1
|
Jaworska K, Kuś M, Ufnal M. TMAO and diabetes: from the gut feeling to the heart of the problem. Nutr Diabetes 2025; 15:21. [PMID: 40393987 DOI: 10.1038/s41387-025-00377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Elevated plasma levels of trimethylamine N-oxide (TMAO)-a compound derived from diet and the gut microbiome-have been widely studied for their association with diabetes risk and their potential role in disease pathophysiology and complications. However, clinical studies, both prospective and retrospective, have yielded conflicting results. For example, elevated levels of TMAO are frequently linked to an increased risk of cardiovascular and renal complications in individuals with diabetes. However, the robustness and independence of these associations differ across study populations and are influenced by the degree of adjustment for confounding risk factors. Considering insulin's regulatory effect on FMO3 activity in liver cells, TMAO may serve as a marker of hepatic insulin resistance, which could partially explain its association with diabetes risk. The role of TMAO in diabetes pathology remains controversial; while some studies emphasize its detrimental impact on insulin sensitivity and the progression of diabetes-related complications, others suggest potential protective effects. Investigating the largely unexplored role of TMAO's precursor, trimethylamine, may help elucidate these discrepancies. This review consolidates clinical and experimental findings to clarify TMAO's complex mechanistic contributions to diabetes pathology.
Collapse
Affiliation(s)
- Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Monika Kuś
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Iorra FDQ, Rodrigues PG, Bock PM, Guahnon MP, Eller S, de Oliveira TF, Birk L, Schwarz PDS, Drehmer M, Bloch KV, Cureau FV, Schaan BD. Gut Microbiota Metabolite TMAO and Adolescent Cardiometabolic Health: A Cross-sectional Analysis. J Endocr Soc 2025; 9:bvaf055. [PMID: 40242209 PMCID: PMC12000724 DOI: 10.1210/jendso/bvaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Indexed: 04/18/2025] Open
Abstract
Background Trimethylamine N-oxide (TMAO) is a metabolite derived from gut microbiota that has been associated with cardiovascular and metabolic disease risk in adults. However, its role in assessing cardiometabolic risk in adolescents is unclear. Objective This study investigates the association between serum TMAO levels and cardiometabolic health indicators in Brazilian adolescents. Materials and Methods This is a multicenter, cross-sectional analysis involving 4446 participants aged 12 to 17 years from four Brazilian cities. Serum TMAO levels were quantified using liquid chromatography-tandem mass spectrometry, and associations with clinical, metabolic, and inflammatory variables were evaluated through multivariate linear regression analyses. Results After adjusting for potential confounders, being in the highest tertile of serum TMAO was positively associated with waist circumference [β 1.45; 95% confidence interval (CI) 0.77, 2.14; P < .001], body mass index Z-score (β .19; 95% CI 0.10, 0.27; P < .001), and C-reactive protein (β .24; 95% CI 0.13, 0.34; P < .001). A negative association between the highest tertile of TMAO and fasting plasma glucose was also observed (β -1.22; 95% CI -1.77, -0.66; P < .001). Conclusion TMAO may serve as an emerging biomarker for cardiometabolic risk assessment in adolescents.
Collapse
Affiliation(s)
- Fernando de Quadros Iorra
- Postgraduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | | | - Patrícia Martins Bock
- Post-Graduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Marina Petrasi Guahnon
- Postgraduate Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Leticia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Patricia de Souza Schwarz
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Michele Drehmer
- Postgraduate Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Food, Nutrition and Health, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Katia V Bloch
- Institute of Studies in Public Health, Federal University of Rio de Janeiro, Rio de Janeiro 20271-062, Brazil
| | - Felipe Vogt Cureau
- Graduate Program in Cardiology and Cardiovascular Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | - Beatriz D Schaan
- Postgraduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| |
Collapse
|
3
|
Liu J, Ge P, Luo Y, Sun Z, Luo X, Li H, Pei B, Xun L, Zhang X, Jiang Y, Wen H, Liu J, Yang Q, Ma S, Chen H. Decoding TMAO in the Gut-Organ Axis: From Biomarkers and Cell Death Mechanisms to Therapeutic Horizons. Drug Des Devel Ther 2025; 19:3363-3393. [PMID: 40322030 PMCID: PMC12049683 DOI: 10.2147/dddt.s512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of an "axis" connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of human diseases in the "Gut-Organ" axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Huijuan Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Lu Xun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xuetao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yunfei Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
4
|
Sun Z, Zheng Y. Metabolic diseases in the East Asian populations. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01058-8. [PMID: 40200111 DOI: 10.1038/s41575-025-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
East Asian populations, which account for approximately 20% of the global population, have become central to the worldwide rise of metabolic diseases over the past few decades. The prevalence of metabolic disorders, including type 2 diabetes mellitus, hypertension and metabolic dysfunction-associated steatotic liver disease, has escalated sharply, contributing to a substantial burden of complications such as cardiovascular disease, chronic kidney disease, cancer and increased mortality. This concerning trend is primarily driven by a combination of genetic predisposition, unique fat distribution patterns and rapidly changing lifestyle factors, including urbanization and the adoption of Westernized dietary habits. Current advances in genomics, proteomics, metabolomics and microbiome research have provided new insights into the biological mechanisms that might contribute to the heightened susceptibility of East Asian populations to metabolic diseases. This Review synthesizes epidemiological data, risk factors and biomarkers to provide an overview of how metabolic diseases are reshaping public health in East Asia and offers insights into biological and societal drivers to guide effective, region-specific strategies.
