1
|
Daud E, Trauzeddel RF, Müller M, Vestjens LTW, Gröschel J, Viezzer D, Hadler T, Blaszczyk E, Jin N, Giese D, Schmitter S, Schulz-Menger J. Assessing reliability and comparability of 4D flow CMR whole heart measurements using retrospective valve tracking: A single-vendor study in the Berlin research network. Magn Reson Imaging 2025; 119:110368. [PMID: 40049254 DOI: 10.1016/j.mri.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION This study investigated intracardiac flow dynamics and assessed the comparability and reliability of 4D flow CMR measurements across multiple sites within the Berlin Research Network for Cardiovascular Magnetic Resonance (BER-CMR) using 3D cine phase-contrast imaging with three-directional velocity encoding in a healthy traveling cohort. METHODS In a prospective multi-site cohort study, 20 healthy volunteers underwent CMR at different sites. Quantitative assessment of Forward flow Volume (FFV), Peak (PV) and Mean Velocity (MV) across the heart's valves were conducted using retrospective valve tracking. FFV of the aortic and pulmonary valves, measured via 4D flow CMR, was compared to each other and to Stroke Volume (SV) from cine imaging. Reliability was assessed using scan-rescan tolerance ranges from a single site, with equivalency assumed if other sites' confidence intervals fell within these ranges. Intra- and interobserver analyses evaluated measurement consistency. RESULTS The final analysis included 19 healthy volunteers. Intersite comparability analysis across all four heart valves revealed a strong reliability for FFV, PV and MV, except for FFV at the mitral valve at two sites and PV at the tricuspid valve at one site. Correlation analysis of SV and FFV of the corresponding ventriculoarterial valves demonstrated good agreement (aortic valve: r = 0.89, P < 0.001; pulmonary valve: r = 0.88, p < 0.001). Inter- and intraobserver analyses yielded good to excellent agreement across all valves (ICC > 0.90, p < 0.001). CONCLUSION 4D flow CMR whole-heart measurements in healthy volunteers were consistent across sites, showing strong agreement despite physiological and technical variability. These findings support future multicenter studies.
Collapse
Affiliation(s)
- Elias Daud
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine, Bar-Ilan University, Nahariya - Safed, Israel
| | - Ralf Felix Trauzeddel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Maximilian Müller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Luc T W Vestjens
- Faculty of Medical Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Gröschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Klinik für Kardiologie, Angiologie und Intensivmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Cleveland, OH, USA
| | - Daniel Giese
- Magnetic Resonance, Siemens Healthineers AG, Erlangen, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, 13125 Berlin, Germany.
| |
Collapse
|
2
|
Hadler T, Ammann C, Saad H, Grassow L, Reisdorf P, Lange S, Däuber S, Schulz-Menger J. Verity plots: A novel method of visualizing reliability assessments of artificial intelligence methods in quantitative cardiovascular magnetic resonance. PLoS One 2025; 20:e0323371. [PMID: 40378365 DOI: 10.1371/journal.pone.0323371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) methods have established themselves in cardiovascular magnetic resonance (CMR) as automated quantification tools for ventricular volumes, function, and myocardial tissue characterization. Quality assurance approaches focus on measuring and controlling AI-expert differences but there is a need for tools that better communicate reliability and agreement. This study introduces the Verity plot, a novel statistical visualization that communicates the reliability of quantitative parameters (QP) with clear agreement criteria and descriptive statistics. METHODS Tolerance ranges for the acceptability of the bias and variance of AI-expert differences were derived from intra- and interreader evaluations. AI-expert agreement was defined by bias confidence and variance tolerance intervals being within bias and variance tolerance ranges. A reliability plot was designed to communicate this statistical test for agreement. Verity plots merge reliability plots with density and a scatter plot to illustrate AI-expert differences. Their utility was compared against Correlation, Box and Bland-Altman plots. RESULTS Bias and variance tolerance ranges were established for volume, function, and myocardial tissue characterization QPs. Verity plots provided insights into statstistcal properties, outlier detection, and parametric test assumptions, outperforming Correlation, Box and Bland-Altman plots. Additionally, they offered a framework for determining the acceptability of AI-expert bias and variance. CONCLUSION Verity plots offer markers for bias, variance, trends and outliers, in addition to deciding AI quantification acceptability. The plots were successfully applied to various AI methods in CMR and decisively communicated AI-expert agreement.
Collapse
Affiliation(s)
- Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on CMR, Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück-Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Clemens Ammann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on CMR, Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück-Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Hadil Saad
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on CMR, Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück-Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Leonhard Grassow
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on CMR, Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück-Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Philine Reisdorf
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on CMR, Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück-Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Steffen Lange
- Department of Computer Sciences, Hochschule Darmstadt - University of Applied Sciences, Darmstadt, Germany
| | | | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on CMR, Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück-Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
3
|
Fenski M, Viezzer D, Nguyen VA, Hufnagel S, Grassow L, Božić-Iven M, Weingärtner S, Kolbitsch C, Schulz-Menger J. Evaluating the Effect of Heart Rate on T2 Balanced Steady-State Free Precession Cardiac MRI Mapping. Radiol Cardiothorac Imaging 2025; 7:e240181. [PMID: 40145869 DOI: 10.1148/ryct.240181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Purpose To evaluate heart rate as a patient-related confounder in a commonly applied T2 balanced steady-state free precession (bSSFP) mapping sequence used for myocardial tissue characterization. Materials and Methods This retrospective analysis included prospectively (from December 2013 to November 2021) acquired cardiac MRI (1.5 T) datasets with T2 bSSFP mapping from 69 healthy volunteers. Phantom studies and Bloch simulations were performed with heart rates of 60-130 beats per minute and different resting periods (three, six, or nine R-R intervals). Sequence parameters (repetition time, echo time, flip angle, echo train length) were matched across volunteer, phantom, and simulation measurements. Reference values covered clinically relevant T1 and T2 properties found in native myocardium (short, 1041 and 44 msec; medium, 1293 and 43 msec; long, 1534 and 40 msec). A mixed linear model assessed the effect of heart rate on T2 values in volunteer measurements. Results The study included 69 healthy volunteers (median age, 34 years; 44 female and 25 male). Heart rate influenced T2 values acquired with three R-R resting periods (r = -0.38, P = .002; linear regression slope, -0.7 msec/10 beats per minute [95% CI: -1.2, -0.1]). In simulation and phantom measurements, T2 values acquired with three R-R resting periods strongly correlated with heart rate, irrespective of myocardial T1 and T2 properties (r ≤ -0.88; P < .01 for all measurements). Heart rate dependency was reduced with increased resting periods in simulations and phantom measurements. Short myocardial T1 and T2 values derived from T2 bSSFP with nine R-R resting periods were not dependent on heart rate (r = -0.41; P = .33). Conclusion T2 bSSFP with three R-R resting periods underestimates T2 values with increasing heart rates. Use of longer resting periods with T2 bSSFP mapping sequences reduced heart rate dependency. Keywords: Cardiac, Phantom Studies, Myocardium, MRI, Confounding Variables Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Maximilian Fenski
- Department of Cardiology and Nephrology, Helios Klinikum Berlin Buch, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Darian Viezzer
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Vy-An Nguyen
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Simone Hufnagel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Leonard Grassow
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maša Božić-Iven
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Department of Cardiology and Nephrology, Helios Klinikum Berlin Buch, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
4
|
Labib D, Haykowsky M, Sonnex E, Mackey JR, Thompson RB, Paterson DI, Pituskin E. Long-term cardiac MRI follow up of MANTICORE (Multidisciplinary Approach to Novel Therapies in Cardio-Oncology REsearch). CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:13. [PMID: 39923094 PMCID: PMC11806551 DOI: 10.1186/s40959-025-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND This study investigates the long-term cardiac effects of trastuzumab-based chemotherapy in early breast cancer (EBC) survivors. We extend the original MANTICORE trial which showed that angiotensin-converting enzyme inhibitors (ACEI) and beta-blockers (BB) could mitigate the decline in left ventricular (LV) ejection fraction (EF) during the first year of trastuzumab treatment. OBJECTIVES We hypothesized that, over time, cardiac function would decline further and adverse changes in cardiac geometry would occur due to the aging of the population and prior treatment. METHODS The study enrolled 52 participants from the original MANTICORE trial cohort, with cardiac magnetic resonance (CMR) imaging conducted at a median of 6.5 years post randomization to treatment. RESULTS We found that, contrary to the hypothesis, participants maintained LV EF over the follow-up period. Specifically, the placebo group exhibited a recovery in LV EF to levels comparable with the treatment groups, suggesting no long-term differential impact on cardiac function. However, a significant reduction in LV mass was observed across all groups, the clinical implications of which remain unclear. CONCLUSIONS The findings suggest that in a selected population receiving trastuzumab-based chemotherapy, extended cardiac imaging surveillance beyond one-year post-treatment may be unnecessary. We posit that the presence of HER2 overexpressing breast cancer influenced hypertrophic changes to cardiac geometry observed at baseline and one year, which resolved after completing HER2-blocking treatment. The study also highlights the need for further research to understand the significance of changes in cardiac geometry during and after breast cancer treatment.
