1
|
Kim J, Kim M, Han H, Kim S, Lahiji SF, Kim YH. Dual-delivery of exosome inhibitor and immune-activating gene via lipid nano-assemblies for tumor immune evasion inhibition. J Control Release 2025; 381:113569. [PMID: 39993637 DOI: 10.1016/j.jconrel.2025.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The tumor microenvironment, with its complex immune evasion mechanisms, significantly hinders the efficacy of anti-tumor immunotherapies, including immune checkpoint inhibitors. Consequently, there is a strong impetus for extensive research to elucidate the immunosuppressive mechanisms within the tumor microenvironment and to develop novel therapeutic strategies. In this study, we have developed a drug/gene delivery system (folate-modified GW4869-loaded siIRF3 nano-complex, FD9R-GW/siIRF3) designed to simultaneously target and inhibit two key immune evasion pathways in the tumor microenvironment. The folate receptor-mediated delivery of GW4869 to cancer cells and tumor-associated macrophages (TAMs) led to the suppression of biosynthesis and release of tumor-derived exosomes (TEXs) containing exosomal PD-L1. Furthermore, IRF3 gene silencing effectively inhibited the M2-type differentiation of TAMs, and suppressed the secretion of CC motif chemokine ligand 22 (CCL22) in cancer cells, consequently reducing the recruitment of regulatory T cells (Tregs). The efficacy of FD9R-GW/siIRF3 in impeding tumor immune evasion was substantiated by an augmented recruitment of cytotoxic T cells and a diminished M2 macrophage polarization in the folate receptor-expressing 4 T1 allograft breast cancer model. Furthermore, the combination of a-PD-1 immunotherapy with FD9R-GW/siIRF3 led to a significant enhancement in the antitumor immune response, as evidenced by the inhibition of circulating tumor-derived exosomal PD-L1.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea; Cursus Bio Inc. Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea
| | - Minjeong Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea
| | - Heesoo Han
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea
| | - SangJin Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea
| | - Shayan Fakhraei Lahiji
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea; Cursus Bio Inc. Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea; Cursus Bio Inc. Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, 04763 Seoul, Republic of Korea.
| |
Collapse
|
2
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Orenuga IK, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. A 3D Self-Assembly Platform Integrating Decellularized Matrix Recapitulates In Vivo Tumor Phenotypes and Heterogeneity. Cancer Res 2025; 85:1577-1595. [PMID: 39888317 PMCID: PMC12048290 DOI: 10.1158/0008-5472.can-24-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment. However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. In this study, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D "MatriSpheres" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically mimicked colorectal cancer tumor ECM compared with traditional formulations like Matrigel. Solubilized ECM, at subgelation concentrations, was organized by colorectal cancer cells into intercellular stroma-like regions within 5 days, displaying morphologic similarity to colorectal cancer clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with single-cell RNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications. Significance: MatriSpheres provide a hydrogel-free 3D platform for decoupling the influence of heterogeneous extracellular matrix components on tumor biology and can broadly facilitate high-throughput drug discovery and screening applications. See related commentary by Ernst and De Wever, p. 1568.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ireolu K. Orenuga
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
3
|
Zhao K, Zhang J, Zhou L, Sun Z. Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors. Front Pharmacol 2024; 15:1483785. [PMID: 39654621 PMCID: PMC11625591 DOI: 10.3389/fphar.2024.1483785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Scutellaria baicalensis has been used for the treatment of digestive system disorders for thousands of years in China and other regions. Modern research have revealed its therapeutic efforts in digestive system tumors. Thus, to review the updated progress of S. baicalensis and its main flavonoids in the treatment of digestive system tumors in the past 10 years, this article summarized the therapeutic effect and molecular mechanisms of S. baicalensis and its 5 flavonoids on tumors in oral cavity, esophagus, stomach, colon, liver, pancreas by inhibiting tumor cell proliferation, inducing autophagy, stimulating immune response, and increasing drug sensitivity. In conclusion, S. baicalensis and its flavonoids could be applied to treat digestive system tumors with different type of methods.