Collapse
Affiliation(s)
- Zhonghan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Liu J, Li F, Yang L, Luo S, Deng Y. Gut microbiota and its metabolites regulate insulin resistance: traditional Chinese medicine insights for T2DM. Front Microbiol 2025; 16:1554189. [PMID: 40177494 PMCID: PMC11963813 DOI: 10.3389/fmicb.2025.1554189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The gut microbiota is closely associated with the onset and development of type 2 diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-grade inflammation. However, despite the widespread use of first-line antidiabetic drugs, IR in diabetes and its complications continue to rise. The gut microbiota and its metabolic products may promote the development of T2DM by exacerbating IR. Therefore, regulating the gut microbiota has become a promising therapeutic strategy, with particular attention given to probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. This review first examines the relationship between gut microbiota and IR in T2DM, summarizing the research progress of microbiota-based therapies in modulating IR. We then delve into how gut microbiota-related metabolic products contribute to IR. Finally, we summarize the research findings on the role of traditional Chinese medicine in regulating the gut microbiota and its metabolic products to improve IR. In conclusion, the gut microbiota and its metabolic products play a crucial role in the pathophysiological process of T2DM by modulating IR, offering new insights into potential therapeutic strategies for T2DM.
Collapse
Affiliation(s)
- Jing Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fuxing Li
- Ningxiang Traditional Chinese Medicine Hospital, Changsha, China
| | - Le Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengping Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Florea CM, Rosu RO, Minciuna IA, Cismaru G, Pop D, Vlase AM, Nenu I, Filip GA. The Impact of Trimethylamine N-Oxide on Atrial Fibrillation Presence in Patients with Cardiovascular Disease. J Xenobiot 2025; 15:28. [PMID: 39997371 PMCID: PMC11856497 DOI: 10.3390/jox15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Atrial fibrillation is the most common human heart rhythm disorder, yet its underlying causes remain largely unknown. Trimethylamine N-oxide (TMAO), a by-product derived from the gut microbiota contributed by red meat, has been linked to numerous cardiovascular and metabolic diseases. Aims: This study aimed to evaluate the impact of serum TMAO levels on the occurrence of atrial fibrillation in patients with cardiovascular disease. Results: Utilizing a cross-sectional study design, fasting serum TMAO levels were measured and compared between 153 patients without cardiovascular disease and patients hospitalized for cardiovascular disease, stratified by the presence or absence of atrial fibrillation. While patients with more comorbidities had higher TMAO overall, the TMAO levels were not significantly different between cardiovascular disease patients with and without atrial fibrillation (p = 0.57). Moreover, there was no difference between atrial fibrillation progression phenotypes (p = 0.27). In multivariate analysis, a significant association was found with atherosclerotic cardiovascular disease (p = 0.04) and chronic kidney disease (p < 0.001), but there was no significant association between TMAO and atrial fibrillation (p = 0.9). Conclusions: Serum TMAO levels are not associated with the occurrence of atrial fibrillation and disease progression phenotypes in patients with cardiovascular disease, but are associated with ASCVD and CKD.
Collapse
Affiliation(s)
- Cristian Marius Florea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.M.F.); (I.N.); (G.A.F.)
| | - Radu Ovidiu Rosu
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.A.M.); (G.C.); (D.P.)
| | - Ioan Alexandru Minciuna
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.A.M.); (G.C.); (D.P.)
| | - Gabriel Cismaru
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.A.M.); (G.C.); (D.P.)
| | - Dana Pop
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.A.M.); (G.C.); (D.P.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Iuliana Nenu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.M.F.); (I.N.); (G.A.F.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.M.F.); (I.N.); (G.A.F.)