Collapse
Affiliation(s)
- Dina Labib
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Department of Cardiovascular Medicine, Cairo University, Cairo, Egypt
| | - Mark Haykowsky
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
| | | | | | - Richard B Thompson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - D Ian Paterson
- University of Ottawa Heart Institute, Ottawa Ontario, Canada
| | - Edith Pituskin
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Chin CWL, François CJ, Jerosch-Herold M, Luu JM, Raisi-Estabragh Z, Starekova J, Taylor M, van Hout M, Bluemke DA. Society for Cardiovascular Magnetic Resonance reference values ("normal values") in cardiovascular magnetic resonance: 2025 update. J Cardiovasc Magn Reson 2025; 27:101853. [PMID: 39914499 DOI: 10.1016/j.jocmr.2025.101853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 05/31/2025] Open
Abstract
Quantitative assessment of morphological and functional cardiac parameters by cardiovascular magnetic resonance (CMR) is essential for research and routine clinical practice. Beyond established parameters of chamber size and function, tissue properties such as relaxation times play an increasing role. Normal reference ranges are required for interpretation of results obtained by quantitative CMR. Since the last publication of the "normal values review" in 2020 many new publications related to CMR reference values have been published, which were integrated in this update. The larger sample size provides greater statistical confidence in the estimates of upper and lower limits, and enables further partitioning, e.g., by age and ethnicity for several parameters. Previous topics were expanded by new sections.
Collapse
Affiliation(s)
| | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Gabriella Captur
- Inherited Heart Muscle Conditions Clinic, Royal Free Hospital NHS Foundation Trust, London, UK; Institute of Cardiovascular Science, University College London, London, UK
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre, Singapore, Singapore; Cardiovascular Sciences ACP, Duke NUS Medical School, Singapore, Singapore
| | | | | | - Judy M Luu
- Department of Medicine, Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Jitka Starekova
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael Taylor
- Dell Children's Hospital Medical Center, University of Texas Dell Medical School, Austin, Texas, USA
| | - Max van Hout
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Müller M, Daud E, Langer G, Gröschel J, Viezzer D, Hadler T, Jin N, Giese D, Schmitter S, Schulz-Menger J, Trauzeddel RF. Inter-site comparability of 4D flow cardiovascular magnetic resonance measurements in healthy traveling volunteers-a multi-site and multi-magnetic field strength study. Front Cardiovasc Med 2024; 11:1456814. [PMID: 39582524 PMCID: PMC11582008 DOI: 10.3389/fcvm.2024.1456814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Background Time-resolved 3D cine phase-contrast cardiovascular magnetic resonance (4D flow CMR) enables the characterization of blood flow using basic and advanced hemodynamic parameters. However, different confounders, e.g., different field strength, scanner configurations, or sequences, might impact 4D flow CMR measurements. This study aimed to analyze the inter-site reproducibility of 4D flow CMR to determine the influence of said confounders. Methods A cohort of 19 healthy traveling volunteers underwent 4D flow CMR at four different sites (Sites I-III: 3 T scanner; Site IV: 1.5 T scanner; all Siemens Healthineers, Erlangen, Germany). Two protocols of one 4D flow CMR research sequence were performed, one acquiring velocity vector fields in the thoracic aorta only and one in the entire heart and thoracic aorta combined. Basic and advanced hemodynamic parameters, i.e., forward flow volume (FFV), peak and mean velocities (Vp and Vm), and wall shear stress (3D WSS), at nine different planes across the thoracic aorta (P1-P2 ascending aorta, P3-P5 aortic arch, P6-P9 descending aorta) were analyzed. Based on a second scan at Site I, mean values and tolerance ranges (TOL) were generated for inter-site comparison. Equivalency was assumed when confidence intervals of Sites II-IV lay within such TOL. Additionally, inter- and intra-observer analysis as well as a comparison between the two protocols was performed, using an intraclass correlation coefficient (ICC). Results Inter-site comparability showed equivalency in P1 and P2 for FFV, Vp, and Vm at all sites. Non-equivalency was present in various planes of P3-P9 and in P2 for 3D WSS in one protocol. In total, Site IV showed the most disagreements. Protocol comparison yielded excellent (>0.9) ICC in every plane for FFV, good (0.75-0.9) to excellent ICC for Vm and 3D WSS, good to excellent ICC in eight planes for Vp, and moderate (0.5-0.75) ICC in one plane for Vp. Inter- and intra-observer analysis showed excellent agreement for every parameter. Conclusions Basic and advanced hemodynamic parameters revealed equivalency at different sites and field strength in the ascending aorta, a clinically important region of interest, under a highly controlled environment.