Collapse
Affiliation(s)
- Kangning Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Mattos D, Rocha M, Tessmann J, Ferreira L, Gimba E. Overexpression of Osteopontin-a and Osteopontin-c Splice Variants Are Worse Prognostic Features in Colorectal Cancer. Diagnostics (Basel) 2024; 14:2108. [PMID: 39410512 PMCID: PMC11475046 DOI: 10.3390/diagnostics14192108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Osteopontin (OPN) is a glycoprotein involved in various physiological and pathological processes, and its aberrant expression in cancer cells is closely linked to tumor progression. In colorectal cancer (CRC), OPN is overexpressed, but the roles of its splice variants (OPN-SVs), OPNa, OPNb, and OPNc, are not well understood. This study aimed to characterize the expression patterns of OPN-SVs and their potential diagnostic and prognostic implications in CRC using transcriptomic data deposited in TSVdb and TCGA. Methods: The expression patterns of each OPN-SV were analyzed using transcriptomic data deposited in TSVdb and TCGA, which were correlated to patient data available at cBioPortal. Results: Bioinformatic analysis revealed that OPNa, OPNb, and OPNc are overexpressed in CRC samples compared to non-tumor samples. Notably, OPNa and OPNc are overexpressed in CRC stages (II, III, and IV) compared to stage I. Higher levels of OPNa and OPNc transcripts are associated with worse overall survival (OS) and shorter progression-free survival (PFS) in CRC patients. Additionally, the expression of OPNa, OPNb, and OPNc is correlated with BRAFV600E mutations in CRC samples. Conclusions: These findings suggest that OPNa and OPNc, in particular, have potential as diagnostic and prognostic biomarkers, paving the way for their further evaluation in CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Daniella Mattos
- Hemato-Oncology Molecular Program, National Institute of Cancer, 23rd Red Cross Square, 6th Floor, Rio de Janeiro 20230-130, RJ, Brazil;
- Biomedical Science Graduation Program, Fluminense Federal University, Rua Professor Hernani Pires de Melo, 101, Niterói 24210-130, RJ, Brazil
| | - Murilo Rocha
- Cellular and Molecular Oncobiology Program, National Institute of Cancer, Rio de Janeiro 20231-050, RJ, Brazil; (M.R.); (J.T.)
| | - Josiane Tessmann
- Cellular and Molecular Oncobiology Program, National Institute of Cancer, Rio de Janeiro 20231-050, RJ, Brazil; (M.R.); (J.T.)
| | - Luciana Ferreira
- Hemato-Oncology Molecular Program, National Institute of Cancer, 23rd Red Cross Square, 6th Floor, Rio de Janeiro 20230-130, RJ, Brazil;
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 07, Seropédica, Rio de Janeiro 23897-000, RJ, Brazil
| | - Etel Gimba
- Hemato-Oncology Molecular Program, National Institute of Cancer, 23rd Red Cross Square, 6th Floor, Rio de Janeiro 20230-130, RJ, Brazil;
- Biomedical Science Graduation Program, Fluminense Federal University, Rua Professor Hernani Pires de Melo, 101, Niterói 24210-130, RJ, Brazil
- Departamento de Ciências da Natureza, Humanities and Healthy Institute, Fluminense Federal University, Recife Street, Bela Vista, Rio das Ostras 28895-532, RJ, Brazil
| |
Collapse
|
6
|
Qu J, Wu B, Chen L, Wen Z, Fang L, Zheng J, Shen Q, Heng J, Zhou J, Zhou J. CXCR6-positive circulating mucosal-associated invariant T cells can identify patients with non-small cell lung cancer responding to anti-PD-1 immunotherapy. J Exp Clin Cancer Res 2024; 43:134. [PMID: 38698468 PMCID: PMC11067263 DOI: 10.1186/s13046-024-03046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells have been reported to regulate tumor immunity. However, the immune characteristics of MAIT cells in non-small cell lung cancer (NSCLC) and their correlation with the treatment efficacy of immune checkpoint inhibitors (ICIs) remain unclear. PATIENTS AND METHODS In this study, we performed single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence assays to determine the proportion and characteristics of CD8+MAIT cells in patients with metastatic NSCLC who did and did not respond to anti-PD-1 therapy. Survival analyses were employed to determine the effects of MAIT proportion and C-X-C chemokine receptor 6 (CXCR6) expression on the prognosis of patients with advanced NSCLC. RESULTS The proportion of activated and proliferating CD8+MAIT cells were significantly higher in responders-derived peripheral blood mononuclear cells (PBMCs) and lung tissues before anti-PD-1 therapy, with enhanced expression of cytotoxicity-related genes including CCL4, KLRG1, PRF1, NCR3, NKG7, GZMB, and KLRK1. The responders' peripheral and tumor-infiltrating CD8+MAIT cells showed an upregulated CXCR6 expression. Similarly, CXCR6+CD8+MAIT cells from responders showed higher expression of cytotoxicity-related genes, such as CST7, GNLY, KLRG1, NKG7, and PRF1. Patients with ≥15.1% CD8+MAIT cells to CD8+T cells ratio and ≥35.9% CXCR6+CD8+MAIT cells to CD8+MAIT cells ratio in peripheral blood showed better progression-free survival (PFS) after immunotherapy. The role of CD8+MAIT cells in lung cancer immunotherapy was potentially mediated by classical/non-classical monocytes through the CXCL16-CXCR6 axis. CONCLUSION CD8+MAIT cells are a potential predictive biomarker for patients with NSCLC responding to anti-PD-1 therapy. The correlation between CD8+MAIT cells and immunotherapy sensitivity may be ascribed to high CXCR6 expression.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Binggen Wu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Zuoshi Wen
- Department of Cardiology, The First Affiliated Hospital, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liangjie Fang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Qian Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianfu Heng
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China.
