1
|
Wang L, Zhang Y, Ji F, Si Z, Liu C, Wu X, Wang C, Chang H. Identification of crucial genes for polycystic ovary syndrome and atherosclerosis through comprehensive bioinformatics analysis and machine learning. Int J Gynaecol Obstet 2025; 170:312-325. [PMID: 39981695 PMCID: PMC12177313 DOI: 10.1002/ijgo.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE To identify potential biomarkers in patients with polycystic ovary syndrome (PCOS) and atherosclerosis, and to explore the common pathologic mechanisms between these two diseases in response to the increased risk of cardiovascular diseases in patients with PCOS. METHODS PCOS and atherosclerosis data sets were downloaded from the GEO database, and their differentially expressed genes were identified. Weighted gene co-expression network analysis was used to obtain intersection genes, and then protein-protein interaction and functional enrichment analysis were performed. Machine learning algorithms were used to select the key genes, which were then validated through external data sets. We constructed a nomogram to predict the risk of atherosclerosis in women with PCOS. Finally, the CIBERSORT algorithm was used to analyze the infiltration of immune cells in the atherosclerosis group. RESULTS We identified six hub genes (CD163, LAPTM5, TNFSF13B, MS4A4A, FGR, and IRF1) that exhibited excellent diagnostic value in validation data sets. Gene ontology terms and KEGG signaling pathway analysis revealed that key genes were associated with immune responses and inflammatory reactions. Abnormal immune cell infiltration was also found in the atherosclerosis group and was correlated with the six hub genes. CONCLUSION Common therapeutic targets of PCOS and atherosclerosis were preliminarily identified through bioinformatics analysis and machine learning techniques. These findings provide new treatment ideas for reducing the risk that PCOS will develop into atherosclerosis.
Collapse
Affiliation(s)
- Lirong Wang
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
| | - Yanli Zhang
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
| | - Fan Ji
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
| | - Zhenmin Si
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
| | - Chengdong Liu
- Department of Traditional Chinese MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Xiaoke Wu
- Department of Obstetrics and GynecologyFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
- Department of Obstetrics and GynecologyHeilongjiang Provincial HospitalHarbinChina
| | - Chichiu Wang
- Department of Obstetrics and GynecologyThe Chinese University of Hong KongHong KongChina
| | - Hui Chang
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Department of Obstetrics and GynecologyFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
2
|
Wang S, Liu Z, Li R, Wang L, Wu Y, Zhang W, Yu Y. Acetaldehyde dehydrogenase 2 attenuates lipopolysaccharide -induced endothelial barrier damage by inhibiting mitochondrial fission in sepsis-associated encephalopathy. Eur J Pharmacol 2025; 997:177468. [PMID: 40054720 DOI: 10.1016/j.ejphar.2025.177468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis, and acetaldehyde dehydrogenase 2 (ALDH2) has been identified as a protective factor for endothelial cells against oxidative stress. In this study, we aimed to investigate the therapeutic potential of ALDH2 and its impact on mitochondrial dynamics using both mouse and brain microvascular endothelial cells (BMECs) injury models induced by lipopolysaccharide (LPS). Our findings demonstrated that ALDH2 attenuated LPS-induced brain endothelial barrier damage, as evidenced by reduced brain water content and Evans blue dye in mice, decreased transepithelial electrical resistance (TEER), and increased fluorescein isothiocyanate-dextran (FITC-Dextran) leakage in bEnd.3 cells. Furthermore, ALDH2 reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD) and catalase (CAT). ALDH2 also decreased 4-HNE content and restored mitochondrial membrane potential and ATP production, promoting a balanced mitochondrial fission and fusion. Notably, our use of the mitochondrial fission inhibitor Mdivi-1 confirmed that ALDH2 alleviated mitochondrial damage by inhibiting dynamin-related protein 1 (Drp1). Consequently, our findings suggest that the effects of ALDH2 on LPS-induced blood-brain barrier (BBB) damage and oxidative stress may alleviate SAE by inhibiting Drp1 to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Zhongyi Liu
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Rong Li
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Liya Wang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Yue Wu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical University, Bengbu 233000, China
| | - Weiping Zhang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China.
| | - Ying Yu
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China.
| |
Collapse
|
3
|
Yang C, Liao X, Zhou K, Yao Y, He X, Zhong W, Zheng D, Yang Y, Li M, Zhou M, Zhou Y, Li L, Bai Y, Shi K, Qian Z. Multifunctional nanoparticles and collagenase dual loaded thermosensitive hydrogel system for enhanced tumor-penetration, reversed immune suppression and photodynamic-immunotherapy. Bioact Mater 2025; 48:1-17. [PMID: 40028237 PMCID: PMC11870144 DOI: 10.1016/j.bioactmat.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Breast cancer is the most prevalent and lethal malignancy among females, with a critical need for safer and less invasive treatments. Photodynamic therapy (PDT) can effectively eliminate tumor cells with minimal side effects. Furthermore, the combination of PDT and immunotherapy using nanoparticles has shown promise in treating both primary and distant metastatic tumor cells. Therefore, this study proposes applying the PDT-immunotherapy combination to breast cancer treatment. However, the low immunogenicity characteristic of "cold" tumors in part of breast cancer significantly diminishes therapeutic efficacy. To address this challenge, here, a nano-gel system (designated as HCSC-gel) is constructed, which co-delivers a mitochondria-targeted photosensitizer and a STING agonist, capable of robustly activating "cold" tumor immunity. This system is further enhanced by collagenase (CN) to improve therapeutic outcomes. Upon injection into the primary tumor site, HCSC-gel rapidly forms a gel matrix, releasing CN to degrade the tumor extracellular matrix and facilitate the penetration of photosensitizers, STING agonists, and oxygen into the tumor tissue. Under laser irradiation, PDT and STING-mediated immune responses are activated, reversing the low immunogenicity of breast cancer and effectively treating both primary and metastatic lesions. This HCSC-gel nano hydrogel delivery platform is anticipated to provide novel insights for the clinical management of breast cancer and other low immunogenic "cold" tumors, offering significant benefits to patients.