Collapse
Affiliation(s)
- Maximilian Müller
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Elias Daud
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine Bar-Ilan University, Nahariya - Safed, Israel
| | - Georg Langer
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Gröschel
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Klinik für Kardiologie, Angiologie und Intensivmedizin, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Darian Viezzer
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Thomas Hadler
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Cleveland, OH, United States
| | - Daniel Giese
- Cardiovascular MR R&D, Siemens Healthcare GmbH, Erlangen, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig/Berlin, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Schulz-Menger
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Ralf F. Trauzeddel
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Trauzeddel RF, Müller M, Demir A, Wiesemann S, Daud E, Schmitter S, Viezzer D, Hadler T, Schulz-Menger J. The influence of post-processing software on quantitative results in 4D flow cardiovascular magnetic resonance examinations. Front Cardiovasc Med 2024; 11:1465554. [PMID: 39399512 PMCID: PMC11467864 DOI: 10.3389/fcvm.2024.1465554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background Several commercially available software packages exist for the analysis of three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) with three-directional velocity encoding (four-dimensional (4D) flow CMR). Only sparse data are available on the impact of these different software solutions on quantitative results. We compared two different commercially available and widely used software packages and their impact on the forward flow volume (FFV), peak velocity (PV), and maximum wall shear stress (WSS) per plane. Materials and methods 4D flow CMR datasets acquired by 3 Tesla magnetic resonance imaging of 10 healthy volunteers, 13 aortic stenosis patients, and 7 aortic valve replacement patients were retrospectively analyzed for FFV, PV, and WSS using two software packages in six analysis planes along the thoracic aorta. Absolute (AD) and relative differences (RD), intraclass correlation coefficients (ICC), Bland-Altman analysis, and Spearman's correlation analysis were calculated. Results For the FFV and PV in healthy volunteers, there was good to excellent agreement between both software packages [FFV: ICC = 0.93-0.97, AD: 0.1 ± 5.4 ml (-2.3 ± 2.4 ml), RD: -0.3 ± 8% (-5.7 ± 6.0%); PV: ICC = 0.81-0.99, AD: -0.02 ± 0.02 ml (-0.1 ± 0.1 ml), RD: -1.6 ± 2.1% (-9.3 ± 6.1%)]. In patients, the FFV showed good to excellent agreement [ICC: 0.75-0.91, AD: -1.8 ± 6.5 ml (-8.3 ± 9.9 ml), RD: -2.2 ± 9.2% (-13.8 ± 17.4%)]. In the ascending aorta, PV showed only poor to moderate agreement in patients (plane 2 ICC: 0.33, plane 3 ICC: 0.72), whereas the rest of the thoracic aorta revealed good to excellent agreement [ICC: 0.95-0.98, AD: -0.03 ± 0.07 (-0.1 ± 0.1 m/s), RD: -3.5 ± 7.9% (-7.8 ± 9.9%)]. WSS analysis showed no to poor agreement between both software packages. Global correlation analyses revealed good to very good correlation between FFV and PV and only poor correlation for WSS. Conclusions There was good to very good agreement for the FFV and PV except for the ascending aorta in patients when comparing PV and no agreement for WSS. Standardization is therefore necessary.
Collapse
Affiliation(s)
- Ralf F. Trauzeddel
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Müller
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Aylin Demir
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Stephanie Wiesemann
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Elias Daud
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine Bar-Ilan University, Nahariya, Israel
| | | | - Darian Viezzer
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Thomas Hadler
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Jeanette Schulz-Menger
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| |
Collapse
|
8
|
Yun D, Lee HW, Jin W, Lee K, Lee SK. Multiparametric myocardial mapping using cardiac magnetic resonance imaging in healthy dogs: Reproducibility, repeatability, and differences across slices, segments, and sequences. Vet Radiol Ultrasound 2024; 65:628-639. [PMID: 38958215 DOI: 10.1111/vru.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Myocardial mapping in humans has been widely studied and applied to understand heart disease, facilitate early diagnosis, and determine therapeutic targets; however, the reproducibility, repeatability, and protocol-dependent differences in myocardial mapping in dogs remain unknown, which limits its application in dogs. This study investigated the reproducibility and test-retest repeatability of myocardial mapping in dogs and evaluated the differences according to slice, segment, and sequence. Precontrast T1 (native T1), T2 (T2), and T2* relaxation time (T2*), and extracellular volume (ECV) were measured at the base, midventricle, and apex of the left ventricle in six healthy beagles. To compare the sequences, the saturation recovery-based (SMART1) and inversion recovery-based (MOLLI) sequences were used for native T1 and ECV mapping. The intraclass correlation coefficient was measured to evaluate reproducibility and repeatability using the coefficient of variation and Bland-Altman analysis. All parameters showed good to excellent intra- and interobserver reproducibility and test-retest repeatability. The apex slice showed the lowest repeatability among the slices, whereas ECV had the lowest repeatability among the parameters. Native T1, ECV, and T2* did not differ according to slice, but T2 significantly increased from the base to the apex. Native T1 was significantly higher in SMART1 than in MOLLI, whereas ECV did not differ between the two sequences. Our results suggest that myocardial mapping is applicable in dogs with high reproducibility and repeatability, although slice and sequence differences should be considered. This study can serve as a guide for myocardial mapping studies in dogs with heart disease.
Collapse
Affiliation(s)
- Dain Yun
- Department of Veterinary Medical Imaging, College of Veterinary, Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Won Lee
- Department of Veterinary Medical Imaging, College of Veterinary, Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Wooseok Jin
- Department of Veterinary Medical Imaging, College of Veterinary, Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kija Lee
- Department of Veterinary Medical Imaging, College of Veterinary, Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Kwon Lee
- Department of Veterinary Medical Imaging, College of Veterinary, Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Srabanti MG, Garcia J. Quadratic stratification of left ventricular hypertrophy and association with mitral insufficiency grading: a retrospective study using cardiac magnetic resonance. Cardiovasc Diagn Ther 2024; 14:589-608. [PMID: 39263481 PMCID: PMC11384468 DOI: 10.21037/cdt-23-466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 09/13/2024]
Abstract
Background Chronic primary mitral regurgitation (MR) is caused by the defect in >1 component of the mitral valve, potentially leading to left ventricular hypertrophy (LVH). The relationship between LVH subtypes and the insufficiency grading of chronic MR remains unclear. Thus, we aimed to investigate this association and explore the impact of unhealthy habits on LVH development in patients with chronic primary MR through a cross-sectional study. Methods Cardiac magnetic resonance (CMR) data was retrospectively collected from 3T magnetic resonance imaging (MRI) scanners in 71 patients with chronic primary MR (range, 20-84 years, 52% men). Considered patients (with mild-to-severe MR) were enrolled between March 2015 and September 2022 from the Cardiovascular Imaging Registry of Calgary (CIROC) database. Left ventricle (LV) function was assessed using cvi42 v5.11.5. Patients were categorized into 'mild-to-severe' MR using regurgitation fraction (RF), according to the current imaging guidelines. LVH subtypes were determined using mass-to-volume (M/V) calculations. IBM SPSS was used to run all the statistical analyses. This study employed normality checks by using the Shapiro-Wilk test; one-way analysis of variance (ANOVA) and Kruskal-Wallis tests with post-hoc pairwise comparisons; Chi-squared tests, Fisher's Exact test, crosstabulation analysis, and multinomial logistic regression to examine relationships between MR severity, LVH types, and impact of lifestyle factors, significance at P<0.05. Results Eccentric LVH was significantly associated with increased severity of MR, while concentric remodeling (CR) was linked to decreased MR severity (χ2=13.276, P=0.03, stratified by sex χ2=7.729, P=0.005). Sex differences emerged in the overall study population. Eccentric LVH was dominantly higher than CR in both males and females (females: 57.7% vs. 42.3%, P=0.05, males: 82.8% vs. 17.2%, P=0.26). No differences were observed between age groups ('Young-Middle' = under 60 years, and 'Middle-Old' = over 60 years). Still, there were notable differences in LVH prevalence within the 'Young-Middle' age group for mild-moderate (P=0.01) and moderate-severe MR (P=0.02). Eccentric LVH was associated with higher body mass index (BMI), smoking, and frequent alcohol consumption [odds ratio (OR) 1.02, 95% confidence interval (CI): 0.56-1.26; OR 1.65, 95% CI: 1.31-6.52; OR 1.15, 95% CI: 0.26-1.34], while CR was solely associated with increased BMI (smokers OR =1.84, 95% CI: 1.25-3.91 and alcohol consumers OR =1.32, 95% CI: 0.86-2.48). Nicotine and caffeine consumption did not appear to be a risk factor for LVH (nicotine: eccentric, OR =0.99, 95% CI: 0.65-1.86; CR, OR =0.97, 95% CI: 0.69-2.39 and caffeine: eccentric, OR =0.69, 95% CI: 0.48-1.61; CR, OR =0.97, 95% CI: 0.78-4.01). Conclusions This study reveals sex-based associations between LVH subtypes and severity of chronic primary MR. Lifestyle factors such as cigarette smoking, alcohol consumption, and elevated BMI influence LVH risk, while nicotine and caffeine consumption exhibit minimal effects.
