 37985384 PMCID: PMC10761758 DOI: 10.4048/jbc.2023.26.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted therapies, such as trastuzumab, benefit patients with HER2-positive metastatic breast cancer; however, owing to traditional pathway activation or alternative signaling, resistance persists. Given the crucial role of the formin family in shaping the actin cytoskeleton during cancer progression, these proteins may function downstream of the HER2 signaling pathway. Our aim was to uncover the potential correlations between formins and HER2 expression using a combination of public databases, immunohistochemistry, and functional in vitro assays. METHODS Using online databases, we identified a negative prognostic correlation between specific formins mRNA expression in HER2-positive cancers. To validate these findings at the protein level, immunohistochemistry was performed on HER2 subtype breast cancer tumors to establish the links between staining patterns and clinical characteristics. We then knocked down individual or combined formins in MDA-MB-453 and SK-BR-3 cells and investigated their effects on wound healing, transwell migration, and proliferation. Furthermore, we investigated the effects of erb-b2 receptor tyrosine kinase 2 (ERBB2)/HER2 small interfering RNA (siRNA)-mediated knockdown on the PI3K/Akt and MEK/ERK1 pathways as well as on selected formins. RESULTS Our results revealed that correlations between INF2, FHOD1, and DAAM1 mRNA expression and ERBB2 in HER2-subtype breast cancer were associated with worse outcomes. Using immunohistochemistry, we found that high FHOD1 protein expression was linked to higher histological grades and was negatively correlated with estrogen and progesterone receptor positivity. Upon formins knockdown, we observed effects on wound healing and transwell migration, with a minimal impact on proliferation, which was evident through single and combined knockdowns in both cell lines. Notably, siRNA-mediated knockdown of HER2 affected FHOD1 and INF2 expression, along with the phosphorylated Akt/MAPK states. CONCLUSION Our study highlights the roles of FHOD1 and INF2 as downstream effectors of the HER2/Akt and HER2/MAPK pathways, suggesting that they are potential therapeutic targets in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Minna Peippo
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Pauliina Kronqvist
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Olli Carpén
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vanina D Heuser
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland.
| |
Collapse
|
12
|
Hu CT, Pei SJ, Wang JL, Zu LD, Shen WW, Yuan L, Gao F, Jiang LR, Yau SST, Fu GH. Quantitative proteomics profiling reveals the inhibition of trastuzumab antitumor efficacy by phosphorylated RPS6 in gastric carcinoma. Cancer Chemother Pharmacol 2023; 92:341-355. [PMID: 37507485 DOI: 10.1007/s00280-023-04571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The anti-HER2 antibody trastuzumab is a standard treatment for gastric carcinoma with HER2 overexpression, but not all patients benefit from treatment with HER2-targeted therapies due to intrinsic and acquired resistance. Thus, more precise predictors for selecting patients to receive trastuzumab therapy are urgently needed. METHODS We applied mass spectrometry-based proteomic analysis to 38 HER2-positive gastric tumor biopsies from 19 patients pretreated with trastuzumab (responders n = 10; nonresponders, n = 9) to identify factors that may influence innate sensitivity or resistance to trastuzumab therapy and validated the results in tumor cells and patient samples. RESULTS Statistical analyses revealed significantly lower phosphorylated ribosomal S6 (p-RPS6) levels in responders than nonresponders, and this downregulation was associated with a durable response and better overall survival after anti-HER2 therapy. High p-RPS6 levels could trigger AKT/mTOR/RPS6 signaling and inhibit trastuzumab antitumor efficacy in nonresponders. We demonstrated that RPS6 phosphorylation inhibitors in combination with trastuzumab effectively suppressed HER2-positive GC cell survival through the inhibition of the AKT/mTOR/RPS6 axis. CONCLUSIONS Our findings provide for the first time a detailed proteomics profile of current protein alterations in patients before anti-HER2 therapy and present a novel and optimal predictor for the response to trastuzumab treatment. HER2-positive GC patients with low expression of p-RPS6 are more likely to benefit from trastuzumab therapy than those with high expression. However, those with high expression of p-RPS6 may benefit from trastuzumab in combination with RPS6 phosphorylation inhibitors.