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
7
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. Engineering Tumor Stroma Morphogenesis Using Dynamic Cell-Matrix Spheroid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585805. [PMID: 38903106 PMCID: PMC11188064 DOI: 10.1101/2024.03.19.585805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The tumor microenvironment consists of resident tumor cells organized within a compositionally diverse, three-dimensional (3D) extracellular matrix (ECM) network that cannot be replicated in vitro using bottom-up synthesis. We report a new self-assembly system to engineer ECM-rich 3D MatriSpheres wherein tumor cells actively organize and concentrate microgram quantities of decellularized ECM dispersions which modulate cell phenotype. 3D colorectal cancer (CRC) MatriSpheres were created using decellularized small intestine submucosa (SIS) as an orthotopic ECM source that had greater proteomic homology to CRC tumor ECM than traditional ECM formulations such as Matrigel. SIS ECM was rapidly concentrated from its environment and assembled into ECM-rich 3D stroma-like regions by mouse and human CRC cell lines within 4-5 days via a mechanism that was rheologically distinct from bulk hydrogel formation. Both ECM organization and transcriptional regulation by 3D ECM cues affected programs of malignancy, lipid metabolism, and immunoregulation that corresponded with an in vivo MC38 tumor cell subpopulation identified via single cell RNA sequencing. This 3D modeling approach stimulates tumor specific tissue morphogenesis that incorporates the complexities of both cancer cell and ECM compartments in a scalable, spontaneous assembly process that may further facilitate precision medicine.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
8
|
Xu H, Chen C, Chen L, Pan S. Pan-cancer analysis identifies the IRF family as a biomarker for survival prognosis and immunotherapy. J Cell Mol Med 2024; 28:e18084. [PMID: 38130025 PMCID: PMC10844690 DOI: 10.1111/jcmm.18084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
IRF family genes have been shown to be crucial in tumorigenesis and tumour immunity. However, information about the role of IRF in the systematic assessment of pan-cancer and in predicting the efficacy of tumour therapy is still unknown. In this work, we performed a systematic analysis of IRF family genes in 33 tumour samples, including expression profiles, genomics and clinical characteristics. We then applied Single-Sample Gene-Set Enrichment Analysis (ssGSEA) to calculate IRF-scores and analysed the impact of IRF-scores on tumour progression, immune infiltration and treatment efficacy. Our results showed that genomic alterations, including SNPs, CNVs and DNA methylation, can lead to dysregulation of IRFs expression in tumours and participate in regulating multiple tumorigenesis. IRF-score expression differed significantly between 12 normal and tumour samples and the impact on tumour prognosis and immune infiltration depended on tumour type. IRF expression was correlated to drug sensitivity and to the expression of immune checkpoints and immune cell infiltration, suggesting that dysregulation of IRF family expression may be a critical factor affecting tumour drug response. Our study comprehensively characterizes the genomic and clinical profile of IRFs in pan-cancer and highlights their reliability and potential value as predictive markers of oncology drug efficacy. This may provide new ideas for future personalized oncology treatment.