Collapse
Affiliation(s)
- Chengli Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Xukun Liao
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Wen Zhong
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Dan Zheng
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Ming Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yadi Zhou
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lin Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yang Bai
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Mohsin M, Zaki A, Tabassum G, Khan S, Ali S, Ahmad T, Syed MA. Urolithin-A supplementation alleviates sepsis-induced acute lung injury by reducing mitochondrial dysfunction and modulating macrophage polarization. Mitochondrion 2025; 84:102047. [PMID: 40328344 DOI: 10.1016/j.mito.2025.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Sepsis is a severe and life-threatening condition marked by excessive inflammation, mitochondrial dysfunction, and epithelial barrier disruption, often leading to Acute Lung Injury (ALI). Mitophagy, a cellular mechanism that removes damaged mitochondria, plays a vital role in maintaining mitochondrial health during sepsis. In this study, we investigated the protective effects of Urolithin-A against ALI and sepsis. In LPS-stimulated RAW264.7 macrophages, Urolithin-A significantly reduced mitochondrial dysfunction, Reactive Oxygen Species (ROS), Nitric Oxide (NO) production, and apoptosis. Additionally, it enhanced mitophagy by upregulating PINK1, Parkin, and LC3-II, which helped preserve mitochondrial function. In vivo, Urolithin-A treatment in mouse models of ALI and sepsis reduced lung injury and inflammation, as shown by improved ALI scores, decreased wet/dry lung weight ratios, and lower levels of inflammatory markers such as iNOS, IL-1β, and MPO. Urolithin-A also improved epithelial barrier integrity and upregulated anti-apoptotic markers, demonstrating its ability to alleviate sepsis-induced lung damage. These findings suggest that Urolithin-A holds significant promise as a therapeutic agent for managing inflammatory lung conditions associated with sepsis.
Collapse
Affiliation(s)
- Mohd Mohsin
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Almaz Zaki
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Gulnaz Tabassum
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Salman Khan
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India.
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
5
|
Laroche VT, Cavill R, Kouhsar M, Reijnders RA, Harvey J, Smith AR, Imm J, Koetsier J, Weymouth L, MacBean L, Pegoraro G, Eijssen L, Creese B, Kenis G, Tijms BM, van den Hove D, Lunnon K, Pishva E. Epigenomic subtypes of late-onset Alzheimer's disease reveal distinct microglial signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643144. [PMID: 40166175 PMCID: PMC11957029 DOI: 10.1101/2025.03.15.643144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Growing evidence suggests that clinical, pathological, and genetic heterogeneity in late-onset Alzheimer's disease contributes to variable therapeutic outcomes, potentially explaining many trial failures. Advances in molecular subtyping through proteomic and transcriptomic profiling reveal distinct patient subgroups, highlighting disease complexity beyond amyloid-beta plaques and tau tangles. This insight underscores the need to expand molecular subtyping across new molecular layers, to identify novel drug targets for different patient subgroups. In this study, we analyzed genome-wide DNA methylation data from three independent postmortem brain cohorts (n = 831) to identify epigenetic subtypes of late-onset Alzheimer's disease. Unsupervised clustering approaches were employed to identify distinct DNA methylation patterns, with subsequent cross-cohort validation to ensure robustness and reproducibility. To explore the cell-type specificity of the identified epigenomic subtypes, we characterized their methylation signatures utilizing DNA methylation profiles derived from purified brain cells. Transcriptomic data from bulk and single-cell RNA sequencing were integrated to examine the functional impact of epigenetic subtypes on gene expression profiles. Finally, we performed statistical analyses to investigate associations between these DNA methylation-defined subtypes and clinical or neuropathological features, aiming to elucidate their biological significance and clinical implications. We identified two distinct epigenomic subtypes of late-onset Alzheimer's disease, each defined by reproducible DNA methylation patterns across three cohorts. Both subtypes exhibit cell-type-specific DNA methylation profiles. Subtype 1 and subtype 2 show significant microglial methylation enrichment, with odds ratios (OR) of 1.6 and 1.3, respectively. The minimal overlap between them suggests distinct microglial states. Additionally, subtype 2 displays strong neuronal (OR = 1.6) and oligodendrocyte (OR = 3.6) enrichment. Bulk transcriptomic analyses further highlighted divergent biological mechanisms underpinning these subtypes, with subtype 1 enriched for immune-related processes, and subtype 2 characterized predominantly by neuronal and synaptic functional pathways. Single-cell transcriptional profiling of microglia revealed subtype-specific inflammatory states: subtype 1 represented a state of chronic innate immune hyperactivation with impaired resolution, while subtype 2 exhibited a more dynamic inflammatory profile balancing pro-inflammatory signaling with reparative and regulatory mechanisms. This study highlights the molecular heterogeneity of late-onset Alzheimer's disease by identifying two epigenetic subtypes with distinct cell-type-specific DNA methylation patterns. Their alignment with previously defined molecular classifications underscores their relevance in disease pathogenesis. By linking these subtypes to inflammatory microglial activity, our findings provide a foundation for future precision medicine approaches in Alzheimer's research and treatment.