Collapse
Affiliation(s)
- Chun-Ting Hu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Jun Pei
- School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jing-Long Wang
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dong Zu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Yuan
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stephen S-T Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Huairou District, Beijing, 101400, People's Republic of China.
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Guo-Hui Fu
- Department of Pathology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
14
|
Song J, Ham J, Park S, Park SJ, Kim HS, Song G, Lim W. Alpinumisoflavone Activates Disruption of Calcium Homeostasis, Mitochondria and Autophagosome to Suppress Development of Endometriosis. Antioxidants (Basel) 2023; 12:1324. [PMID: 37507864 PMCID: PMC10376749 DOI: 10.3390/antiox12071324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Alpinumisoflavone is an isoflavonoid extracted from the Cudrania tricuspidate fruit and Genista pichisermolliana. It has various physiological functions, such as anti-inflammation, anti-proliferation, and apoptosis, in malignant tumors. However, the effect of alpinumisoflavone is still not known in chronic diseases and other benign reproductive diseases, such as endometriosis. In this study, we examined the cell death effects of alpinumisoflavone on the endometriosis cell lines, End1/E6E7 and VK2/E6E7. Results indicated that alpinumisoflavone inhibited cell migration and proliferation and led to cell cycle arrest, depolarization of mitochondria membrane potential, apoptosis, and disruption of calcium homeostasis in the endometriosis cell lines. However, the cellular proliferation of normal uterine epithelial cells was not changed by alpinumisoflavone. The alteration in Ca2+ levels was estimated in fluo-4 AM-stained End1/E6E7 and VK2/E6E7 cells after alpinumisoflavone treatment with or without calcium inhibitor, 2-aminoethoxydiphenyl borate (2-APB). The results indicated that a combination of alpinumisoflavone and a calcium inhibitor reduced the calcium accumulation in the cytosol of endometriosis cells. Additionally, alpinumisoflavone decreased oxidative phosphorylation (OXPHOS) in the endometriotic cells. Moreover, protein expression analysis revealed that alpinumisoflavone inactivated AKT signaling pathways, whereas it increased MAPK, ER stress, and autophagy regulatory proteins in End1/E6E7 and VK2/E6E7 cell lines. In summary, our results suggested that alpinumisoflavone could be a promising effective management agent or an adjuvant therapy for benign disease endometriosis.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si 52725, Republic of Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju-si 52725, Republic of Korea
| | - Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Hou F, Shi DB, Guo XY, Zhao RN, Zhang H, Ma RR, He JY, Gao P. HRCT1, negatively regulated by miR-124-3p, promotes tumor metastasis and the growth of gastric cancer by activating the ERBB2-MAPK pathway. Gastric Cancer 2023; 26:250-263. [PMID: 36602696 DOI: 10.1007/s10120-022-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Gastric cancer is the fourth leading cause of cancer-related deaths worldwide. And patient outcomes are poor due to tumor relapse and metastasis. To develop new therapeutic strategies, it is of great importance to explore the mechanism underlying the progression of gastric cancer. METHODS Primary gastric cancer samples with lymph node metastases (LNM) and without LNM were subjected to mRNA microarray assay. The differentially expressed genes were confirmed by RT-qPCR. HRCT1 protein expression was further detected using an immunohistochemistry (IHC) assay. In vitro and in vivo assays were performed to investigate the role of HRCT1 in tumor invasion, metastasis, and proliferation. The expressions of the downstream target genes of HRCT1 were detected by microarray, RT-qPCR and Western blot assays. Dual-luciferase reporter and Western blot assays were carried out to identify miRNAs target to HRCT1. RESULTS HRCT1 was upregulated in gastric cancer, and high expression of HRCT1 was associated with poor overall survival (OS) and disease-free survival (DFS). Moreover, HRCT1protein expression was an independent predictor for poor OS and DFS. HRCT1 could promote gastric cancer cells' migration, invasion, and proliferation in vitro as well as tumor metastasis and growth in vivo. Notably, our data showed that HRCT1 promoted gastric cancer progression by activating the ERBB2-MAPK signaling pathway. At least partially, the expression of HRCT1 could be negatively regulated by miR-124-3p. CONCLUSIONS The upregulated expression of HRCT1 predicts poor survival for patients with gastric cancer. HRCT1 promotes tumor progression by activating the ERBB2-MAPK pathway. HRCT1, negatively regulated by miR-124-3p, may be a potential therapeutic target for patients with gastric cancer.