Collapse
Affiliation(s)
- Hua‐Guo Xu
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Can Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Lin‐Yuan Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Shiyang Pan
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| |
Collapse
|
9
|
Liang K, Ke Z, Huang J, Zhang X. Expression and clinical value of NLRP1 and NLRC4 inflammasomes in prostate cancer. Oncol Lett 2023; 26:385. [PMID: 37559581 PMCID: PMC10407840 DOI: 10.3892/ol.2023.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
The present study explored the clinical value of the protein expression levels of nucleotide binding oligomerization-like receptor family pyrin domain containing 1 (NLRP1) and nucleotide-binding oligomerization domain leucine-rich repeat and caspase recruitment domain-containing 4 (NLRC4) inflammasomes in the diagnosis and treatment of prostate cancer. A total of 54 patients with prostatic hyperplasia and 58 patients with prostate cancer were recruited at The First People's Hospital of Pinghu between January and May 2022. Immunohistochemical staining was used to determine the protein expression levels of the NLRP1 and NLRC4 inflammasomes in addition to the proinflammatory cytokines IL-18 and IL-1β in the two groups of patients. The protein expression levels of NLRP1 and NLRC4 inflammasome were significantly increased in patients with prostate cancer compared with patients with prostate hyperplasia. The differences in expression of NLRP1 and NLRC4 inflammatory vesicles in prostate cancer of different stages were also compared based on data from The Cancer Genome Atlas. The protein expression level of NLRP1 demonstrated a significant positive correlation with IL-1β and IL-18 expression, and the protein expression level of the NLRC4 inflammasome was significantly positively correlated with IL-18 expression. The protein expression levels of both NLRP1 and NLRC4 demonstrated a significant positive correlation with the Gleason score of prostate cancer. The expression of NLRP1 in tumor (T)3/T4 was significantly higher compared with T1 and expression of the NLRC4 inflammasome in T2 and T3/T4 was significantly higher compared with T1. Expression of the NLRP1 and NLRC4 inflammasomes was significantly higher in patients with prostate cancer, compared with patients with prostatic hyperplasia. Therefore, expression of NLRP1 and NLRC4 may promote tumorigenesis by promoting the maturation and release of proinflammatory cytokines IL-1β and IL-18. Expression of the NLRP1 and NLRC4 inflammasomes demonstrated a significant positive correlation with the risk of prostate cancer. Expression of the NLRP1 and NLRC4 inflammasomes in middle- and advanced-stage tumors was higher compared with early-stage tumors. These results suggested that inflammasome expression may serve a significant role in the progression of tumors and could provide a fixed value for the risk assessment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Ke Liang
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Zunjin Ke
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Jianhong Huang
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Xijiong Zhang
- Department of Pathology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| |
Collapse
|
10
|
Huang W, Gong Y, Yan L. ER Stress, the Unfolded Protein Response and Osteoclastogenesis: A Review. Biomolecules 2023; 13:1050. [PMID: 37509086 PMCID: PMC10377020 DOI: 10.3390/biom13071050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and its adaptive mechanism, the unfolded protein response (UPR), are triggered by the accumulation of unfolded and misfolded proteins. During osteoclastogenesis, a large number of active proteins are synthesized. When an imbalance in the protein folding process occurs, it causes osteoclasts to trigger the UPR. This close association has led to the role of the UPR in osteoclastogenesis being increasingly explored. In recent years, several studies have reported the role of ER stress and UPR in osteoclastogenesis and bone resorption. Here, we reviewed the relevant literature and discussed the UPR signaling cascade response, osteoclastogenesis-related signaling pathways, and the role of UPR in osteoclastogenesis and bone resorption in detail. It was found that the UPR signal (PERK, CHOP, and IRE1-XBP1) promoted the expression of the receptor activator of the nuclear factor-kappa B ligand (RANKL) in osteoblasts and indirectly enhanced osteoclastogenesis. IRE1 promoted osteoclastogenesis via promoting NF-κB, MAPK signaling, or the release of pro-inflammatory factors (IL-6, IL-1β, and TNFα). CREBH promoted osteoclast differentiation by promoting NFATc1 expression. The PERK signaling pathway also promoted osteoclastogenesis through NF-κB and MAPK signaling pathways, autophagy, and RANKL secretion from osteoblasts. However, salubrinal (an inhibitor of eIF2α dephosphorylation that upregulated p-eIF2α expression) directly inhibited osteoclastogenesis by suppressing NFATc1 expression and indirectly promoted osteoclastogenesis by promoting RANKL secretion from osteoblasts. Therefore, the specific effects and mechanisms of p-PERK and its downstream signaling on osteoclastogenesis still need further experiments to confirm. In addition, the exact role of ATF6 and BiP in osteoclastogenesis also required further exploration. In conclusion, our detailed and systematic review provides some references for the next step to fully elucidate the relationship between UPR and osteoclastogenesis, intending to provide new insights for the treatment of diseases caused by osteoclast over-differentiation, such as osteoporosis.