Collapse
Affiliation(s)
- Valentin T. Laroche
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences, Faculty of Science and Engineering (FSE), Maastricht University, Maastricht, The Netherlands
| | - Morteza Kouhsar
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Adam R. Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Jennifer Imm
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Jarno Koetsier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Lachlan MacBean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Giulia Pegoraro
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Lars Eijssen
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Byron Creese
- Department of Life Sciences, Brunel University, London, UK
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Quan Q, Ma X, Feng J, Li W, Li X. Ginsenoside Rg1 improves autophagy dysfunction to ameliorate Alzheimer's disease via targeting FGR proto-oncogene. Neuropeptides 2025; 111:102514. [PMID: 40073763 DOI: 10.1016/j.npep.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is a neurodegeneration driven by beta-amyloid (Aβ) deposits in the brain involving autophagy dysfunction. Ginsenoside Rg1, a pharmacologically active compound found in ginseng, has possible therapeutic effects for AD. This study discovered that FGR proto-oncogene (FGR) was a therapeutic target of Rg1 in AD and it was possibly involved in autophagy. C57BL/6 J mice were injected with 5 μL (1 μg/mL) Aβ1-42 in the right lateral ventricle to establish an AD model. AD mouse hippocampus had high FGR expression. Intragastrically administered Rg1 (40 mg/kg) decreased FGR protein levels in AD mice's hippocampus and improved memory function in AD mice. Both sides of the mice hippocampal fissure were administered with 2 μL lentiviral particles (1 × 107 TU) containing FGR overexpression plasmids. FGR overexpression rendered Rg1 ineffectual in restoring memory function and reducing hippocampal neuron damage. We injected 2 μL lentiviral particles (1 × 107 TU) containing short hairpin RNA plasmids targeting FGR to the mice hippocampal fissures. FGR knockdown improved spatial memory function of AD mice, reduced hippocampal neuron apoptosis, and prevented Aβ accumulation. HT22 cells were transfected with small interfering RNA targeting FGR. FGR knockdown increased the viability of Aβ1-42 treated HT22 cells. BACE1 and LC3II/I protein levels were decreased and p62 and SIRT1 were increased in AD mice and cells with FGR knockdown. LC3 was down-regulated after inhibiting FGR expression in Aβ1-42 treated hippocampal neurons. In conclusion, Rg1 exerts anti-AD functions by targeting FGR and downregulating its expression.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Ma
- Department of Psychology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - JianJun Feng
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanni Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Qiu LL, Tan XX, Yang JJ, Zhang H, Xu N, Zhao C, Sun J. Lactate improves postoperative cognitive function through attenuating oxidative stress and neuroinflammation in aged mice via activating the SIRT1 pathway. Exp Neurol 2025; 385:115136. [PMID: 39746462 DOI: 10.1016/j.expneurol.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a recognized clinical phenomenon characterized by cognitive impairment in patients following anesthesia and surgery, especially in the elderly. However, the pathogenesis of POCD remains unclear. In the last decades, lactate's neuroprotective properties have been increasingly mentioned. The study tested the hypothesis that lactate may attenuate the cognitive impairment induced by anesthesia and surgery in aged mice through SIRT1-dependent antioxidant and anti-inflammatory effects. We used 18-month-old C57BL/6 mice to establish the POCD animal model by exploratory laparotomy with isoflurane anesthesia. For the interventional study, mice were administered lactate, with or without the potent and selective SIRT1 inhibitor EX-527. Behavioral tests including open field (OF), Y maze and fear conditioning (FC) tests were performed from 4 to 7 days after anesthesia and surgery. Immunofluorescence staining and Western blot were employed to assess oxidative damage, activation of microglia and astrocytes, levels of proinflammatory cytokines, and the expression of plasticity-related proteins. Lactate treatment can ameliorate oxidative stress, neuroinflammation, and the decreased levels of plasticity-related proteins induced by anesthesia and surgery, ultimately improving cognitive impairment in aged mice. However, co-treatment with lactate and EX-527 diminished the beneficial effects. Our study indicates that the mechanisms underlying neuroprotective properties of lactate might be related to its antioxidant and anti-inflammatory effects, and improvement of hippocampal synaptic plasticity through activation of SIRT1 pathway.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Xiang Tan
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiao-Jiao Yang
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ning Xu
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, surgery and pain management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Fu C, Weng S, Liu D, Guo R, Chen M, Shi B, Weng J. Review on the Role of Mitochondrial Dysfunction in Septic Encephalopathy. Cell Biochem Biophys 2025; 83:135-145. [PMID: 39212823 DOI: 10.1007/s12013-024-01493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Septic Encephalopathy (SE) is a frequent and severe complication of sepsis, characterized by a range of neurocognitive impairments from mild confusion to deep coma. The underlying pathophysiology of SE involves systemic inflammation, neuroinflammation, blood-brain barrier (BBB) disruption, and mitochondrial dysfunction. Among these factors, mitochondrial dysfunction plays a pivotal role, contributing to impaired ATP production, increased reactive oxygen species (ROS) generation, and activation of apoptotic pathways, all of which exacerbate neuronal damage and cognitive deficits. Diagnosis of SE relies on clinical evaluation, neuroimaging, electroencephalography (EEG), and laboratory tests, though specific diagnostic markers are still lacking. Epidemiological data show SE is prevalent in intensive care unit (ICU) patients, especially those with severe sepsis or septic shock, with incidence rates varying widely depending on the population and diagnostic criteria used. Recent research highlights the importance of mitochondrial dynamics, including biogenesis, fission, and fusion, in the development of SE. Mitophagy, a selective form of autophagy that degrades damaged mitochondria, plays a critical role in maintaining mitochondrial health and protecting against dysfunction. Targeting mitochondrial pathways and enhancing mitophagy offers a promising therapeutic strategy to mitigate the effects of SE, reduce oxidative stress, prevent apoptosis, and support the resolution of neuroinflammation. Further research is essential to elucidate the mechanisms of mitochondrial dysfunction and mitophagy in SE and develop effective interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Chunjin Fu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Shuoyun Weng
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China.