Collapse
Affiliation(s)
- Feng Hou
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Department of Pathology, Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266071, Shandong, China
| | - Duan-Bo Shi
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Xiang-Yu Guo
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Rui-Nan Zhao
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Ran-Ran Ma
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Jun-Yi He
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China. .,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
King DA, Weiel JJ, Reyes R, Mills M, Itchon A, Fisher GA, Ford JM, Suarez CJ. Therapeutic Implications of Oncogenic Missense HER2 ( ERBB2) Mutations in Gastric Adenocarcinoma. JCO Precis Oncol 2023; 7:e2200093. [PMID: 36787506 DOI: 10.1200/po.22.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Daniel A King
- Northwell Health Cancer Institute and Feinstein Institute of Research, Lake Success, NY
| | - Julianna J Weiel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA.,Department of Pathology, Billings Clinic, Billings, MT
| | - Rochelle Reyes
- Early Drug Development Group, Stanford Cancer Institute, Stanford, CA
| | - Meredith Mills
- Division of Oncology, Department of Internal Medicine, Stanford University, Stanford, CA
| | - Antonita Itchon
- Division of Oncology, Department of Internal Medicine, Stanford University, Stanford, CA
| | - George A Fisher
- Division of Oncology, Department of Internal Medicine, Stanford University, Stanford, CA
| | - James M Ford
- Division of Oncology, Department of Internal Medicine, Stanford University, Stanford, CA
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
17
|
Fusobacterium Nucleatum-Induced Tumor Mutation Burden Predicts Poor Survival of Gastric Cancer Patients. Cancers (Basel) 2022; 15:cancers15010269. [PMID: 36612265 PMCID: PMC9818776 DOI: 10.3390/cancers15010269] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Co-infection of Helicobacter pylori and Fusobacterium nucleatum is a microbial biomarker for poor prognosis of gastric cancer patients. Fusobacterium nucleatum is associated with microsatellite instability and the accumulation of mutations in colorectal cancer. Here, we investigated the mutation landscape of Fusobacterium nucleatum-positive resected gastric cancer tissues using Illumina TruSight Oncology 500 comprehensive panel. Sequencing data were processed to identify the small nucleotide variants, small insertions and deletions, and unstable microsatellite sites. The bioinformatic algorithm also calculated copy number gains of preselected genes and tumor mutation burden. The recurrent genetic aberrations were identified in this study cohort. For gene amplification events, ERBB2, cell cycle regulators, and specific FGF ligands and receptors were the most frequently amplified genes. Pathogenic activation mutations of ERBB2, ERBB3, and PIK3CA, as well as loss-of-function of TP53, were identified in multiple patients. Furthermore, Fusobacterium nucleatum infection is positively correlated with a higher tumor mutation burden. Survival analysis showed that the combination of Fusobacterium nucleatum infection and high tumor mutation burden formed an extremely effective biomarker to predict poor prognosis. Our results indicated that the ERBB2-PIK3-AKT-mTOR pathway is frequently activated in gastric cancer and that Fusobacterium nucleatum and high mutation burden are strong biomarkers of poor prognosis for gastric cancer patients.