| |
Collapse
|
7
|
Kamal M, Shanmuganathan M, Kroezen Z, Joanisse S, Britz-McKibbin P, Parise G. Senescent myoblasts exhibit an altered exometabolome that is linked to senescence-associated secretory phenotype signaling. Am J Physiol Cell Physiol 2025; 328:C440-C451. [PMID: 39726265 DOI: 10.1152/ajpcell.00880.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibers. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle. In the present investigation, we examined the intracellular and extracellular metabolome of C2C12 myoblasts using a bleomycin (BLEO)-mediated model of DNA damage-induced senescence. We also evaluated the relationship between the senescent metabolic phenotype and SASP signaling through molecular and network-based analyses. Senescent myoblasts exhibited a significantly altered extracellular metabolome (i.e., exometabolome), including increased secretion of several aging-associated metabolites. Four of these metabolites-trimethylamine-N-oxide (TMAO), xanthine, choline, and oleic acid-were selected for individual dose-response experiments to determine whether they could drive the senescence phenotype. Although most of the tested metabolites did not independently alter senescence markers, oleic acid treatment of healthy myoblasts significantly upregulated the SASP genes Ccl2, Cxcl12, and Il33 (p < 0.05). A gene-metabolite interaction network further revealed that oleic acid was one of the most interconnected metabolites to key senescence-associated genes. Notably, oleic acid interacted with several prominent SASP genes, suggesting a potential epigenetic effect between this monounsaturated fatty acid and SASP regulation. In summary, the exometabolome, particularly oleic acid, is implicated in SASP signaling within senescent myoblasts.NEW & NOTEWORTHY Cellular senescence and its accompanying secretory phenotype [i.e., the senescence-associated secretory phenotype (SASP)] have been linked to the aging-associated dysfunction of skeletal muscle, yet little is known about this phenomenon in satellite cells. We report that senescent myoblasts experience a significantly altered extracellular metabolome primarily characterized by the substantial release of nonesterified fatty acids. Targeted evaluation of several extracellular senescence-associated metabolites reveals a potential epigenetic role for long-chain fatty acids, particularly oleic acid, in regulating SASP-related gene expression.
Collapse
Affiliation(s)
- Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachery Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Sophie Joanisse
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Varzideh F, Farroni E, Kaunsakar U, Eiwaz M, Jankauskas SS, Santulli G. TMAO accelerates cellular aging by disrupting endoplasmic reticulum integrity and mitochondrial unfolded protein response. Cell Mol Life Sci 2025; 82:53. [PMID: 39833549 PMCID: PMC11746987 DOI: 10.1007/s00018-024-05546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), Einstein Institute for Aging Research, New York, NY, USA
| | - Emanuele Farroni
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), Einstein Institute for Aging Research, New York, NY, USA
| | - Urna Kaunsakar
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Albert Einstein College of Medicine, 1300 Morris PARK AVENUE, New York, NY, 10461, USA
| | - Mahaba Eiwaz
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Albert Einstein College of Medicine, 1300 Morris PARK AVENUE, New York, NY, 10461, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), Einstein Institute for Aging Research, New York, NY, USA
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), Einstein Institute for Aging Research, New York, NY, USA.
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Albert Einstein College of Medicine, 1300 Morris PARK AVENUE, New York, NY, 10461, USA.
| |
Collapse
|
9
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
10
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
11
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
12
|
Sprinkles JK, Lulla A, Hullings AG, Trujillo-Gonzalez I, Klatt KC, Jacobs DR, Shah RV, Murthy VL, Howard AG, Gordon-Larsen P, Meyer KA. Choline Metabolites and 15-Year Risk of Incident Diabetes in a Prospective Cohort of Adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes Care 2024; 47:1985-1994. [PMID: 39259767 PMCID: PMC11502527 DOI: 10.2337/dc24-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The potential for choline metabolism to influence the development of diabetes has received increased attention. Previous studies on circulating choline metabolites and incident diabetes have been conducted in samples of older adults, often with a high prevalence of risk factors. RESEARCH DESIGN AND METHODS Participants were from year 15 of follow-up (2000-2001) in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (n = 3,133, aged 33-45 years) with plasma choline metabolite (choline, betaine, and trimethylamine N-oxide [TMAO]) data. We quantified associations between choline metabolites and 15-year risk of incident diabetes (n = 387) among participants free of diabetes at baseline using Cox proportional hazards regression models adjusted for sociodemographics, health behaviors, and clinical variables. RESULTS Betaine was inversely associated with 15-year risk of incident diabetes (hazard ratio 0.76 [95% CI 0.67, 0.88] per 1-SD unit betaine), and TMAO was positively associated with 15-year risk of incident diabetes (1.11 [1.01, 1.22] per 1-SD unit). Choline was not significantly associated with 15-year risk of incident diabetes (1.05 [0.94, 1.16] per 1-SD). CONCLUSIONS Our findings are consistent with other published literature supporting a role for choline metabolism in diabetes. Our study extends the current literature by analyzing a racially diverse population-based cohort of early middle-aged individuals in whom preventive activities may be most relevant.