Collapse
Affiliation(s)
- Monisha Ghosh Srabanti
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Julio Garcia
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
10
|
Gröschel J, Grassow L, van Dijck P, Bhoyroo Y, Blaszczyk E, Schulz-Menger J. Trajectories of functional and structural myocardial parameters in post-COVID-19 syndrome-insights from mid-term follow-up by cardiovascular magnetic resonance. Front Cardiovasc Med 2024; 11:1357349. [PMID: 38628318 PMCID: PMC11018885 DOI: 10.3389/fcvm.2024.1357349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Myocardial tissue alterations in patients with post-Coronavirus disease 2019 syndrome (PCS) are often subtle and mild. Reports vary in the prevalence of non-ischemic and ischemic injuries as well as the extent of ongoing myocardial inflammation. The exact relevance of these myocardial alterations is not fully understood. This study aimed at describing the trajectories of myocardial alterations in PCS patients by mid-term follow-up with cardiovascular magnetic resonance (CMR). Methods This study entails a retrospective analysis of symptomatic PCS patients referred for follow-up CMR between August 2020 and May 2023 due to mildly affected or reduced left or right ventricular function (LV and RV, respectively) and structural myocardial alterations, e.g., focal and diffuse fibrosis, on baseline scans. Follow-up CMR protocol consisted of cine images and full coverage native T1 and T2 mapping. Baseline and follow-up scans were compared using t-tests or Wilcoxon tests. Post-hoc analysis was carried out in a subgroup based on the change of LV stroke volume (SV) between scans. Results In total, 43 patients [median age (interquartile range) 46 (37-56) years, 33 women] received follow-ups 347 (167-651) days after initial diagnosis. A decrease in symptoms was recorded on follow-ups (p < 0.03) with 23 patients being asymptomatic at follow-ups [symptomatic at baseline 43/43 (100%) vs. symptomatic at follow-up 21/43 (49%), p < 0.001]. Functional improvement was noted for LV-SV [83.3 (72.7-95.0) vs. 84.0 (77.0-100.3) ml; p = 0.045], global radial [25.3% (23.4%-27.9%) vs. 27.4% (24.4%-33.1%); p < 0.001], and circumferential strains [-16.5% (-17.5% to -15.6%) vs. -17.2% (-19.5% to -16.1%); p < 0.001]. In total, 17 patients had an LV-SV change >10% on follow-up scans (5 with a decrease and 12 with an increase), with LV-SV, RV-SV, and global longitudinal strain being discriminatory variables on baseline scans (p = 0.01, 0.02, and 0.04, respectively). T1- or T2-analysis revealed no changes, remaining within normal limits. Conclusion Symptomatic load as well as blood pressures decreased on follow-up. CMR did not detect significant changes in tissue parameters; however, volumetric, specifically LV-SV, and deformation indexes improved during mid-term follow-up.
Collapse
Affiliation(s)
- Jan Gröschel
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Klinik für Kardiologie, Angiologie und Intensivmedizin, Berlin, Germany
| | - Leonhard Grassow
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Phillip van Dijck
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Klinik für Kardiologie, Angiologie und Intensivmedizin, Berlin, Germany
| | - Yashraj Bhoyroo
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| | - Edyta Blaszczyk
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
11
|
Viezzer D, Hadler T, Gröschel J, Ammann C, Blaszczyk E, Kolbitsch C, Hufnagel S, Kranzusch-Groß R, Lange S, Schulz-Menger J. Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-of-concept. EBioMedicine 2024; 102:105055. [PMID: 38490103 PMCID: PMC10951905 DOI: 10.1016/j.ebiom.2024.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation approach. METHODS Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight different sequences. The regression model type and four other adjustable standardisation parameters were optimised among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135 patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N = 112, 121 T1 maps) and amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to evaluate the diagnostic accuracy. FINDINGS The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% / 91.67% between HTE and AMY, 71.90% / 72.44% between HTE and HCM, and 87.50% / 98.35% between HCM and AMY. INTERPRETATION Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while keeping the discrimination of healthy and patient groups as found in literature. FUNDING This study was supported by the BMBF / DZHK.
Collapse
Affiliation(s)
- Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jan Gröschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Clemens Ammann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Simone Hufnagel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Riccardo Kranzusch-Groß
- Universitätsklinikum Schleswig-Holstein, Klinik für Radiologie und Nuklearmedizin, Lübeck, Germany
| | - Steffen Lange
- Hochschule Darmstadt (University of Applied Sciences), Faculty for Computer Sciences, Darmstadt, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Helios Hospital Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| |
Collapse
|
12
|
Zhan Y, Friedrich MG, Dendukuri N, Lu Y, Chetrit M, Schiller I, Joseph L, Shaw JL, Chuang ML, Riffel JH, Manning WJ, Afilalo J. Meta-Analysis of Normal Reference Values for Right and Left Ventricular Quantification by Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2024; 17:e016090. [PMID: 38377242 DOI: 10.1161/circimaging.123.016090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) reference values are relied upon to accurately diagnose left ventricular (LV) and right ventricular (RV) pathologies. To date, reference values have been derived from modest sample sizes with limited patient diversity and attention to 1 but not both commonly used tracing techniques for papillary muscles and trabeculations. We sought to overcome these limitations by meta-analyzing normal reference values for CMR parameters stemming from multiple countries, vendors, analysts, and patient populations. METHODS We comprehensively extracted published and unpublished data from studies reporting CMR parameters in healthy adults. A steady-state free-precession short-axis stack at 1.5T or 3T was used to trace either counting the papillary muscles and trabeculations in the LV volume or mass. We used a novel Bayesian hierarchical meta-analysis model to derive the pooled lower and upper reference values for each CMR parameter. Our model accounted for the expected differences between tracing techniques by including informative prior distributions from a large external data set. RESULTS A total of 254 studies from 25 different countries were systematically reviewed, representing 12 812 healthy adults, of which 52 were meta-analyzed. For LV parameters counting papillary muscles and trabeculations in the LV volume, pooled normative reference ranges in men and women, respectively, were as follows: LV ejection fraction of 52% to 73% and 54% to 75%, LV end-diastolic volume index of 60 to 109 and 56 to 96 mL/m2, LV end-systolic volume index of 18 to 45 and 16 to 38 mL/m2, and LV mass index of 41 to 76 and 33 to 57 g/m2. For LV parameters counting papillary muscles and trabeculations in the LV mass, pooled normative reference ranges in men and women, respectively, were as follows: LV ejection fraction of 57% to 74% and 57% to 75%, LV end-diastolic volume index of 60 to 97 and 55 to 88 mL/m2, LV end-systolic volume index of 18 to 37 and 15 to 34 mL/m2, and LV mass index of 50 to 83 and 38 to 65 g/m2. For RV parameters, pooled normative reference ranges in men and women, respectively, were as follows: RV ejection fraction of 47% to 68% and 49% to 71%, RV end-diastolic volume index of 64 to 115 and 57 to 99 mL/m2, RV end-systolic volume index of 23 to 52 and 18 to 42 mL/m2, and RV mass index of 14 to 29 and 13 to 25 g/m2. CONCLUSIONS Our Bayesian hierarchical meta-analysis provides normative reference values for CMR parameters of LV and RV size, systolic function, and mass, encompassing both tracing techniques across a diverse multinational sample of healthy men and women.