Collapse
|
18
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
19
|
Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers (Basel) 2022; 14:cancers14163996. [PMID: 36010990 PMCID: PMC9406173 DOI: 10.3390/cancers14163996] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women in the United States. Around 15% of all breast cancers overexpress the HER2 protein. These HER2-positive tumors have been associated with aggressive behavior if left untreated. Drugs targeting HER2 have greatly improved the outcomes of patients with HER2-positive tumors in the last decades. Despite these improvements, many patients with early breast cancer have recurrences, and many with advanced disease experience progression of disease on HER2-targeted drugs, suggesting that patients can develop resistance to these medications. In this review, we summarize several mechanisms of resistance to HER2-targeted treatments. Understanding how the tumors grow despite these therapies could allow us to develop better treatment strategies to continue to improve patient outcomes. Abstract Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for around 15% of all breast cancers and was historically associated with a worse prognosis compared with other breast cancer subtypes. With the development of HER2-directed therapies, the outcomes of patients with HER2-positive disease have improved dramatically; however, many patients present with de novo or acquired resistance to these therapies, which leads to early recurrences or progression of advanced disease. In this narrative review, we discuss the mechanisms of resistance to different HER2-targeted therapies, including monoclonal antibodies, small tyrosine kinase inhibitors, and antibody-drug conjugates. We review mechanisms such as impaired binding to HER2, incomplete receptor inhibition, increased signaling from other receptors, cross-talk with estrogen receptors, and PIK3CA pathway activation. We also discuss the role of the tumor immune microenvironment and HER2-heterogeneity, and the unique mechanisms of resistance to novel antibody-drug conjugates. A better understanding of these mechanisms and the potential strategies to overcome them will allow us to continue improving outcomes for patients with breast cancer.
Collapse
|
20
|
Li JA, Wei LJ, Bai DM, Liu BC. Lycium barbarum polysaccharide with potential anti-gastric cancer effects mediated by regulation of miR-202-5p/PIK3CA. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
22
|
Tzeng YT, Tsui K, Tseng L, Hou M, Chu P, Sheu JJ, Li C. Integrated analysis of pivotal biomarker of LSM1, immune cell infiltration and therapeutic drugs in breast cancer. J Cell Mol Med 2022; 26:4007-4020. [PMID: 35692083 PMCID: PMC9279588 DOI: 10.1111/jcmm.17436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
The discovery of early diagnosis and prognostic markers for breast cancer can significantly improve survival and reduce mortality. LSM1 is known to be involved in the general process of mRNA degradation in complexes containing LSm subunits, but the molecular and biological functions in breast cancer remain unclear. Here, the expression of LSM1 mRNA in breast cancer was estimated using The Cancer Genome Atlas (TCGA), Oncomine, TIMER and bc-GenExMiner databases. We found that functional LSM1 inactivation caused by mutations and profound deletions predicted poor prognosis in breast cancer (BRCA) patients. LSM1 was highly expressed in both BRCA tissues and cells compared to normal breast tissues/cells. High LSM1 expression is associated with poorer overall survival and disease-free survival. The association between LSM1 and immune infiltration of breast cancer was assessed by TIMER and CIBERSORT algorithms. LSM1 showed a strong correlation with various immune marker sets. Most importantly, pharmacogenetic analysis of BRCA cell lines revealed that LSM1 inactivation was associated with increased sensitivity to refametinib and trametinib. However, both drugs could mimic the effects of LSM1 inhibition and their drug sensitivity was associated with MEK molecules. Therefore, we investigated the clinical application of LSM1 to provide a basis for sensitive diagnosis, prognosis and targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Yen‐Dun Tony Tzeng
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Kuan‐Hao Tsui
- Department of Obstetrics and GynecologyKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of BioPharmaceutical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Ling‐Ming Tseng
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaipeiTaiwan
| | - Ming‐Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer ResearchKaohsiung Medical University Chung‐Ho Memorial HospitalKaohsiungTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan
| | | | - Chia‐Jung Li
- Department of Obstetrics and GynecologyKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of BioPharmaceutical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| |
Collapse
|
23
|
Immunosuppressive Signaling Pathways as Targeted Cancer Therapies. Biomedicines 2022. [DOI: 10.3390/biomedicines10030682
expr 829797163 + 949875436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Immune response has been shown to play an important role in defining patient prognosis and response to cancer treatment. Tumor-induced immunosuppression encouraged the recent development of new chemotherapeutic agents that assists in the augmentation of immune responses. Molecular mechanisms that tumors use to evade immunosurveillance are attributed to their ability to alter antigen processing/presentation pathways and the tumor microenvironment. Cancer cells take advantage of normal molecular and immunoregulatory machinery to survive and thrive. Cancer cells constantly adjust their genetic makeup using several mechanisms such as nucleotide excision repair as well as microsatellite and chromosomal instability, thus giving rise to new variants with reduced immunogenicity and the ability to continue to grow without restrictions. This review will focus on the central molecular signaling pathways involved in immunosuppressive cells and briefly discuss how cancer cells evade immunosurveillance by manipulating antigen processing cells and related proteins. Secondly, the review will discuss how these pathways can be utilized for the implementation of precision medicine and deciphering drug resistance.