Collapse
Affiliation(s)
- Jessica K. Sprinkles
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Autumn G. Hullings
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin C. Klatt
- Department of Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Ravi V. Shah
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie A. Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
13
|
Al-Sulaiti H, Anwardeen N, Bashraheel SS, Naja K, Elrayess MA. Alterations in Choline Metabolism in Non-Obese Individuals with Insulin Resistance and Type 2 Diabetes Mellitus. Metabolites 2024; 14:457. [PMID: 39195553 DOI: 10.3390/metabo14080457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The prevalence of non-obese individuals with insulin resistance (IR) and type 2 diabetes (T2D) is increasing worldwide. This study investigates the metabolic signature of phospholipid-associated metabolites in non-obese individuals with IR and T2D, aiming to identify potential biomarkers for these metabolic disorders. The study cohort included non-obese individuals from the Qatar Biobank categorized into three groups: insulin sensitive, insulin resistant, and patients with T2D. Each group comprised 236 participants, totaling 708 individuals. Metabolomic profiling was conducted using high-resolution mass spectrometry, and statistical analyses were performed to identify metabolites associated with the progression from IS to IR and T2D. The study observed significant alterations in specific phospholipid metabolites across the IS, IR, and T2D groups. Choline phosphate, glycerophosphoethanolamine, choline, glycerophosphorylcholine (GPC), and trimethylamine N-oxide showed significant changes correlated with disease progression. A distinct metabolic signature in non-obese individuals with IR and T2D was characterized by shifts in choline metabolism, including decreased levels of choline and trimethylamine N-oxide and increased levels of phosphatidylcholines, phosphatidylethanolamines, and their degradation products. These findings suggest that alterations in choline metabolism may play a critical role in the development of glucose intolerance and insulin resistance. Targeting choline metabolism could offer potential therapeutic strategies for treating T2D. Further research is needed to validate these biomarkers and understand their functional significance in the pathogenesis of IR and T2D in non-obese populations.
Collapse
Affiliation(s)
- Haya Al-Sulaiti
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sara S Bashraheel
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
14
|
Zhou Y, Zhang Y, Jin S, Lv J, Li M, Feng N. The gut microbiota derived metabolite trimethylamine N-oxide: Its important role in cancer and other diseases. Biomed Pharmacother 2024; 177:117031. [PMID: 38925016 DOI: 10.1016/j.biopha.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
An expanding body of research indicates a correlation between the gut microbiota and various diseases. Metabolites produced by the gut microbiota act as mediators between the gut microbiota and the host, interacting with multiple systems in the human body to regulate physiological or pathological functions. However, further investigation is still required to elucidate the underlying mechanisms. One such metabolite involved in choline metabolism by gut microbes is trimethylamine (TMA), which can traverse the intestinal epithelial barrier and enter the bloodstream, ultimately reaching the liver where it undergoes oxidation catalyzed by flavin-containing monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). While some TMAO is eliminated through renal excretion, remaining amounts circulate in the bloodstream, leading to systemic inflammation, endoplasmic reticulum (ER) stress, mitochondrial stress, and disruption of normal physiological functions in humans. As a representative microbial metabolite originating from the gut, TMAO has significant potential both as a biomarker for monitoring disease occurrence and progression and for tailoring personalized treatment strategies for patients. This review provides an extensive overview of TMAO sources and its metabolism in human blood, as well as its impact on several major human diseases. Additionally, we explore the latest research areas related to TMAO along with future directions.
Collapse
Affiliation(s)
- Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Nantong University Medical School, Nantong, China; Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
15
|
Correia BSB, Dalgaard LB, Thams L, Hansen M, Bertram HC. Changes in the urinary metabolome accompanied alterations in body mass and composition in women with overweight - impact of high versus low protein breakfast. Metabolomics 2024; 20:81. [PMID: 39066839 PMCID: PMC11283391 DOI: 10.1007/s11306-024-02156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Understanding why subjects with overweight and with obesity vary in their response to dietary interventions is of major interest for developing personalized strategies for body mass regulation. OBJECTIVES The aim of this study was to investigate the relationship between changes in the urine metabolome and body mass during a breakfast meal intervention. Furthermore, we aimed to elucidate if the baseline urine metabolome could predict the response to the two types of breakfast meals (high versus low protein) during the intervention. METHODS A total of 75 young, women with overweight were randomly allocated to one of two intervention groups: (1) High-protein (HP) or (2) low-protein (LP) breakfast as part of their habitual diet during a 12-week intervention. Beside the breakfast meal, participants were instructed to eat their habitual diet and maintain their habitual physical activity level. Nuclear magnetic resonance-based metabolomics was conducted on urine samples collected at baseline (wk 0), mid-intervention (wk 6), and at endpoint (wk 12). At baseline and endpoint, body mass was measured and DXA was used to measure lean body mass and fat mass. RESULTS The baseline urine metabolite profile showed a slightly higher correlation (R2 = 0.56) to body mass in comparison with lean body mass (R2 = 0.51) and fat mass (R2 = 0.53). Baseline 24-h urinary excretion of trigonelline (p = 0.04), N, N-dimethylglycine (p = 0.02), and trimethylamine (p = 0.03) were significantly higher in individuals who responded with a reduction in body mass to the HP breakfast. CONCLUSIONS Differences in the urine metabolome were seen for women that obtained a body weight loss in the response to the HP breakfast intervention and women who did not obtain a body weight loss, indicating that the urine metabolome contains information about the metabolic phenotype that influences the responsiveness to dietary interventions.