Collapse
Affiliation(s)
- Wangli Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
11
|
He H, Chen S, Fan Z, Dong Y, Wang Y, Li S, Sun X, Song Y, Yang J, Cao Q, Jiang J, Wang X, Wen W, Wang H. Multi-dimensional single-cell characterization revealed suppressive immune microenvironment in AFP-positive hepatocellular carcinoma. Cell Discov 2023; 9:60. [PMID: 37336873 PMCID: PMC10279759 DOI: 10.1038/s41421-023-00563-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/10/2023] [Indexed: 06/21/2023] Open
Abstract
Alpha-fetoprotein (AFP)-secreting hepatocellular carcinoma (HCC), which accounts for ~75% of HCCs, is more aggressive with a worse prognosis than those without AFP production. The mechanism through which the interaction between tumors and the microenvironment leads to distinct phenotypes is not yet clear. Therefore, our study aims to identify the characteristic features and potential treatment targets of AFP-negative HCC (ANHC) and AFP-positive HCC (APHC). We utilized single-cell RNA sequencing to analyze 6 ANHC, 6 APHC, and 4 adjacent normal tissues. Integrated multi-omics analysis together with survival analysis were also performed. Further validation was conducted via cytometry time-of-flight on 30 HCCs and multiplex immunohistochemistry on additional 59 HCCs. Our data showed that the genes related to antigen processing and interferon-γ response were abundant in tumor cells of APHC. Meanwhile, APHC was associated with multifaceted immune distortion, including exhaustion of diverse T cell subpopulations, and the accumulation of tumor-associated macrophages (TAMs). Notably, TAM-SPP1+ was highly enriched in APHC, as was its receptor CD44 on T cells and tumor cells. Targeting the Spp1-Cd44 axis restored T cell function in vitro and significantly reduced tumor burden when treated with either anti-Spp1 or anti-Cd44 antibody alone or in combination with anti-Pd-1 antibody in the mouse model. Furthermore, elevated IL6 and TGF-β1 signaling contributed to the enrichment of TAM-SPP1+ in APHC. In conclusion, this study uncovered a highly suppressive microenvironment in APHC and highlighted the role of TAM-SPP1+ in regulating the immune microenvironment, thereby revealing the SPP1-CD44 axis as a promising target for achieving a more favorable immune response in APHC treatment.
Collapse
Affiliation(s)
- Huisi He
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuzhen Chen
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhecai Fan
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yaping Dong
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shiyao Li
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaojuan Sun
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuting Song
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Jiang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xianming Wang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Wen
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China.
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Hongyang Wang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China.
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China.
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Chakravarti B, Akhtar Siddiqui J, Anthony Sinha R, Raza S. Targeting autophagy and lipid metabolism in cancer stem cells. Biochem Pharmacol 2023; 212:115550. [PMID: 37060962 DOI: 10.1016/j.bcp.2023.115550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells with self-renewal ability and tumor initiating properties. Unlike the other non-stem cancer cells, CSCs resist traditional therapy and remain a major cause of disease relapse. With the recent advances in metabolomics, various studies have demonstrated that CSCs have distinct metabolic properties. Metabolic reprogramming in CSCs contributes to self-renewal and maintenance of stemness. Accumulating evidence suggests that rewiring of energy metabolism is a key player that enables to meet energy demands, maintains stemness, and sustains cancer growth and invasion. CSCs use various mechanisms such as increased glycolysis, redox signaling, and autophagy modulation to overcome nutritional deficiency and sustain cell survival. The alterations in lipid metabolism acquired by the CSCs support biomass production through increased dependence on fatty acid synthesis and β-oxidation, and contribute to oncogenic signaling pathways. This review summarizes our current understanding of lipid metabolism in CSCs and how pharmacological regulation of autophagy and lipid metabolism influences CSC phenotype. Increased dependence on lipid metabolism appears as an attractive strategy to eliminate CSCs using therapeutic agents that specifically target CSCs based on their modulation of lipid metabolism.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226014, India.