Collapse
Affiliation(s)
- Yang Zhan
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC (Y.Z., J.A.)
- Division of Cardiology, Regina General Hospital, University of Saskatchewan, MB (Y.Z.)
| | - Matthias G Friedrich
- Division of Cardiology, McGill University Health Center (M.G.F., M.L.C., J.A.), McGill University, Montreal, QC
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Germany (M.G.F., J.H.R.)
| | - Nandini Dendukuri
- Centre for Outcomes Research, McGill University Health Centre - Research Institute, Montreal, QC (N.D., Y.L., I.S.)
| | - Yang Lu
- Centre for Outcomes Research, McGill University Health Centre - Research Institute, Montreal, QC (N.D., Y.L., I.S.)
| | | | - Ian Schiller
- Centre for Outcomes Research, McGill University Health Centre - Research Institute, Montreal, QC (N.D., Y.L., I.S.)
| | - Lawrence Joseph
- Department of Epidemiology, Biostatistics, and Occupational Health (L.J., J.A.), McGill University, Montreal, QC
| | - Jaime L Shaw
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (J.L.S.)
| | - Michael L Chuang
- Division of Cardiology, McGill University Health Center (M.G.F., M.L.C., J.A.), McGill University, Montreal, QC
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA (M.L.C., W.J.M.)
| | - Johannes H Riffel
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Germany (M.G.F., J.H.R.)
| | - Warren J Manning
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA (M.L.C., W.J.M.)
| | - Jonathan Afilalo
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC (Y.Z., J.A.)
- Division of Cardiology, McGill University Health Center (M.G.F., M.L.C., J.A.), McGill University, Montreal, QC
- Department of Epidemiology, Biostatistics, and Occupational Health (L.J., J.A.), McGill University, Montreal, QC
- Division of Cardiology, Jewish General Hospital (J.A.), McGill University, Montreal, QC
| |
Collapse
|
13
|
Burkhardt BEU, Kellenberger CJ, Callaghan FM, Valsangiacomo Buechel ER, Geiger J. Flow evaluation software for four-dimensional flow MRI: a reliability and validation study. LA RADIOLOGIA MEDICA 2023; 128:1225-1235. [PMID: 37620674 PMCID: PMC10547653 DOI: 10.1007/s11547-023-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Four-dimensional time-resolved phase-contrast cardiovascular magnetic resonance imaging (4D flow MRI) enables blood flow quantification in multiple vessels, which is crucial for patients with congenital heart disease (CHD). We investigated net flow volumes in the ascending aorta and pulmonary arteries by four different postprocessing software packages for 4D flow MRI in comparison with 2D cine phase-contrast measurements (2D PC). MATERIAL AND METHODS 4D flow and 2D PC datasets of 47 patients with biventricular CHD (median age 16, range 0.6-52 years) were acquired at 1.5 T. Net flow volumes in the ascending aorta, the main, right, and left pulmonary arteries were measured using four different postprocessing software applications and compared to offset-corrected 2D PC data. Reliability of 4D flow postprocessing software was assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Linear regression of internal flow controls was calculated. Interobserver reproducibility was evaluated in 25 patients. RESULTS Correlation and agreement of flow volumes were very good for all software compared to 2D PC (ICC ≥ 0.94; bias ≤ 5%). Internal controls were excellent for 2D PC (r ≥ 0.95, p < 0.001) and 4D flow (r ≥ 0.94, p < 0.001) without significant difference of correlation coefficients between methods. Interobserver reliability was good for all vendors (ICC ≥ 0.94, agreement bias < 8%). CONCLUSION Haemodynamic information from 4D flow in the large thoracic arteries assessed by four commercially available postprocessing applications matches routinely performed 2D PC values. Therefore, we consider 4D flow MRI-derived data ready for clinical use in patients with CHD.
Collapse
Affiliation(s)
- Barbara Elisabeth Ursula Burkhardt
- Paediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zürich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland.
| | - Christian Johannes Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| | - Fraser Maurice Callaghan
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| | - Emanuela Regina Valsangiacomo Buechel
- Paediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zürich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| | - Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
14
|
Yu T, Cai Z, Yang Z, Lin W, Su Y, Li J, Xie S, Shen J. The Value of Myocardial Fibrosis Parameters Derived from Cardiac Magnetic Resonance Imaging in Risk Stratification for Patients with Hypertrophic Cardiomyopathy. Acad Radiol 2023; 30:1962-1978. [PMID: 36604228 DOI: 10.1016/j.acra.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of the study was to determine whether myocardial fibrosis parameters of cardiac magnetic resonance imaging (MRI) has added value in the risk stratification of hypertrophic cardiomyopathy (HCM) patients. MATERIALS AND METHODS In this retrospective study, 108 patients with HCM (mean age ± standard deviation, 55.5 ± 13.4 years) were included from January 2019 to April 2022, and were followed up for 2 years to record sudden cardiac death (SCD) adverse events. All HCM patients underwent cardiac MRI and were divided into a training cohort (n = 81; mean age, 56.1 ± 13.0 years) and a validation cohort (n = 27; mean age, 57.8 ± 13.9 years). According to the presence of SCD risk factors defined by the 2020 AHA/ACC guidelines, HCM patients were classified into low-risk and high-risk groups. Cardiac MRI features, including late gadolinium enhancement (LGE), T1 mapping, and extracellular volume fraction (ECV), were assessed and compared between the two groups. Logistic regression analysis was used to select the optimal predictors of SCD from cardiac MRI features and HCM Risk-SCD score to construct prediction models. Receiver operating curve (ROC) analysis was used to assess the predictive performance of the constructed prediction model. Cox regression analysis was also used to determine the optimal predictors of SCD adverse events. RESULTS Multivariate logistic analysis showed that the global ECV was the single myocardial fibrosis parameter predictive of the risk of SCD (p < 0.001). The areas under the ROC curves (AUC) of global ECV were higher than those of LGE, global native T1, global postcontrast T1, and HCM Risk-SCD (AUC = 0.85 vs. 0.74, 0.77, 0.63, 0.78). An integrative risk stratification model combining global ECV (odds ratio, 1.36 [95% CI: 1.16-1.60]; p < 0.001) and HCM Risk-SCD score (odds ratio, 1.63 [95% CI: 1.08-2.47]; p < 0.001) achieved an AUC of 0.89 (95% CI: 0.81-0.96) in the training cohort, which was significantly higher than that of HCM Risk-SCD score alone (p = 0.03). The AUC of the integrative model was 0.93 (95% CI: 0.84-1.00) in the validation cohort. Multivariate Cox regression analysis also showed that the global ECV was an independent predictor of SCD adverse events (hazard ratio, 1.27 [95% CI: 1.10-1.47]). CONCLUSION The ECV derived from cardiac MRI is comparable to the HCM Risk-SCD scale in predicting the SCD risk stratification in patients with HCM.