Collapse
Affiliation(s)
| | | | - Line Thams
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
16
|
Yu X, Wang Y, Yang R, Wang Z, Wang X, Wang S, Zhang W, Dong J, Chen W, Ji F, Gao W. Trimethylamine N-oxide predicts cardiovascular events in coronary artery disease patients with diabetes mellitus: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1360861. [PMID: 39092284 PMCID: PMC11291261 DOI: 10.3389/fendo.2024.1360861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Background Gut microbiota has significant impact on the cardio-metabolism and inflammation, and is implicated in the pathogenesis and progression of atherosclerosis. However, the long-term prospective association between trimethylamine N-oxide (TMAO) level and major adverse clinical events (MACEs) in patients with coronary artery disease (CAD) with or without diabetes mellitus (DM) habitus remains to be investigated. Methods This prospective, single-center cohort study enrolled 2090 hospitalized CAD patients confirmed by angiography at Beijing Hospital from 2017-2020. TMAO levels were performed using liquid chromatography-tandem mass spectrometry. The composite outcome of MACEs was identified by clinic visits or interviews annually. Multivariate Cox regression analysis, Kaplan-Meier analysis, and restricted cubic splines were mainly used to explore the relationship between TMAO levels and MACEs based on diabetes mellitus (DM) habitus. Results During the median follow-up period of 54 (41, 68) months, 266 (12.7%) developed MACEs. Higher TMAO levels, using the tertile cut-off value of 318.28 ng/mL, were significantly found to be positive dose-independent for developing MACEs, especially in patients with DM (HR 1.744, 95%CI 1.084-2.808, p = 0.022). Conclusions Higher levels of TMAO are significantly associated with long-term MACEs among CAD patients with DM. The combination of TMAO in patients with CAD and DM is beneficial for risk stratification and prognosis.
Collapse
Affiliation(s)
- Xue Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yijia Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyue Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenxiang Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
17
|
Ling CW, Zhong H, Zeng FF, Chen G, Fu Y, Wang C, Zhang ZQ, Cao WT, Sun TY, Ding D, Liu YH, Dong HL, Jing LP, Ling W, Zheng JS, Chen YM. Cohort Profile: Guangzhou Nutrition and Health Study (GNHS): A Population-based Multi-omics Study. J Epidemiol 2024; 34:301-306. [PMID: 37813622 PMCID: PMC11078596 DOI: 10.2188/jea.je20230108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/27/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND The Guangzhou Nutrition and Health Study (GNHS) aims to assess the determinants of metabolic disease in nutritional aspects, as well as other environmental and genetic factors, and explore possible biomarkers and mechanisms with multi-omics integration. METHODS The population-based sample of adults in Guangzhou, China (baseline: 40-83 years old; n = 5,118) was followed up about every 3 years. All are tracked via on-site follow-up and health information systems. We assessed detailed information on lifestyle factors, physical activities, dietary assessments, psychological health, cognitive function, body measurements, and muscle function. Instrument tests included dual-energy X-ray absorptiometry scanning, carotid artery and liver ultrasonography evaluations, vascular endothelial function evaluation, upper-abdomen and brain magnetic resonance imaging, and 14-day real-time continuous glucose monitoring tests. We also measured multi-omics, including host genome-wide genotyping, serum metabolome and proteome, gut microbiome (16S rRNA sequencing, metagenome, and internal transcribed spacer 2 sequencing), and fecal metabolome and proteome. RESULTS The baseline surveys were conducted from 2008 to 2015. Now, we have completed 3 waves. The 3rd and 4th follow-ups have started but have yet to end. A total of 5,118 participants aged 40-83 took part in the study. The median age at baseline was approximately 59.0 years and the proportion of female participants was about 69.4%. Among all the participants, 3,628 (71%) completed at least one on-site follow-up, with a median duration of 9.48 years. CONCLUSION The cohort will provide data that will be influential in establishing the role of nutrition in metabolic diseases with multi-omics.
Collapse
Affiliation(s)
- Chu-Wen Ling
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Haili Zhong
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fang-fang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Gengdong Chen
- Department of Obstetrics, Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Cheng Wang
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Ting Cao
- International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Ting-Yu Sun
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ding Ding
- Global Health Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Hua Liu
- Department of Nutrition, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Li Dong
- Scientific Education Section and Department of Child Healthcare, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
| | - Li-Peng Jing
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Fu Y, Hou X, Feng Z, Feng H, Li L. Research progress in the relationship between gut microbiota metabolite trimethylamine N-oxide and ischemic stroke. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:447-456. [PMID: 38970519 PMCID: PMC11208405 DOI: 10.11817/j.issn.1672-7347.2024.230427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 07/08/2024]
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease that seriously endangers human health. Gut microbiota plays a key role as an intermediate mediator in bidirectional regulation between the brain and the intestine. In recent years, trimethylamine N-oxide (TMAO) as a gut microbiota metabolite has received widespread attention in cardiovascular diseases. Elevated levels of TMAO may increase the risk of IS by affecting IS risk factors such as atherosclerosis, atrial fibrillation, hypertension, and type 2 diabetes. TMAO exacerbates neurological damage in IS patients, increases the risk of IS recurrence, and is an independent predictor of post-stroke cognitive impairment (PSCI) in patients. Current research suggests that the mechanisms of TMAO action include endothelial dysfunction, promoting of foam cell formation, influence on cholesterol metabolism, and enhancement of platelet reactivity. Lowering plasma TMAO levels through the rational use of traditional Chinese medicine, dietary management, vitamins, and probiotics can prevent and treat IS.