Collapse
|
24
|
Setlai BP, Hull R, Bida M, Durandt C, Mulaudzi TV, Chatziioannou A, Dlamini Z. Immunosuppressive Signaling Pathways as Targeted Cancer Therapies. Biomedicines 2022; 10:682. [PMID: 35327484 PMCID: PMC8945019 DOI: 10.3390/biomedicines10030682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Immune response has been shown to play an important role in defining patient prognosis and response to cancer treatment. Tumor-induced immunosuppression encouraged the recent development of new chemotherapeutic agents that assists in the augmentation of immune responses. Molecular mechanisms that tumors use to evade immunosurveillance are attributed to their ability to alter antigen processing/presentation pathways and the tumor microenvironment. Cancer cells take advantage of normal molecular and immunoregulatory machinery to survive and thrive. Cancer cells constantly adjust their genetic makeup using several mechanisms such as nucleotide excision repair as well as microsatellite and chromosomal instability, thus giving rise to new variants with reduced immunogenicity and the ability to continue to grow without restrictions. This review will focus on the central molecular signaling pathways involved in immunosuppressive cells and briefly discuss how cancer cells evade immunosurveillance by manipulating antigen processing cells and related proteins. Secondly, the review will discuss how these pathways can be utilized for the implementation of precision medicine and deciphering drug resistance.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Meshack Bida
- Department of Anatomical Pathology, National Health Laboratory Service (NHLS), University of Pretoria, Hatfield 0028, South Africa;
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa;
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Str., 115 27 Athens, Greece;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
25
|
Sa R, Liang R, Qiu X, He Z, Liu Z, Chen L. IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer. Cancer Lett 2021; 527:10-23. [PMID: 34896211 DOI: 10.1016/j.canlet.2021.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023]
Abstract
Acquired drug resistance represents a major obstacle to tyrosine kinase inhibitor (TKI)-induced differentiation therapy of radioiodine-refractory papillary thyroid cancer (RR-PTC); thus, there is an urgent need to elucidate the underlying mechanisms. Here, selumetinib-resistant PTC (PTCSR) cell lines, which were characterized by loss of sodium/iodide symporter expression, enhanced insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and activated V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) signaling, were initially established using a dose escalation method. Upon knockdown of IGF2BP2 in PTCSR cells, ERBB2 signaling was inhibited, and the acquired drug resistance was partially reversed. Mechanistically, the luciferase activity assay showed that IGF2BP2 bound to the N6-methyladenosine-binding site in the coding sequence of ERBB2 mRNA, yielding an increased ERBB2 translation efficacy revealed by polysome profiling. Inhibition of ERBB2 and IGF2BP2 by lapatinib robustly rescued the PTCSR cells from acquired dedifferentiation. Our study demonstrated that IGF2BP2-dependent ERBB2 signaling activation contributes to acquired resistance to TKI, which may be a promising differentiation strategy for RR-PTC by targeting IGF2BP2.
Collapse
Affiliation(s)
- Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Rd, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin St, Changchun, 130021, People's Republic of China.
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| | - Xian Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Ziyan He
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
26
|
Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers (Basel) 2021; 13:cancers13205216. [PMID: 34680363 PMCID: PMC8533881 DOI: 10.3390/cancers13205216] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed.
Collapse
|