Collapse
Affiliation(s)
- Taihui Yu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhaoxi Cai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenhao Lin
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yun Su
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jixin Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuanglun Xie
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Gröschel J, Trauzeddel RF, Müller M, von Knobelsdorff-Brenkenhoff F, Viezzer D, Hadler T, Blaszczyk E, Daud E, Schulz-Menger J. Multi-site comparison of parametric T1 and T2 mapping: healthy travelling volunteers in the Berlin research network for cardiovascular magnetic resonance (BER-CMR). J Cardiovasc Magn Reson 2023; 25:47. [PMID: 37574535 PMCID: PMC10424349 DOI: 10.1186/s12968-023-00954-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Parametric mapping sequences in cardiovascular magnetic resonance (CMR) allow for non-invasive myocardial tissue characterization. However quantitative myocardial mapping is still limited by the need for local reference values. Confounders, such as field strength, vendors and sequences, make intersite comparisons challenging. This exploratory study aims to assess whether multi-site studies that control confounding factors provide first insights whether parametric mapping values are within pre-defined tolerance ranges across scanners and sites. METHODS A cohort of 20 healthy travelling volunteers was prospectively scanned at three sites with a 3 T scanner from the same vendor using the same scanning protocol and acquisition scheme. A Modified Look-Locker inversion recovery sequence (MOLLI) for T1 and a fast low-angle shot sequence (FLASH) for T2 were used. At one site a scan-rescan was performed to assess the intra-scanner reproducibility. All acquired T1- and T2-mappings were analyzed in a core laboratory using the same post-processing approach and software. RESULTS After exclusion of one volunteer due to an accidentally diagnosed cardiac disease, T1- and T2-maps of 19 volunteers showed no significant differences between the 3 T sites (mean ± SD [95% confidence interval] for global T1 in ms: site I: 1207 ± 32 [1192-1222]; site II: 1207 ± 40 [1184-1225]; site III: 1219 ± 26 [1207-1232]; p = 0.067; for global T2 in ms: site I: 40 ± 2 [39-41]; site II: 40 ± 1 [39-41]; site III 39 ± 2 [39-41]; p = 0.543). CONCLUSION Parametric mapping results displayed initial hints at a sufficient similarity between sites when confounders, such as field strength, vendor diversity, acquisition schemes and post-processing analysis are harmonized. This finding needs to be confirmed in a powered clinical trial. Trial registration ISRCTN14627679 (retrospectively registered).
Collapse
Affiliation(s)
- Jan Gröschel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralf-Felix Trauzeddel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Und Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Maximilian Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- KIZ, Kardiologie im Zentrum, Eisenmannstr. 4, 80331, Munich, Deutschland
| | - Darian Viezzer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Elias Daud
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine Bar-Ilan University, Nahariya, Safed, Israel
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany.
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany.
| |
Collapse
|
16
|
Brady B, King G, Murphy RT, Walsh D. Myocardial strain: a clinical review. Ir J Med Sci 2023; 192:1649-1656. [PMID: 36380189 PMCID: PMC9666989 DOI: 10.1007/s11845-022-03210-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Myocardial strain-change in myocardial fibre length over the cardiac cycle-is a measure of cardiac muscle function. It is obtained using conventional techniques such as echocardiography and magnetic resonance imaging, adding additional clinical information to augment the current techniques. METHODS A narrative review of the current relevant literature with respect to myocardial strain, with a focus on strain measured by echocardiography. RESULTS Myocardial strain identifies global and regional abnormalities in myocardial function and differentiates types of cardiomyopathy. It is an earlier marker of myocardial disease than ejection fraction and is predictive of cardiovascular adverse events. Accurate measurement requires high-quality images and experienced practitioners. CONCLUSION This review explains advantages and disadvantages of myocardial strain imaging and explains why, through adding increased precision without additional burden, it should be a standard part of cardiac assessment.
Collapse
Affiliation(s)
- Bernadette Brady
- Academic Department of Palliative Medicine, Our Lady’s Hospice & Care Services, Harold’s Cross, D6W EV82 Dublin 6W, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Institute of Cardiovascular Science, St. James’s Hospital, Dublin 8, Ireland
| | - Gerard King
- Institute of Cardiovascular Science, St. James’s Hospital, Dublin 8, Ireland
| | - Ross T. Murphy
- Institute of Cardiovascular Science, St. James’s Hospital, Dublin 8, Ireland
| | - Declan Walsh
- Academic Department of Palliative Medicine, Our Lady’s Hospice & Care Services, Harold’s Cross, D6W EV82 Dublin 6W, Ireland
- Department of Supportive Oncology, Levine Cancer Institute, Atrium Healthcare, Charlotte, NC USA
| |
Collapse
|
17
|
Ammann C, Hadler T, Gröschel J, Kolbitsch C, Schulz-Menger J. Multilevel comparison of deep learning models for function quantification in cardiovascular magnetic resonance: On the redundancy of architectural variations. Front Cardiovasc Med 2023; 10:1118499. [PMID: 37144061 PMCID: PMC10151814 DOI: 10.3389/fcvm.2023.1118499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Background Cardiac function quantification in cardiovascular magnetic resonance requires precise contouring of the heart chambers. This time-consuming task is increasingly being addressed by a plethora of ever more complex deep learning methods. However, only a small fraction of these have made their way from academia into clinical practice. In the quality assessment and control of medical artificial intelligence, the opaque reasoning and associated distinctive errors of neural networks meet an extraordinarily low tolerance for failure. Aim The aim of this study is a multilevel analysis and comparison of the performance of three popular convolutional neural network (CNN) models for cardiac function quantification. Methods U-Net, FCN, and MultiResUNet were trained for the segmentation of the left and right ventricles on short-axis cine images of 119 patients from clinical routine. The training pipeline and hyperparameters were kept constant to isolate the influence of network architecture. CNN performance was evaluated against expert segmentations for 29 test cases on contour level and in terms of quantitative clinical parameters. Multilevel analysis included breakdown of results by slice position, as well as visualization of segmentation deviations and linkage of volume differences to segmentation metrics via correlation plots for qualitative analysis. Results All models showed strong correlation to the expert with respect to quantitative clinical parameters (rz ' = 0.978, 0.977, 0.978 for U-Net, FCN, MultiResUNet respectively). The MultiResUNet significantly underestimated ventricular volumes and left ventricular myocardial mass. Segmentation difficulties and failures clustered in basal and apical slices for all CNNs, with the largest volume differences in the basal slices (mean absolute error per slice: 4.2 ± 4.5 ml for basal, 0.9 ± 1.3 ml for midventricular, 0.9 ± 0.9 ml for apical slices). Results for the right ventricle had higher variance and more outliers compared to the left ventricle. Intraclass correlation for clinical parameters was excellent (≥0.91) among the CNNs. Conclusion Modifications to CNN architecture were not critical to the quality of error for our dataset. Despite good overall agreement with the expert, errors accumulated in basal and apical slices for all models.