Collapse
Affiliation(s)
- Yu Fu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355.
| | - Xiaoqian Hou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Ziyun Feng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Huiyue Feng
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| |
Collapse
|
19
|
Sawicki CM, Pacheco LS, Rivas-Tumanyan S, Cao Z, Haslam DE, Liang L, Tucker KL, Joshipura K, Bhupathiraju SN. Association of Gut Microbiota-Related Metabolites and Type 2 Diabetes in Two Puerto Rican Cohorts. Nutrients 2024; 16:959. [PMID: 38612993 PMCID: PMC11013596 DOI: 10.3390/nu16070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Aims: Gut microbiota metabolites may play integral roles in human metabolism and disease progression. However, evidence for associations between metabolites and cardiometabolic risk factors is sparse, especially in high-risk Hispanic populations. We aimed to evaluate the cross-sectional and longitudinal relationships between gut microbiota related metabolites and measures of glycemia, dyslipidemia, adiposity, and incident type 2 diabetes in two Hispanic observational cohorts. (2) Methods: We included data from 670 participants of the Boston Puerto Rican Health Study (BPRHS) and 999 participants of the San Juan Overweight Adult Longitudinal Study (SOALS). Questionnaires and clinical examinations were conducted over 3 years of follow-up for SOALS and 6 years of follow-up for BPRHS. Plasma metabolites, including L-carnitine, betaine, choline, and trimethylamine N-oxide (TMAO), were measured at baseline in both studies. We used multivariable linear models to evaluate the associations between metabolites and cardiometabolic risk factors and multivariable logistic and Poisson regressions to assess associations with prevalent and incident type 2 diabetes, adjusted for potential confounding factors. Cohort-specific analyses were combined using a fixed-effects meta-analysis. (3) Results: Higher plasma betaine was prospectively associated with lower fasting glucose [-0.97 mg/dL (95% CI: -1.59, -0.34), p = 0.002], lower HbA1c [-0.02% (95% CI: -0.04, -0.01), p = 0.01], lower HOMA-IR [-0.14 (95% CI: -0.23, -0.05), p = 0.003], and lower fasting insulin [-0.27 mcU/mL (95% CI: -0.51, -0.03), p = 0.02]. Betaine was also associated with a 22% lower incidence of type 2 diabetes (IRR: 0.78, 95% CI: 0.65, 0.95). L-carnitine was associated with lower fasting glucose [-0.68 mg/dL (95% CI: -1.29, -0.07), p = 0.03] and lower HbA1c at follow-up [-0.03% (95% CI: -0.05, -0.01), p < 0.001], while TMAO was associated with higher fasting glucose [0.83 mg/dL (95% CI: 0.22, 1.44), p = 0.01] and higher triglycerides [3.52 mg/dL (95% CI: 1.83, 5.20), p < 0.0001]. Neither choline nor TMAO were associated with incident type 2 diabetes. (4) Conclusions: Higher plasma betaine showed consistent associations with a lower risk of glycemia, insulinemia, and type 2 diabetes. However, TMAO, a metabolite of betaine, was associated with higher glucose and lipid concentrations. These observations demonstrate the importance of gut microbiota metabolites for human cardiometabolic health.
Collapse
Affiliation(s)
- Caleigh M. Sawicki
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA; (C.M.S.); (D.E.H.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Lorena S. Pacheco
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Sona Rivas-Tumanyan
- Department of Surgical Sciences, School of Dental Medicine, University of Puerto Rico, San Juan, PR 00921, USA; (S.R.-T.); (K.J.)
| | - Zheyi Cao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Danielle E. Haslam
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA; (C.M.S.); (D.E.H.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Katherine L. Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts, Lowell, MA 01854, USA;
| | - Kaumudi Joshipura
- Department of Surgical Sciences, School of Dental Medicine, University of Puerto Rico, San Juan, PR 00921, USA; (S.R.-T.); (K.J.)
| | - Shilpa N. Bhupathiraju
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA; (C.M.S.); (D.E.H.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| |
Collapse
|
20
|
Fang Y, Zhang Y, Liu Q, Zheng Z, Ren C, Zhang X. Assessing the causal relationship between gut microbiota and diabetic nephropathy: insights from two-sample Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1329954. [PMID: 38562415 PMCID: PMC10982433 DOI: 10.3389/fendo.2024.1329954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The causal association between gut microbiota (GM) and the development of diabetic nephropathy (DN) remains uncertain. We sought to explore this potential association using two-sample Mendelian randomization (MR) analysis. Methods Genome-wide association study (GWAS) data for GM were obtained from the MiBioGen consortium. GWAS data for DN and related phenotypes were collected from the FinngenR9 and CKDGen databases. The inverse variance weighted (IVW) model was used as the primary analysis model, supplemented by various sensitivity analyses. Heterogeneity was assessed using Cochran's Q test, while horizontal pleiotropy was evaluated through MR-Egger regression and the MR-PRESSO global test. Reverse MR analysis was conducted to identify any reverse causal effects. Results Our analysis identified twenty-five bacterial taxa that have a causal association with DN and its related phenotypes (p < 0.05). Among them, only the g_Eubacterium_coprostanoligenes_group showed a significant causal association with type 1 DN (p < Bonferroni-adjusted p-value). Our findings remained consistent regardless of the analytical approach used, with all methods indicating the same direction of effect. No evidence of heterogeneity or horizontal pleiotropy was observed. Reverse MR analysis did not reveal any causal associations. Conclusions This study established a causal association between specific GM and DN. Our findings contribute to current understanding of the role of GM in the development of DN, offering potential insights for the prevention and treatment strategies for this condition.