| |
Collapse
|
9
|
Zhang J, Shao Y, Wu J, Zhang J, Xiong X, Mao J, Wei Y, Miao C, Zhang H. Dysregulation of neutrophil in sepsis: recent insights and advances. Cell Commun Signal 2025; 23:87. [PMID: 39953528 PMCID: PMC11827254 DOI: 10.1186/s12964-025-02098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Sepsis remains the leading cause of death in intensive care units. Despite newer antimicrobial and supportive therapies, specific treatments are still lacking. Neutrophils are pivotal components of the effector phase of the host immune defense against pathogens and play a crucial role in the control of infections under normal circumstances. In addition to its anti-infective effects, the dysregulation and overactivation of neutrophils may lead to severe inflammation or tissue damage and are potential mechanisms for poor prognosis in sepsis. This review focuses on recent advancements in the understanding of the functional status of neutrophils across various pathological stages of sepsis to explore the mechanisms by which neutrophils participate in sepsis progression and provide insights for the treatment of sepsis by targeting neutrophils.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Xiangsheng Xiong
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jingjing Mao
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Shen Q, Yu Q, Chen T, Zhang L. Rosuvastatin mitigates blood-brain barrier disruption in sepsis-associated encephalopathy by restoring occludin levels. Eur J Med Res 2025; 30:103. [PMID: 39953583 PMCID: PMC11827257 DOI: 10.1186/s40001-025-02314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a key pathological feature of sepsis-associated encephalopathy (SAE). Rosuvastatin, a third-generation statin, exhibits diverse pharmacological functions beyond its lipid-lowering capacity. However, its potential neuroprotective role in SAE remains unclear. MATERIALS AND METHODS SAE models were established using the cecal ligation and puncture (CLP) method. BBB integrity was evaluated using NaF, and endothelial permeability was assessed by fluorescein isothiocyanate (FITC)-dextran assays. RESULTS Rosuvastatin significantly attenuated neuroinflammation in the brains of septic mice by reducing the expression of the pro-inflammatory cytokines interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor α (TNF-α). It also ameliorated vascular injury in the brain cortex of septic mice by decreasing the levels of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Furthermore, Rosuvastatin preserved BBB integrity in septic mice by enhancing the expression of the tight junction protein occludin. In vitro studies demonstrated that Rosuvastatin alleviated endothelial permeability and increased transendothelial electrical resistance (TEER) in lipopolysaccharide (LPS)-stimulated human brain microvascular endothelial cells (HBMECs). Additionally, Rosuvastatin prevented the LPS-induced reduction of occludin and Krüppel-like factor 2 (KLF2) in HBMECs. Importantly, silencing KLF2 abrogated Rosuvastatin's protective effects on endothelial permeability and occludin expression. CONCLUSIONS These findings indicate that Rosuvastatin may be a promising therapeutic candidate for mitigating BBB dysfunction associated with SAE.
Collapse
Affiliation(s)
- Qin Shen
- Department of Critical Care Medicine, Chengdu Fifth People's Hospital, Geriatric Diseases Institute of Chengdu, Cancer Prevention and Treatment Institute of Chengdu, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, No.33, Ma Shi Street, Chengdu, 611137, Sichuan, China
| | - Qian Yu
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital, Geriatric Diseases Institute of Chengdu, Cancer Prevention and Treatment Institute of Chengdu, the Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Taojiang Chen
- Department of Critical Care Medicine, Chengdu Fifth People's Hospital, Geriatric Diseases Institute of Chengdu, Cancer Prevention and Treatment Institute of Chengdu, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, No.33, Ma Shi Street, Chengdu, 611137, Sichuan, China
| | - Lijuan Zhang
- Department of Critical Care Medicine, Chengdu Fifth People's Hospital, Geriatric Diseases Institute of Chengdu, Cancer Prevention and Treatment Institute of Chengdu, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, No.33, Ma Shi Street, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
11
|
Barbalho SM, Leme Boaro B, da Silva Camarinha Oliveira J, Patočka J, Barbalho Lamas C, Tanaka M, Laurindo LF. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals (Basel) 2025; 18:133. [PMID: 39861194 PMCID: PMC11768729 DOI: 10.3390/ph18010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework. This review evaluates the effects of medicinal plants on neuroinflammation, emphasizing their mechanisms of action, effective dosages, and clinical implications, based on a systematic search of databases such as PubMed, SCOPUS, and Web of Science. The key findings highlight that plants like Cleistocalyx nervosum var. paniala, Curcuma longa, Cannabis sativa, and Dioscorea nipponica reduce pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), inhibit enzymes (COX-2 and iNOS), and activate antioxidant pathways, particularly Nrf2. NF-κB emerged as the primary pro-inflammatory pathway inhibited across studies. While the anti-inflammatory potential of these plants is significant, the variability in dosages and phytochemical compositions limits clinical translation. Here, we highlight that medicinal plants are effective modulators of neuroinflammation, underscoring their therapeutic potential. Future research should focus on animal models, standardized protocols, and safety assessments, integrating advanced methodologies, such as genetic studies and nanotechnology, to enhance their applicability in neurodegenerative disease management.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jiří Patočka
- Faculty of Health and Social Studies, Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
| |
Collapse
|
12
|
Wang R, Liu Y, Jiang Y, Zhang Y, Zhang Y, Wang B, Lu H, Su H, Liao W, Liu L, Li F, Zhang W, Ma S. Shenling Baizhu San alleviates central fatigue through SIRT1-PGC-1α-Mediated mitochondrial biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119110. [PMID: 39571696 DOI: 10.1016/j.jep.2024.119110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenling Baizhu San (SLBZS) is a Traditional Chinese Medicine (TCM) formula composed of 10 medicinal herbs, historically used to strengthen the spleen, replenish qi, and alleviate fatigue-related symptoms. SLBZS originates from the 'Taiping Huimin Heji Ju Fang' of the Song Dynasty. Central fatigue (CF), a subtype of fatigue, is considered in TCM to be closely associated with spleen deficiency. However, there is currently a lack of research on SLBZS's therapeutic effects on CF and the pharmacological mechanisms underlying its potential benefits. AIM OF THE STUDY This study aims to assess the effects of SLBZS on CF in rats induced by the Modified Multiple Platform Method (MMPM) and to elucidate the underlying mechanisms, focusing on mitochondrial biogenesis and SIRT1/PGC-1α pathway regulation. MATERIALS AND METHODS CF was induced in male Wistar rats using MMPM, involving intermittent sleep deprivation over 21 days. SLBZS was administered at low(LSLBZS), medium(MSLBZS), and high doses(HSLBZS). Chemical components of SLBZS were identified and quantified using Liquid Chromatography-Tandem Mass Spectrometry(LC-MS/MS). Behavioral tests evaluated physical performance, emotional state, and cognitive function, while serum biochemical markers, mitochondrial morphology, and the protein and gene expression levels of the SIRT1/PGC-1α pathway were analyzed to explore underlying mechanisms. RESULTS A total of 141 main compounds in SLBZS were identified, comprising various components such as flavonoids, phenylpropanoids, terpenoids, among others. SLBZS significantly improved physical performance, alleviated negative emotions, and enhanced cognitive function in CF rats. Biochemically, SLBZS increased serum ATP levels and reduced fatigue-related markers. Mitochondrial analysis demonstrated that SLBZS reversed mitochondrial degeneration, increased mitochondrial number, and increased mtDNA copy number in the hippocampus. Furthermore, SLBZS upregulated SIRT1/PGC-1α pathway expression at both the protein and gene levels in the hippocampus. Notably, the HSLBZS group demonstrated particularly pronounced effects. CONCLUSION SLBZS significantly alleviates CF symptoms enhances mitochondrial function via upregulating the SIRT1/PGC-1α pathway, positioning it as a promising alternative for CF management by addressing both its physiological and symptomatic aspects.