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226014, India.
| |
Collapse
|
13
|
Nudelman K, Nho K, Zhang M, McDonald BC, Zhai W, Small BJ, Wegel CE, Jacobsen PB, Jim HSL, Patel SK, Graham DMA, Ahles TA, Root JC, Foroud T, Breen EC, Carroll JE, Mandelblatt JS, Saykin AJ. Genetic Variants Associated with Longitudinal Cognitive Performance in Older Breast Cancer Patients and Controls. Cancers (Basel) 2023; 15:2877. [PMID: 37296840 PMCID: PMC10252108 DOI: 10.3390/cancers15112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Background: There have been no published genome-wide studies of the genetics of cancer- and treatment-related cognitive decline (CRCD); the purpose of this study is to identify genetic variants associated with CRCD in older female breast cancer survivors. Methods: Analyses included white non-Hispanic women with non-metastatic breast cancer aged 60+ (N = 325) and age-, racial/ethnic group-, and education-matched controls (N = 340) with pre-systemic treatment and one-year follow-up cognitive assessment. CRCD was evaluated using longitudinal domain scores on cognitive tests of attention, processing speed, and executive function (APE), and learning and memory (LM). Linear regression models of one-year cognition included an interaction term for SNP or gene SNP enrichment*cancer case/control status, controlling for demographic variables and baseline cognition. Results: Cancer patients carrying minor alleles for two SNPs, rs76859653 (chromosome 1) in the hemicentin 1 (HMCN1) gene (p = 1.624 × 10-8), and rs78786199 (chromosome 2, p = 1.925 × 10-8) in an intergenic region had lower one-year APE scores than non-carriers and controls. Gene-level analyses showed the POC5 centriolar protein gene was enriched for SNPs associated with differences in longitudinal LM performance between patients and controls. Conclusions: The SNPs associated with cognition in survivors, but not controls, were members of the cyclic nucleotide phosphodiesterase family, that play important roles in cell signaling, cancer risk, and neurodegeneration. These findings provide preliminary evidence that novel genetic loci may contribute to susceptibility to CRCD.
Collapse
Affiliation(s)
- Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Genetics Biobank, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kwangsik Nho
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Genetics Biobank, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brenna C. McDonald
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wanting Zhai
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Brent J. Small
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- School of Aging Studies, University of South Florida, Tampa, FL 33620, USA
| | - Claire E. Wegel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Genetics Biobank, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul B. Jacobsen
- Division of Cancer Control and Population Studies, National Cancer Institute, Bethesda, MD 20892, USA
| | - Heather S. L. Jim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sunita K. Patel
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Deena M. A. Graham
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Tim A. Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C. Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Genetics Biobank, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Jeanne S. Mandelblatt
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Andrew J. Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Wei M, Su J, Zhang J, Liu S, Ma J, Meng XP. Construction of a DDR-related signature for predicting of prognosis in metastatic colorectal carcinoma. Front Oncol 2023; 13:1043160. [PMID: 36816926 PMCID: PMC9931195 DOI: 10.3389/fonc.2023.1043160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent malignancy and the one of most lethal cancer. Metastatic CRC (mCRC) is the third most common cause of cancer deaths worldwide. DNA damage response (DDR) genes are closely associated with the tumorigenesis and development of CRC. In this study, we aimed to construct a DDR-related gene signature for predicting the prognosis of mCRC patients. Methods The gene expression and corresponding clinical information data of CRC/mCRC patients were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. A prognostic model was obtained and termed DDRScore by the multivariate Cox proportional hazards regression in the patients with mCRC. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed for patients between the high-DDRscore and low-DDRscore groups. Results We constructed a prognostic model consisting of four DDR-related genes (EME2, MSH4, MLH3, and SPO11). Survival analysis showed that patients in the high-DDRscore group had a significantly worse OS than those in the low-DDRscore group. The area under the curve (AUC) value of the ROC curve of the predictive model is 0.763 in the training cohort GSE72970, 0.659 in the stage III/IV colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) data portal, and 0.639 in another validation cohort GSE39582, respectively. GSEA functional analysis revealed that the most significantly enriched pathways focused on nucleotide excision repair, base excision repair, homologous recombination, cytokine receptor interaction, chemokine signal pathway, cell adhesion molecules cams, ECM-receptor interaction, and focal adhesion. Conclusion The DDRscore was identified as an independent prognostic and therapy response predictor, and the DDR-related genes may be potential diagnosis or prognosis biomarkers for mCRC patients.