Collapse
Affiliation(s)
- Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zenan Zheng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chunhong Ren
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong, Shantou, Guangdong, China
| |
Collapse
|
21
|
Yuan L, Li Y, Chen M, Xue L, Wang J, Ding Y, Gu Q, Zhang J, Zhao H, Xie X, Wu Q. Therapeutic applications of gut microbes in cardiometabolic diseases: current state and perspectives. Appl Microbiol Biotechnol 2024; 108:156. [PMID: 38244075 PMCID: PMC10799778 DOI: 10.1007/s00253-024-13007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.
Collapse
Affiliation(s)
- Lin Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
22
|
Wang L, Nan Y, Zhu W, Wang S. Effect of TMAO on the incidence and prognosis of cerebral infarction: a systematic review and meta-analysis. Front Neurol 2024; 14:1287928. [PMID: 38259655 PMCID: PMC10801906 DOI: 10.3389/fneur.2023.1287928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Objective This study aimed to evaluate the effect of trimethylamine oxide (TMAO) on the incidence and prognosis of cerebral infarction. Methods We searched PubMed, Embase, and Cochrane databases for all clinical studies on the association of TMAO with cerebral infarction incidence and prognosis from inception to April 2023. A systematic review and meta-analysis were conducted using the meta-analysis of observational studies in epidemiology (MOOSE) declaration list. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the study. This study protocol was registered on the PROSPERO database with the ID: CRD42023459661. The extracted data included the OR value of the effect of TMAO on the incidence and prognosis of cerebral infarction, the HR value between TMAO and underlying diseases, the RR value, 95% confidence intervals, and the AUC value of TMAO in the prediction model of cerebral infarction. Results Fifteen studies including 40,061 patients were included. All the patients were from China or Germany. The TMAO level was significantly correlated with the Modified Rankin Score (mRS) 3 months after the onset of cerebral infarction (OR, 1.581; 95% CI, 1.259-1.987; p < 0.01). The TMAO level was significantly correlated with the rate of first-time incidence and recurrence of cerebral infarction (OR, 1.208; 95% CI, 1.085-1.344; p < 0.01 and HR, 1.167; 95% CI, 1.076-1.265; p < 0.01, respectively). The TMAO level was also highly correlated with disease severity at onset (National Institutes of Health Stroke Scale, NIHSS >5) (OR, 5.194; 95% CI, 1.206-22.363; p < 0.05), but had no significant correlation with mortality after cerebral infarction (p > 0.05). Correlation analysis of TMAO with underlying diseases in the population indicated that TMAO had a significant correlation with histories of hypertension, diabetes mellitus, coronary artery disease, and cerebral infarction (p < 0.05), but not with hyperlipidemia (p > 0.05). Six risk prediction models of TMAO for cerebral infarction reported in four studies were systematically evaluated; five of them had good predictive value (AUC ≥ 0.7). Conclusion TMAO is an independent risk factor affecting the onset, prognosis, and severity of cerebral infarction.
Collapse
Affiliation(s)
- Lin Wang
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Beijing, China
| | - Yinan Nan
- International Department, China-Japan Friendship Hospital, Beijing, China
| | - Wenhao Zhu
- Department of Encephalopathy, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Shaoqing Wang
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
23
|
Zanfirescu A, Avram I, Gatea F, Roșca R, Vamanu E. In Vitro and In Vivo Antihyperglycemic Effects of New Metabiotics from Boletus edulis. Life (Basel) 2023; 14:68. [PMID: 38255683 PMCID: PMC10817235 DOI: 10.3390/life14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing incidence of diabetes has prompted the need for new treatment strategies, including natural products that reduce glycemia values. This work examined the in vitro and in vivo antihyperglycemic effects of new metabiotics derived from Boletus edulis extracts. The metabiotics were obtained from 100% B. edulis, and two other products, CARDIO and GLYCEMIC, from Anoom Laboratories SRL, which contain other microbial species related to B. edulis. Our in vitro investigations (simulations of the microbiota of patients with type 2 diabetes (T2D)) demonstrated that B. edulis extracts modulate the microbiota, normalizing its pattern. The effects were further tested in vivo, employing a mouse model of T2D. The tested extracts decreased glycemia values compared to the control and modulated the microbiota. The metabiotics had positive effects on T2D in vitro and in vivo, suggesting their potential to alleviate diabetes-associated microbiota dysbiosis.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 36–46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| | - Răzvan Roșca
- Anoom Laboratories SRL, 18th Resita Str., ap. 58, 4th District, 024023 Bucharest, Romania;
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
24
|
Fu Y, Li S, Xiao Y, Liu G, Fang J. A Metabolite Perspective on the Involvement of the Gut Microbiota in Type 2 Diabetes. Int J Mol Sci 2023; 24:14991. [PMID: 37834439 PMCID: PMC10573635 DOI: 10.3390/ijms241914991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes (T2D) is a commonly diagnosed condition that has been extensively studied. The composition and activity of gut microbes, as well as the metabolites they produce (such as short-chain fatty acids, lipopolysaccharides, trimethylamine N-oxide, and bile acids) can significantly impact diabetes development. Treatment options, including medication, can enhance the gut microbiome and its metabolites, and even reverse intestinal epithelial dysfunction. Both animal and human studies have demonstrated the role of microbiota metabolites in influencing diabetes, as well as their complex chemical interactions with signaling molecules. This article focuses on the importance of microbiota metabolites in type 2 diabetes and provides an overview of various pharmacological and dietary components that can serve as therapeutic tools for reducing the risk of developing diabetes. A deeper understanding of the link between gut microbial metabolites and T2D will enhance our knowledge of the disease and may offer new treatment approaches. Although many animal studies have investigated the palliative and attenuating effects of gut microbial metabolites on T2D, few have established a complete cure. Therefore, conducting more systematic studies in the future is necessary.