Collapse
Affiliation(s)
- Ruochong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yifei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Binshi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixin Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hui Su
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Wenyong Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Leilei Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Weiyue Zhang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Shuran Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
13
|
Zheng Q, Xing J, Li X, Tang X, Zhang D. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis. Redox Biol 2024; 78:103417. [PMID: 39549609 PMCID: PMC11612791 DOI: 10.1016/j.redox.2024.103417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a significant public health issue. Sepsis accounts for over 50 % of AKI cases in the ICU. Recent findings from our research indicated that the PRD1-BF1-RIZ1 homeodomain protein 16 (PRDM16) inhibited the progression of diabetic kidney disease (DKD). However, its precise role and regulatory mechanism in sepsis-induced AKI remain obscure. This study reveals that lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) instigated PRDM16 expression in Boston University mouse proximal tubule (BUMPT) cells and mouse kidneys, respectively. Functionally, PRDM16 curtailed LPS-induced ferroptosis. Mechanistically, PRDM16 associates with the promoter regions of nuclear factor-erythroid 2-related factor-2 (NRF2) and augments its expression, subsequently enhancing glutathione peroxidase 4 (GPX4) expression. Additionally, PRDM16 directly engages with the promoter regions of GPX4, stimulating its expression. Notably, these observations were corroborated in human renal tubular epithelial (HK-2) cells. Furthermore, the ablation of PRDM16 from kidney proximal tubules in mice inhibited NRF2 and GPX4 expression, leading to decreased glutathione (GSH)/oxidized glutathione (GSSG) ratio, increased Fe2+ and reactive oxygen species (ROS) production, exacerbated ferroptosis, and AKI progression. Conversely, PRDM16 knock-in exhibited the opposite effects. Ultimately, adenovirus (ADV)-PRDM16 plasmid or poly (lactide-glycolide acid) (PLGA)-encapsulated formononetin not only mitigated sepsis-induced AKI but also alleviated liver, cardiac, and lung injury. In summary, PRDM16 inhibits ferroptosis via the NRF2/GPX4 axis or GPX4 to prevent sepsis-induced multi-organ injury, including AKI. PLGA-encapsulated formononetin presents a promising therapeutic approach.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
14
|
Yang H, Chen YX, Linghu KG, Ren PY, Yao YT, Jiang F, Wu GP, Chen TT, Ji YP, Tao L, Sun QY, Li Y, Shen XC. 1,8-Cineole alleviates Nrf2-mediated redox imbalance and mitochondrial dysfunction in diabetes mellitus by targeting Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156099. [PMID: 39437685 DOI: 10.1016/j.phymed.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin secretion caused by β cell dysfunction. 1,8-Cineole is a key bioactive compound in the essential oil extracted from Fructus Alpiniae Zerumbet, which possesses anti-inflammatory and antioxidant properties. Nevertheless, it remains elusive about the protective effect and precise mechanisms of 1,8-Cineole against the β cell deterioration in T2DM. PURPOSE To investigate the effect of 1,8-Cineole on β cell dysfunction in T2DM and the potential mechanism of its action. METHODS A mouse model of T2DM and a β cell model of high glucose induction were generated to analyze the pharmacological properties of 1,8-Cineole. Proteomic and network pharmacological analyses were conducted to identify the crucial pathways involved in T2DM. Resveratrol [a Sirtuin1 (Sirt1) agonist] and Sirt1 knockdown were used to ascertain the mechanism of 1,8-Cineole in T2DM. The binding affinity of 1,8-Cineole to Sirt1 was assessed with molecular docking, surface plasmon resonance, immunoprecipitation assay, and cellular thermal shift assay. RESULTS Firstly, dysregulated crucial pathways in T2DM were screened out, including redox imbalance and mitochondrial dysfunction. Subsequently, 1,8-Cineole was found to activate Sirt1 and nuclear factor E2-related factor 2 (Nrf2) to repress oxidative stress in both T2DM mice and high glucose-induced β cells, thereby relieving mitochondrial dysfunction and apoptosis. Furthermore, 1,8-Cineole specifically targeted Sirt1 and favored the direct interaction between Sirt1 and Nrf2, ultimately restoring β cell function. CONCLUSIONS Our findings provide the first evidence that 1,8-Cineole directly binds to Sirt1 and enhances its stability, therefore rectifying impaired oxidative homeostasis, and then suppressing mitochondrial dysfunction and apoptosis in T2DM, indicating that 1,8-Cineole may be a potential candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ke-Gang Linghu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Peng-Yan Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Feng Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Guo-Ping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ting-Ting Chen
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yun-Peng Ji
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qian-Yun Sun
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yue Li
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China.