Collapse
Affiliation(s)
- Clemens Ammann
- Working Group on CMR, Experimental and Clinical Research Center, A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Thomas Hadler
- Working Group on CMR, Experimental and Clinical Research Center, A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jan Gröschel
- Working Group on CMR, Experimental and Clinical Research Center, A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Working Group on CMR, Experimental and Clinical Research Center, A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
18
|
Oechtering TH, Nowak A, Sieren MM, Stroth AM, Kirschke N, Wegner F, Balks M, König IR, Jin N, Graessner J, Kooijman-Kurfuerst H, Hennemuth A, Barkhausen J, Frydrychowicz A. Repeatability and reproducibility of various 4D Flow MRI postprocessing software programs in a multi-software and multi-vendor cross-over comparison study. J Cardiovasc Magn Reson 2023; 25:22. [PMID: 36978131 PMCID: PMC10052852 DOI: 10.1186/s12968-023-00921-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Different software programs are available for the evaluation of 4D Flow cardiovascular magnetic resonance (CMR). A good agreement of the results between programs is a prerequisite for the acceptance of the method. Therefore, the goal was to compare quantitative results from a cross-over comparison in individuals examined on two scanners of different vendors analyzed with four postprocessing software packages. METHODS Eight healthy subjects (27 ± 3 years, 3 women) were each examined on two 3T CMR systems (Ingenia, Philips Healthcare; MAGNETOM Skyra, Siemens Healthineers) with a standardized 4D Flow CMR sequence. Six manually placed aortic contours were evaluated with Caas (Pie Medical Imaging, SW-A), cvi42 (Circle Cardiovascular Imaging, SW-B), GTFlow (GyroTools, SW-C), and MevisFlow (Fraunhofer Institute MEVIS, SW-D) to analyze seven clinically used parameters including stroke volume, peak flow, peak velocity, and area as well as typically scientifically used wall shear stress values. Statistical analysis of inter- and intrareader variability, inter-software and inter-scanner comparison included calculation of absolute and relative error (ER), intraclass correlation coefficient (ICC), Bland-Altman analysis, and equivalence testing based on the assumption that inter-software differences needed to be within 80% of the range of intrareader differences. RESULTS SW-A and SW-C were the only software programs showing agreement for stroke volume (ICC = 0.96; ER = 3 ± 8%), peak flow (ICC: 0.97; ER = -1 ± 7%), and area (ICC = 0.81; ER = 2 ± 22%). Results from SW-A/D and SW-C/D were equivalent only for area and peak flow. Other software pairs did not yield equivalent results for routinely used clinical parameters. Especially peak maximum velocity yielded poor agreement (ICC ≤ 0.4) between all software packages except SW-A/D that showed good agreement (ICC = 0.80). Inter- and intrareader consistency for clinically used parameters was best for SW-A and SW-D (ICC = 0.56-97) and worst for SW-B (ICC = -0.01-0.71). Of note, inter-scanner differences per individual tended to be smaller than inter-software differences. CONCLUSIONS Of all tested software programs, only SW-A and SW-C can be used equivalently for determination of stroke volume, peak flow, and vessel area. Irrespective of the applied software and scanner, high intra- and interreader variability for all parameters have to be taken into account before introducing 4D Flow CMR in clinical routine. Especially in multicenter clinical trials a single image evaluation software should be applied.
Collapse
Affiliation(s)
- Thekla H Oechtering
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany.
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - André Nowak
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Malte M Sieren
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Andreas M Stroth
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Nicolas Kirschke
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Franz Wegner
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Maren Balks
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, Universität zu Lübeck, Lübeck, Germany
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Cleveland, OH, USA
| | | | | | - Anja Hennemuth
- Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Amrumer Str. 32, 13353, Berlin, Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Zhu Y, Xu XY, Rosendahl U, Pepper J, Mirsadraee S. Advanced risk prediction for aortic dissection patients using imaging-based computational flow analysis. Clin Radiol 2023; 78:e155-e165. [PMID: 36610929 DOI: 10.1016/j.crad.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Patients with either a repaired or medically managed aortic dissection have varying degrees of risk of developing late complications. High-risk patients would benefit from earlier intervention to improve their long-term survival. Currently serial imaging is used for risk stratification, which is not always reliable. On the other hand, understanding aortic haemodynamics within a dissection is essential to fully evaluate the disease and predict how it may progress. In recent decades, computational fluid dynamics (CFD) has been extensively applied to simulate complex haemodynamics within aortic diseases, and more recently, four-dimensional (4D)-flow magnetic resonance imaging (MRI) techniques have been developed for in vivo haemodynamic measurement. This paper presents a comprehensive review on the application of image-based CFD simulations and 4D-flow MRI analysis for risk prediction in aortic dissection. The key steps involved in patient-specific CFD analyses are demonstrated. Finally, we propose a workflow incorporating computational modelling for personalised assessment to aid in risk stratification and treatment decision-making.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - X Y Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - U Rosendahl
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - J Pepper
- Department of Cardiac Surgery, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - S Mirsadraee
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Radiology, Royal Brompton and Harefield Hospitals, London, UK.
| |
Collapse
|
20
|
Riazy L, Däuber S, Lange S, Viezzer DS, Ott S, Wiesemann S, Blaszczyk E, Mühlberg F, Zange L, Schulz-Menger J. Translating principles of quality control to cardiovascular magnetic resonance: assessing quantitative parameters of the left ventricle in a large cohort. Sci Rep 2023; 13:2205. [PMID: 36750647 PMCID: PMC9905535 DOI: 10.1038/s41598-023-29028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiac magnetic resonance (CMR) examinations require standardization to achieve reproducible results. Therefore, quality control as known as in other industries such as in-vitro diagnostics, could be of essential value. One such method is the statistical detection of long-time drifts of clinically relevant measurements. Starting in 2010, reports from all CMR examinations of a high-volume center were stored in a hospital information system. Quantitative parameters of the left ventricle were analyzed over time with moving averages of different window sizes. Influencing factors on the acquisition and on the downstream analysis were captured. 26,902 patient examinations were exported from the clinical information system. The moving median was compared to predefined tolerance ranges, which revealed an overall of 50 potential quality relevant changes ("alerts") in SV, EDV and LVM. Potential causes such as change of staff, scanner relocation and software changes were found not to be causal of the alerts. No other influencing factors were identified retrospectively. Statistical quality assurance systems based on moving average control charts may provide an important step towards reliability of quantitative CMR. A prospective evaluation is needed for the effective root cause analysis of quality relevant alerts.
Collapse
Affiliation(s)
- Leili Riazy
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | | | - Steffen Lange
- Department of Computer Science, Darmstadt University of Applied Sciences, Darmstadt, Germany
| | - Darian Steven Viezzer
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Steffen Ott
- HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Stephanie Wiesemann
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian Mühlberg
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany.,HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Leonora Zange
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany.,HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin-Buch, Berlin, Germany. .,HELIOS Hospital Berlin-Buch, Berlin, Germany.
| |
Collapse
|
21
|
Viezzer D, Hadler T, Ammann C, Blaszczyk E, Fenski M, Grandy TH, Wetzl J, Lange S, Schulz-Menger J. Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular magnetic resonance to improve segmentation performance. Sci Rep 2023; 13:2103. [PMID: 36746989 PMCID: PMC9902617 DOI: 10.1038/s41598-023-28975-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
The manual and often time-consuming segmentation of the myocardium in cardiovascular magnetic resonance is increasingly automated using convolutional neural networks (CNNs). This study proposes a cascaded segmentation (CASEG) approach to improve automatic image segmentation quality. First, an object detection algorithm predicts a bounding box (BB) for the left ventricular myocardium whose 1.5 times enlargement defines the region of interest (ROI). Then, the ROI image section is fed into a U-Net based segmentation. Two CASEG variants were evaluated: one using the ROI cropped image solely (cropU) and the other using a 2-channel-image additionally containing the original BB image section (crinU). Both were compared to a classical U-Net segmentation (refU). All networks share the same hyperparameters and were tested on basal and midventricular slices of native and contrast enhanced (CE) MOLLI T1 maps. Dice Similarity Coefficient improved significantly (p < 0.05) in cropU and crinU compared to refU (81.06%, 81.22%, 72.79% for native and 80.70%, 79.18%, 71.41% for CE data), while no significant improvement (p < 0.05) was achieved in the mean absolute error of the T1 time (11.94 ms, 12.45 ms, 14.22 ms for native and 5.32 ms, 6.07 ms, 5.89 ms for CE data). In conclusion, CASEG provides an improved geometric concordance but needs further improvement in the quantitative outcome.