Collapse
Affiliation(s)
- Maohua Wei
- Department of General Surgery, Dalian Medical University, Dalian, China
| | - Junyan Su
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Jiali Zhang
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Siyao Liu
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,*Correspondence: Xiang peng Meng, ; Jia Ma,
| | - Xiang peng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Xiang peng Meng, ; Jia Ma,
| |
Collapse
|
15
|
Wang P, Gu Y, Yang J, Qiu J, Xu Y, Xu Z, Gao J, Wan C. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY) 2022; 14:9980-10008. [PMID: 36541912 PMCID: PMC9831740 DOI: 10.18632/aging.204438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammasomes are related to tumorigenesis and immune-regulation. Here, we investigated the prognostic value of the NLR family pyrin domain containing (NLRP) 1/NLRP3 inflammasome and its potential mechanisms in immune-regulation in gastric cancer (GC). METHODS We analyzed the differential expression of NLRP1/NLRP3 between tumor and normal tissues using the Oncomine and Tumor Immune Estimate Resource (TIMER) databases. Immunohistochemistry and western blotting were used to detect NLRP1/NLRP3 protein expression in GC tissues. Correlations between NLRP1/NLRP3 expression levels and patient survival were analyzed using Kaplan-Meier survival curves. The relationships of NLRP1/NLRP3 expression and tumor-infiltrating immune cells/marker genes were assessed using the TIMER database. NLRP1/NLRP3 and immune checkpoint gene correlations were verified by single-gene co-expression analyses, and tumor immune-related pathways involving NLRP1/NLRP3 were analyzed using gene set enrichment analysis (GSEA). RESULTS Elevated NLRP1/NLRP3 expression was significantly correlated with lymph node metastasis, poor survival, immune-infiltrating cell abundances, and immune cell markers. NLRP3 showed stronger correlations with immune infiltration and the prognosis of gastric cancer. NLRP1 and NLRP3 might be involved in the same tumor immune-related pathways. Thus, high NLRP1/NLRP3 expression promotes immune cell infiltration and poor prognosis in GC. NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC. CONCLUSIONS NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Yulan Gu
- Department of Oncology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiamin Qiu
- Department of Pathology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Yeqiong Xu
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| | - Zengxiang Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiguang Gao
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Chuandan Wan
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| |
Collapse
|
16
|
Yuan J, Liu Z, Wu Z, Yang J, Yang J. Construction and validation of an IRF4 risk score to predict prognosis and response to immunotherapy in hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109411. [DOI: 10.1016/j.intimp.2022.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
|
17
|
Bao X, Liu Y, Huang J, Yin S, Sheng H, Han X, Chen Q, Wang T, Chen S, Qiu Y, Zhang C, Yu H. Stachydrine hydrochloride inhibits hepatocellular carcinoma progression via LIF/AMPK axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154066. [PMID: 35366490 DOI: 10.1016/j.phymed.2022.154066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is not only one of the four highest malignancies, but also the principal reason of cancer-related death worldwide, yet no effective medication for anti-HCC is available. Stachydrine hydrochloride (SH), an alkaloid component in Panzeria alaschanica Kupr, exhibits potent antitumor activity in breast cancer. However, the anti-HCC effects of SH remain unknown. PURPOSE Our study assessed the therapeutic effect of SH on HCC and tried to clarify the mechanisms by which it ameliorates HCC. No studies involving using SH for anti-HCC activity and molecular mechanism have been reported yet. STUDY DESIGN/METHODS We examined the cell viability of SH on HCC cells by MTT assay. The effect of SH on cell autophagy in HCC cells was verified by Western blot and Immunofluorescence test. Flow cytometry was performed to assess cell-cycle arrest effects. Cell senescence was detected using β-Gal staining and Western blot, respectively. An inhibitor or siRNA of autophagy, i.e., CQ and si LC-3B, were applied to confirm the role of autophagy acted in the anti-cancer function of SH. Protein expression in signaling pathways was detected by Western blot. Besides, molecular docking combined with cellular thermal shift assay (CETSA) was used for analysis. Patient-derived xenograft (PDX) model were built to explore the inhibitory effect of SH in HCC in vivo. RESULTS In vitro studies showed that SH possessed an anti-HCC effect by inducing autophagy, cell-cycle arrest and promoting cell senescence. Specifically, SH induced autophagy with p62 and LC-3B expression. Flow cytometry analysis revealed that SH caused an obvious cell-cycle arrest, accompanied by the decrease and increase in Cyclin D1 and p27 levels, respectively. Additionally, SH induced cell senescence with the induction of p21 in HCC cell lines. Mechanistically, SH treatment down-regulated the LIF and up-regulated p-AMPK. Moreover, PDX model in NSG mice was conducted to support the results in vitro. CONCLUSION This study is the first to report the inhibitory function of SH in HCC, which may be due to the induction of autophagy and senescence. This study provides novel insights into the anti-HCC efficacy of SH and it might be a potential lead compound for further development of drug candidates for HCC.