| |
Collapse
|
15
|
Wang P, Liang L, Ge Q, Liu S, Yang Z, Jiang L. Dichloroacetate attenuates brain injury through inhibiting neuroinflammation and mitochondrial fission in a rat model of sepsis-associated encephalopathy. Int Immunopharmacol 2024; 140:112840. [PMID: 39106713 DOI: 10.1016/j.intimp.2024.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, characterized by neuroinflammation, mitochondrial dysfunction, and oxidative stress, leading to cognitive decline and high mortality. The effectiveness of dichloroacetate (DCA) in modulating mitochondrial function provides a novel therapeutic strategy for SAE. In this study, we evaluated the neuroprotective effects of DCA in a rat model of SAE induced by cecal ligation and puncture (CLP). Rats treated with DCA exhibited significant improvements in neurological function and survival, as evidenced by less neuron loss from histopathologic analysis, restored neurologic deficit scores, improved Y-maze alternation percentages, and enhanced recognition index performance. Biochemical analyses showed that DCA administration at 25 mg/kg and 100 mg/kg reduced astrocyte and microglial activation, indicating reduced neuroinflammation. Furthermore, DCA simultaneously reduced the production of circulating and cerebral inflammatory cytokines (including TNF-α, IL-1β, and IL-10), concomitant with mitigating oxidative stress through down-regulating expression of 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) in the brain. Mechanistically, DCA modulated mitochondrial dynamics by suppressing Drp1 and pDrp1 expression, which are indicators of mitochondrial fission. This was corroborated by transmission electron microscopy, quantification of mitochondrial area, and Western blot analyses. Furthermore, DCA treatment improved ATP levels, mitochondrial complex I activity, and NAD+/NADH ratio, indicating a significant attenuation of brain mitochondrial dysfunction. In conclusion, our findings suggest that DCA confers neuroprotection in SAE by curtailing neuroinflammation and mitochondrial fission, outlining a promising therapeutic strategy for treating SAE in critically ill patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Lian Liang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Siqi Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
16
|
Zhao P, Zhang W, Zhou X, Zhao Y, Li A, Sun Y. Gypenoside XLIX alleviates sepsis-associated encephalopathy by targeting PPAR-α. Exp Neurol 2024; 383:115027. [PMID: 39490624 DOI: 10.1016/j.expneurol.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-related systemic inflammation is a deadly condition with high rates of morbidity and mortality. There is evidence that sepsis affects the brain, and the most frequent organ dysfunction linked to sepsis is sepsis-associated encephalopathy. Sepsis-related brain damage can drastically reduce a patient's chances of survival. However, a specific treatment for sepsis-associated encephalopathy is not currently available. Consequently, to treat the brain damage caused by sepsis, investigating novel therapeutic strategies is imperative. After establishing the CLP-induced mouse SAE model, we treated the mice with Gyp-XLIX and evaluated apoptosis, neuroinflammation, brain damage, and oxidative stress in the brain tissue of each group of mice. Furthermore, the protective effects of Gyp-XLIX on LPS-treated BV-2 cells were assessed. We discovered that Gyp-XLIX treatment increased the survival rate of CLP-treated mice, alleviated SAE-related cerebral nerve abnormalities, and decreased blood-brain barrier breakdown, all of which could better preserve brain tissue in vivo. Furthermore, we identified associated proteins and found that Gyp-XLIX may reduce oxidative stress, cell apoptosis, and inflammation in the brain tissues of SAE mice. This observation was further validated in vitro. We established that Gyp-XLIX alleviates SAE by targeting PPAR-α. These findings may be important for the clinical applicability of Gyp-XLIX in SAE treatment. We found that Gyp-XLIX can alleviate brain injury in SAE by targeting PPAR-α and is a potential protective agent for SAE.
Collapse
Affiliation(s)
- Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Wei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Yikun Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Aimin Li
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| |
Collapse
|
17
|
Liu X, Ding H, Chen M, Li X, Xiao Y, Han Y, Zeng H. Shenfu Injection Mediated NLRP3/Caspase 1 Through (R)-Norcoclaurinee Alleviates Sepsis-Induced Cognitive Dysfunction. J Inflamm Res 2024; 17:7295-7310. [PMID: 39429846 PMCID: PMC11488353 DOI: 10.2147/jir.s481171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Background Shenfu injection (SF) has demonstrated its potential to enhance cellular immunity and induce clinical regression in patients suffering from sepsis or infectious shock. However, the therapeutic effect of SF on sepsis-induced cognitive dysfunction (SAE) and the mechanisms involved are still unclear. We aimed to investigate the mechanism of SF in mice with SAE. Methods Sepsis was constructed by caecal ligation and puncture. Mice were injected intraperitoneally with SF or NLRP3 inhibitor. The hippocampus injury of brain tissues was evaluated, and the levels of inflammatory cytokines (IL-1β, IL-18) and NLRP3 and Caspase 1 were measured. The active ingredients of SF were analyzed using network pharmacology, and molecular docking of the active ingredients of SF with NLRP3 and Caspase 1 was performed. BV-2 cells were treated with LPS or norcoclaurine. CCK-8 detected the cell viability, and the levels of inflammatory cytokines and NLRP3 and Caspase 1 were measured. Results SF and NLRP3 inhibitor increased survival rate and the number of crossing the platform and decreased the escape latency time of sepsis mice. Moreover, SF and NLRP3 inhibitor improved neuronal damage and apoptosis in hippocampus of sepsis mice. In addition, SF and NLRP3 inhibitor reduced the levels of inflammatory cytokines, as well as inflammasomes in sepsis mice. There were 43 active ingredients in SF. Among them, 22 were Renshen and 21 were Fuzi. Renshen and Fuzi, the main active components of SF, form a complex regulatory network with NLRP3 and Caspase 1. (R)-norcoclaurine was most closely bound to NLRP3 with binding energy of -7.2 kJ·mol-1, ignavine was most closely bound to Caspase 1 with binding energy of -8.3 kJ·mol-1. Norcoclaurine increased the cell viability and decreased inflammation and pyroptosis. Conclusion SF regulated NLRP3/Caspase 1 through (R)-norcoclaurinee to prevent SAE.