Collapse
Affiliation(s)
| | | | | | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| |
Collapse
|
25
|
Li B, Shu X, Jiang H, Shi C, Qi L, Zhu L, Zhou J, Tang M, Hu A. Plasma metabolome identifies potential biomarkers of gastric precancerous lesions and gastric cancer risk. Metabolomics 2023; 19:73. [PMID: 37561286 DOI: 10.1007/s11306-023-02037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES Currently, metabolic biomarkers with great practicability of gastric cancer (GC) and gastric precancerous lesions (GPL) are scarce. Thus, we are devoted to determining the plasma metabolic profiles of patients with GPL or GC and validate candidate biomarkers for disease diagnosis. METHODS In this hospital-based case-control study, 68 plasma samples from 27 non-atrophic gastritis (NAG, control), 31 GPL, and 10 GC patients were collected for targeted metabolomics analysis. Univariate and multivariate analyses were used for selecting the differential metabolites. A receiver operating characteristic curve combined with binary logistic regression analysis was performed to test the diagnostic performance of the differential metabolites. Dietary data were obtained using a semiquantitative food frequency questionnaire. RESULTS Distinct metabolomic profiles were noted for NAG, GPL, and GC. Compared to the NAG patients, the levels of 5 metabolites in the GPL group and 4 metabolites in the GC group were found to significantly elevate. Compared with the model involving 9 traditional risk factors (AUC: 0.89, 95%CI: 0.78-1.00), Trimethylamine N-oxide, the most significant metabolite (P = 2.00 × 10-5, FDR = 0.003, FC > 2, VIP > 2), showed a good diagnostic performance for the patients with GC (AUC: 0.90, 95%CI: 0.78-1.00), and its diagnostic performance has been further improved with the integration of Rhamnose (AUC: 0.96, 95%CI: 0.89-1.00). CONCLUSION In our study, 9 defined metabolites might serve as meaningful biomarkers for identifying the high-risk population of GPL and GC, possibly enhancing the prevention and control of GPL and GC.
Collapse
Affiliation(s)
- Bin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xing Shu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haoqi Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Change Shi
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology and Hepatology, Anhui Public Health Clinical Center, Hefei, China
| | - Le Qi
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology and Hepatology, Anhui Public Health Clinical Center, Hefei, China
| | - Lili Zhu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology and Hepatology, Anhui Public Health Clinical Center, Hefei, China
| | - Juanyan Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology and Hepatology, Anhui Public Health Clinical Center, Hefei, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Department of Gastroenterology and Hepatology, Anhui Public Health Clinical Center, Hefei, China.
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, China.
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
26
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
27
|
Wu J, Yang K, Fan H, Wei M, Xiong Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1114424. [PMID: 37229456 PMCID: PMC10204722 DOI: 10.3389/fendo.2023.1114424] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia and insulin resistance. The incidence of T2DM is increasing globally, and a growing body of evidence suggests that gut microbiota dysbiosis may contribute to the development of this disease. Gut microbiota-derived metabolites, including bile acids, lipopolysaccharide, trimethylamine-N-oxide, tryptophan and indole derivatives, and short-chain fatty acids, have been shown to be involved in the pathogenesis of T2DM, playing a key role in the host-microbe crosstalk. This review aims to summarize the molecular links between gut microbiota-derived metabolites and the pathogenesis of T2DM. Additionally, we review the potential therapy and treatments for T2DM using probiotics, prebiotics, fecal microbiota transplantation and other methods to modulate gut microbiota and its metabolites. Clinical trials investigating the role of gut microbiota and its metabolites have been critically discussed. This review highlights that targeting the gut microbiota and its metabolites could be a potential therapeutic strategy for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Xiong
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| |
Collapse
|
28
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
29
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|