Collapse
Affiliation(s)
- Xiaomei Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hua Sheng
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sibao Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
18
|
Interferon Regulatory Factor Family Genes: At the Crossroads between Immunity and Head and Neck Squamous Carcinoma. DISEASE MARKERS 2022; 2022:2561673. [PMID: 35664436 PMCID: PMC9162818 DOI: 10.1155/2022/2561673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at investigating the regulating mechanisms of the interferon regulatory factor (IRF) family genes in head and neck squamous cell carcinoma. Methods. Based on the HNSC data in the ‘The Cancer Genome Atlas (TCGA)’ database, the expression pattern of IRF family genes was investigated. The association of IRFs family genes and survival outcomes were analyzed by Kaplan–Meier plotter web portal. The relation of IRF genes and tumor stages was evaluated by using stage plots and based on GEPIA portal. 50 genes interacting with IRFs were identified using the NetworkAnalyst’s protein-protein interaction (PPI) network construction tool. The top 200 correlated genes with similar expression patterns in HNSC were obtained by the similar gene detection module of GEPIA. Furthermore, functional enrichment analysis was performed to determine the biological functions enriched by the interacting and correlated genes. The potential implication of IRFs in tumor immunity was investigated in terms of tumor-infiltrating immune cells, a pair of immune checkpoint genes (CD274 and PDCD1), and ESTIMATE-Stromal-Immune score. Results. The unpaired sample analysis shows that all of the IRF family genes were highly expressed in HNSC tumor samples compared to control samples. The survival analysis results showed that the overexpression of IRF1, IRF4, IRF5, IRF6, IRF8, and IRF9 was associated with better overall survival in HNSC, while the other IRFs genes (IRF2, IRF3. and IRF7) did not show prognostic values for overall survival outcome of HNSC. Four genes (STAT1, STAT2, FOXP3, and SPI1) were overlapping among 50 interacted genes in the PPI network and top 200 correlated genes identified by GEPIA. The 50 interacting genes in the PPI network and top 200 correlated genes were integrated into 246 genes. These 246 genes were found to be overrepresented in multiple KEGG pathways, e.g., Th17 cell differentiation, T cell receptor signaling pathway, cytokine-cytokine receptor interaction, natural killer (NK) cell-mediated cytotoxicity, FOXO signaling, PI3K-Akt signaling, and ErbB signaling. Most correlations between IRF gene members and TIICs were positive. The strongest positive correlation was identified between IRF8 and T cells (
,
). The majority of correlation between IRF family genes and ESTIMATE-Stromal-Immune score was found to be positive. The highest positive correlation was found to be between IRF8 and Immune score (
,
). Most correlations between IRFs and two immunoinhibitor genes (CD274 and PDCD1) were positive. IRF1 and PDCD1 were found to show the highest positive correlation (
,
). Conclusions. The current analysis showed IRFs were differentially expressed in HNSC, indicated significant prognostic values, were involved in tumor immunity-related signaling pathways, and significantly regulated tumor-infiltrating immune cells. IRF family genes could be potential therapeutic biomarkers in targeting tumor immunity of head and neck cancer.
Collapse
|
19
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
20
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 674] [Impact Index Per Article: 224.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Chen YJ, Luo SN, Wu H, Zhang NP, Dong L, Liu TT, Liang L, Shen XZ. IRF-2 inhibits cancer proliferation by promoting AMER-1 transcription in human gastric cancer. J Transl Med 2022; 20:68. [PMID: 35115027 PMCID: PMC8812234 DOI: 10.1186/s12967-022-03275-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF-2) acts as an anti-oncogene in gastric cancer (GC); however, the underlying mechanism remains unknown. METHODS This study determined the expression of IRF-2 in GC tissues and adjacent non-tumor tissues using immunohistochemistry (IHC) and explored the predictive value of IRF-2 for the prognoses of GC patients. Cell function and xenograft tumor growth experiments in nude mice were performed to test tumor proliferation ability, both in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) assay was used to verify the direct target of IRF-2. RESULTS We found that IRF-2 expression was downregulated in GC tissues and was negatively correlated with the prognoses of GC patients. IRF-2 negatively affected GC cell proliferation both in vitro and in vivo. ChIP-Seq assay showed that IRF-2 could directly activate AMER-1 transcription and regulate the Wnt/β-catenin signaling pathway, which was validated using IHC, in both tissue microarray and xenografted tumor tissues, western blot analysis, and cell function experiments. CONCLUSIONS Increased expression of IRF-2 can inhibit tumor growth and affect the prognoses of patients by directly regulating AMER-1 transcription in GC and inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Shu-Neng Luo
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ning-Ping Zhang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Center of Evidence-Based Medicine, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|