Collapse
Affiliation(s)
- Xinqiang Liu
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Miner Chen
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Xusheng Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Yan Xiao
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Yongli Han
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| | - Hongke Zeng
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510800, People’s Republic of China
| |
Collapse
|
18
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
19
|
Yang Z, Gao Y, Zhao L, Lv X, Du Y. Molecular mechanisms of Sepsis attacking the immune system and solid organs. Front Med (Lausanne) 2024; 11:1429370. [PMID: 39267971 PMCID: PMC11390691 DOI: 10.3389/fmed.2024.1429370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Remarkable progress has been achieved in sepsis treatment in recent times, the mortality rate of sepsis has experienced a gradual decline as a result of the prompt administration of antibiotics, fluid resuscitation, and the implementation of various therapies aimed at supporting multiple organ functions. However, there is still significant mortality and room for improvement. The mortality rate for septic patients, 22.5%, is still unacceptably high, accounting for 19.7% of all global deaths. Therefore, it is crucial to thoroughly comprehend the pathogenesis of sepsis in order to enhance clinical diagnosis and treatment methods. Here, we summarized classic mechanisms of sepsis progression, activation of signal pathways, mitochondrial quality control, imbalance of pro-and anti- inflammation response, diseminated intravascular coagulation (DIC), cell death, presented the latest research findings for each mechanism and identify potential therapeutic targets within each mechanism.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
20
|
Li N, Liao S, Liu L, Wang X, Liang Z, Liu X, Song Y, Zhao S, Wu X, Tian Y, Xu X, Yang Y, Liu Q. Pleiotropic role of endoplasmic reticulum stress in the protection of psoralidin against sepsis-associated encephalopathy. Free Radic Biol Med 2024; 221:203-214. [PMID: 38788982 DOI: 10.1016/j.freeradbiomed.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication that affects the central nervous system and is a leading cause of increased morbidity and mortality in intensive care units. Psoralidin (PSO), a coumarin compound isolated from the traditional Chinese medicine Psoralea corylifolia L., can penetrate the blood-brain barrier and has various pharmacological activities, including anti-inflammation, anti-oxidation and anti-depression. This study aims to explore whether PSO alleviates SAE and delve into the underlying mechanisms. We found that PSO treatment significantly reduced sepsis scores, aspartate transaminase (AST) and aspartate transaminase (LDH), while increased anal temperature and neurological scores in CLP-injured mice. Moreover, PSO treatment ameliorated sepsis-associated cognitive impairment, mood, anxiety disorders, inhibited inflammatory responses, as well as attenuated endoplasmic reticulum stress (ERS). These results were also validated in vitro experiments, PSO treatment reduced ROS, inflammation response, and attenuated ERS in LPS-injured N2a cells. Importantly, tunicamycin (TUN), as ERS agonist, significantly reversed the protective effect of PSO on LPS-injured N2a cells, as evidenced by increased expression levels of IL-6, NLRP3, CHOP, and ATF6. Likewise, ATF6 overexpression also reversed the protective effect of PSO. In conclusion, these results confirmed that PSO has a protective effect on SAE, which was largely attributed to neuroinflammation and ERS. These findings provide new insights into the neuroprotective role of PSO and suggest that PSO is a new therapeutic intervention of SAE.
Collapse
Affiliation(s)
- Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Sha Liao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yuefei Song
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
21
|
Li L, Zhang Z, Kuai X, Deng J, Qiu Z, Wang Z, Jiang H. MKK3 depletion attenuates intestinal injury after traumatic hemorrhagic shock by restoring mitochondrial function. Mol Biol Rep 2024; 51:776. [PMID: 38904879 DOI: 10.1007/s11033-024-09691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Traumatic hemorrhagic shock (THS) is a complex pathophysiological process resulting in multiple organ failure. Intestinal barrier dysfunction is one of the mechanisms implicated in multiple organ failure. The present study aimed to explore the regulatory role of mitogen-activated protein kinase kinase 3 (MKK3) in THS-induced intestinal injury and to elucidate its potential mechanism. METHODS Rats were subjected to trauma and hemorrhage to establish a THS animal model. MKK3-targeted lentiviral vectors were injected via the tail vein 72 h before modeling. Twelve hours post-modeling, the mean arterial pressure (MAP) and heart rate (HR) were monitored, and histological injury to the intestine was assessed via H&E staining and transmission electron microscopy. Mitochondrial function and mitochondrial reactive oxygen species (ROS) were evaluated. IEC-6 cells were exposed to hypoxia to mimic intestinal injury following THS in vitro. RESULTS MKK3 deficiency alleviated intestinal injury and restored mitochondrial function in intestinal tissues from THS-induced rats and hypoxia-treated IEC-6 cells. In addition, MKK3 deficiency promoted Sirt1/PGC-1α-mediated mitochondrial biogenesis and restricted Pink1/Parkin-mediated mitophagy in the injured intestine and IEC-6 cells. Furthermore, the protective effect of MKK3 knockdown against hypoxia-induced mitochondrial damage was strengthened upon simultaneous LC3B/Pink1/Parkin knockdown or weakened upon simultaneous Sirt1 knockdown. CONCLUSION MKK3 deficiency protected against intestinal injury induced by THS by promoting mitochondrial biogenesis and restricting excessive mitophagy.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China
- Suzhou Medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhihao Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China
| | - Xiangyu Kuai
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China
| | - Juxin Deng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China
| | - Zhaolei Qiu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China
- Suzhou Medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China
| | - Hai Jiang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, 287 Chang Huai Road, Bengbu, Anhui, 233099, China.
- Suzhou Medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
22
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Zhang Y, Deng Q, Hong H, Qian Z, Wan B, Xia M. Caffeic acid phenethyl ester inhibits neuro-inflammation and oxidative stress following spinal cord injury by mitigating mitochondrial dysfunction via the SIRT1/PGC1α/DRP1 signaling pathway. J Transl Med 2024; 22:304. [PMID: 38528569 PMCID: PMC10962082 DOI: 10.1186/s12967-024-05089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1β, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Qian Deng
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Postgraduate School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxiang Hong
- Department of Spine Surgery, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, Jiangsu, China
| | - Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China.
| | - Mingjie Xia
- Department of Spine Surgery, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, Jiangsu, China.
| |
Collapse
|
24
|
Torcasio R, Gallo Cantafio ME, Veneziano C, De Marco C, Ganino L, Valentino I, Occhiuzzi MA, Perrotta ID, Mancuso T, Conforti F, Rizzuti B, Martino EA, Gentile M, Neri A, Viglietto G, Grande F, Amodio N. Targeting of mitochondrial fission through natural flavanones elicits anti-myeloma activity. J Transl Med 2024; 22:208. [PMID: 38413989 PMCID: PMC10898065 DOI: 10.1186/s12967-024-05013-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Teresa Mancuso
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Bruno Rizzuti
- SS Rende (CS), Department of Physics, CNR-NANOTEC, University of Calabria, Via Pietro Bucci, 87036, Rende, CS, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018, Saragossa, Spain
| | | | - Massimo Gentile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Antonino Neri
- Scientific Directorate, IRCCS Di Reggio Emilia, Emilia Romagna, Reggio Emilia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
25
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
26
|
Liu H, Hu Q, Ren K, Wu P, Wang Y, Lv C. ALDH2 mitigates LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING pathway. Mol Med 2023; 29:171. [PMID: 38124089 PMCID: PMC10731778 DOI: 10.1186/s10020-023-00769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Sepsis is a severe syndrome of organ dysfunction that often leads to cardiac dysfunction and endangers life. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in LPS-induced myocardial injury is unclear. The purpose of this study was to assess the role of ALDH2 in lipopolysaccharide (LPS)-induced myocardial injury and the regulatory mechanism and to identify potential therapeutic strategies for treating this condition. METHODS An in vivo model was established by 12 h of LPS (10 mg/kg, intraperitoneal injection) stimulation, and an in vitro model was generated by stimulating H9C2 cells with LPS (10 μg/ml) for 12 h. We then used the ALDH2 activator Alda-1 and the ALDH2 inhibitor daidzin to assess their effects on LPS-induced cardiac injury. Cardiac function in mice was evaluated by using cardiac ultrasound. We used various methods to evaluate inflammation, apoptosis, and oxidative stress, including ELISA, flow cytometry, JC-1 staining, Western blotting, and DCFH-DA staining. Additionally, we used a small interfering RNA (siRNA) to knock down cyclic GMP-AMP synthase (cGAS) to further investigate the relationship between ALDH2 and cGAS in LPS-induced cardiac injury. RESULTS LPS-induced cardiac dysfunction and increased the levels of the cardiac injury markers creatine kinase-MB (CKMB) and lactate dehydrogenase (LDH) in vivo. This change was accompanied by an increase in reactive oxygen species (ROS) levels, which exacerbated the oxidative stress response and regulated apoptosis through cleaved caspase-3, BAX, BCL-2. The expression of inflammatory cytokines such as IL-6/IL-1β/TNF-α was also upregulated. However, these effects were reversed by pretreatment with Alda-1 via the inhibition of cGAS/stimulator of interferon genes (STING) signaling pathway. Interestingly, LPS, Alda-1 and daidzin altered the activity of ALDH2 but did not regulate its protein expression. Knocking down cGAS in H9C2 cardiomyocytes alleviated LPS-induced cardiac inflammation, apoptosis, and ROS production and weakened the synergistic effect of daidzin. CONCLUSION We demonstrated that ALDH2 alleviated LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING signaling pathway, thereby protecting against LPS-induced cardiac injury. This study identifies a novel therapeutic approach for treating sepsis-induced cardiomyopathy (SIC).
Collapse
Affiliation(s)
- Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ke Ren
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengxin Wu
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China.
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China.
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
27
|
Qiu F, Zeng C, Liu Y, Pan H, Ke C. J147 ameliorates sepsis-induced depressive-like behaviors in mice by attenuating neuroinflammation through regulating the TLR4/NF-κB signaling pathway. J Mol Histol 2023; 54:725-738. [PMID: 37676534 PMCID: PMC10635911 DOI: 10.1007/s10735-023-10147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
Neuroinflammation is associated with the pathophysiology of depression. The molecular mechanism of depressive-like behavior caused by sepsis-associated encephalopathy (SAE) is incompletely understood. J147 (an analog of curcumin) has been reported to improve memory and has neuroprotective activity, but its biological function in the depressive-like behavior observed in SAE is not known. We investigated the effects of J147 on lipopolysaccharide (LPS)-induced neuroinflammatory, depressive-like behaviors, and the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signal pathway in the mouse hippocampus and microglia (BV2 cells). The forced-swimming test (FST) and tail-suspension test (TST) were undertaken for assessment of depressive-like behaviors. Expression of the proinflammatory genes interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were measured using RT-qPCR and ELISA. Microglia activation was detected using immunofluorescence staining. The TLR4/NF-κB signaling pathway was studied using western blotting and immunofluorescence staining. J147 pretreatment markedly downregulated expression of IL-6, IL-1β, and TNF-α, and the mean fluorescence intensity of ionized calcium-binding adapter protein-1 in microglia. J147 restrained LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB), inhibitor of nuclear factor kappa B (IκB) degradation, and TLR4 activation in microglia. J147 administration inhibited bodyweight loss, mortality, microglia activation, and depressive-like behaviors in LPS-treated mice. In conclusion, J147 ameliorated the sepsis-induced depressive-like behaviors induced by neuroinflammation through attenuating the TLR4/NF-κB signaling pathway in microglia.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|