Collapse
Affiliation(s)
- Darian Viezzer
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas Hadler
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Clemens Ammann
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Maximilian Fenski
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Thomas Hiroshi Grandy
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Jens Wetzl
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Steffen Lange
- Faculty for Computer Sciences, Hochschule Darmstadt (University of Applied Sciences), Darmstadt, Germany
| | - Jeanette Schulz-Menger
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany. .,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. .,Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany.
| |
Collapse
|
22
|
Radike M, Ben-Aicha S, Gutiérrez M, Hidalgo A, Badimón L, Vilahur G. Comparison of two cardiac magnetic resonance imaging postprocessing software tools in a pig model of myocardial infarction. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:123-126. [PMID: 35809893 DOI: 10.1016/j.rec.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Monika Radike
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Institut de Investigacions Biomèdiques (IIB)-Sant Pau, Barcelona, Spain; Radiology Department, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Soumaya Ben-Aicha
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Manuel Gutiérrez
- Radiology Department, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Alberto Hidalgo
- Departamento de Radiología, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimón
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Institut de Investigacions Biomèdiques (IIB)-Sant Pau, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Gemma Vilahur
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Institut de Investigacions Biomèdiques (IIB)-Sant Pau, Barcelona, Spain; Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Gröschel J, Ammann C, Zange L, Viezzer D, Forman C, Schmidt M, Blaszczyk E, Schulz-Menger J. Fast acquisition of left and right ventricular function parameters applying cardiovascular magnetic resonance in clinical routine - validation of a 2-shot compressed sensing cine sequence. SCAND CARDIOVASC J 2022; 56:266-275. [PMID: 35836407 DOI: 10.1080/14017431.2022.2099010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objectives. To evaluate if cine sequences accelerated by compressed sensing (CS) are feasible in clinical routine and yield equivalent cardiac morphology in less time. Design. We evaluated 155 consecutive patients with various cardiac diseases scanned during our clinical routine. LV and RV short axis (SAX) cine images were acquired by conventional and prototype 2-shot CS sequences on a 1.5 T CMR. The 2-shot prototype captures the entire heart over a period of 3 beats making the acquisition potentially even faster. Both scans were performed with identical slice parameters and positions. We compared LV and RV morphology with Bland-Altmann plots and weighted the results in relation to pre-defined tolerance intervals. Subjective and objective image quality was evaluated using a 4-point score and adapted standardized criteria. Scan times were evaluated for each sequence. Results. In total, no acquisitions were lost due to non-diagnostic image quality in the subjective image score. Objective image quality analysis showed no statistically significant differences. The scan time of the CS cines was significantly shorter (p < .001) with mean scan times of 178 ± 36 s compared to 313 ± 65 s for the conventional cine. All cardiac function parameters showed excellent correlation (r 0.978-0.996). Both sequences were considered equivalent for the assessment of LV and RV morphology. Conclusions. The 2-shot CS SAX cines can be used in clinical routine to acquire cardiac morphology in less time compared to the conventional method, with no total loss of acquisitions due to nondiagnostic quality. TRIAL REGISTRATION ISRCTN12344380. Registered 20 November 2020, retrospectively registered.
Collapse
Affiliation(s)
- Jan Gröschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Clemens Ammann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Leonora Zange
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | | | | | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
24
|
Comparación de dos programas de posprocesamiento de imágenes de cardiorresonancia magnética en un modelo porcino de infarto de miocardio. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Toia P, Maffei E, Mantini C, Runza G, La Grutta L, Grassedonio E, Guaricci A, Punzo B, Cavaliere C, Cademartiri F. Cardiac Magnetic Resonance with Delayed Enhancement of the Right Ventricle in patients with Left Ventricle primary involvement: diagnosis and evaluation of functional parameters. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022023. [PMID: 35546038 PMCID: PMC9171872 DOI: 10.23750/abm.v93i2.10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/04/2022]
Abstract
Cardiac Magnetic Resonance (CMR) allows an accurate Right Ventricle (RV) assessment that could be of great relevance in diseases causing inflammation or fibrosis. The aim of this study was to evaluate the concomitant involvement of the RV in patients with delayed enhancement (DE) of the Left Ventricle (LV-DE) using CMR. We retrospectively enrolled 95 (male n. 66; age 55±18years; BMI 26±5kg/m2) consecutive patients with LV-DE who underwent a CMR (Achieva 1.5 T, Philips) for different indications: post-ischemic dilated cardiopathy (PDM), hypertrophic cardiomyopathy (HCM), myocardial infarction (MI), myocarditis/pericarditis (MP) and congenital heart disease (CD). We assessed the presence and extension of DE and functional parameters such as ventricular end-diastolic (EDV), end-systolic volumes (ESV) and ejection fraction (EF) of both LV and RV. Prevalence of RV-DE was 30.5% (29/95): 75% (3/4) for CD, 44% (4/9) for PDM, 36% (17/47) for MI, 27.8% (5/18) for MP and 0% (0/17) for HCM. LV-EF and RV-EF were 53±15mL and 51±13mL, respectively, for patients without RV-DE (RV-DE-), and 40±19 mL and 42±15 mL, respectively, for patients with RV-DE (RV-DE+) (p<0.05), while LV-EDV and LV-ESV were 80±28 mL and 40±26 mL, respectively, for RV-DE- and 100±45 mL and 65±49 mL, respectively, for RV-DE+ (p<0.05). The prevalence of RV-DE in patients with LV primary involvement is not negligible and it is found mainly in patients with CD and PDM and then in patients with MI and MP. It is more often associated with LV-EF and RV-EF reduction and increase in LV volumes.
Collapse
Affiliation(s)
| | - Erica Maffei
- Department of Radiology, Area Vasta 1/ASUR Marche, Urbino, Italy.
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti, Italy.
| | - Giuseppe Runza
- Department of Radiology, P.O. Umberto I, ASP 8, Siracusa, Italy.
| | | | | | - Andrea Guaricci
- Department of Cardiology, University Hospital of Bari, Bari, Italy.
| | | | | | | |
Collapse
|
26
|
Wang S, Patel H, Miller T, Ameyaw K, Narang A, Chauhan D, Anand S, Anyanwu E, Besser SA, Kawaji K, Liu XP, Lang RM, Mor-Avi V, Patel AR. AI Based CMR Assessment of Biventricular Function: Clinical Significance of Intervendor Variability and Measurement Errors. JACC Cardiovasc Imaging 2022; 15:413-427. [PMID: 34656471 PMCID: PMC8917993 DOI: 10.1016/j.jcmg.2021.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether left ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) and left ventricular mass (LVM) measurements made using 3 fully automated deep learning (DL) algorithms are accurate and interchangeable and can be used to classify ventricular function and risk-stratify patients as accurately as an expert. BACKGROUND Artificial intelligence is increasingly used to assess cardiac function and LVM from cardiac magnetic resonance images. METHODS Two hundred patients were identified from a registry of individuals who underwent vasodilator stress cardiac magnetic resonance. LVEF, LVM, and RVEF were determined using 3 fully automated commercial DL algorithms and by a clinical expert (CLIN) using conventional methodology. Additionally, LVEF values were classified according to clinically important ranges: <35%, 35% to 50%, and ≥50%. Both ejection fraction values and classifications made by the DL ejection fraction approaches were compared against CLIN ejection fraction reference. Receiver-operating characteristic curve analysis was performed to evaluate the ability of CLIN and each of the DL classifications to predict major adverse cardiovascular events. RESULTS Excellent correlations were seen for each DL-LVEF compared with CLIN-LVEF (r = 0.83-0.93). Good correlations were present between DL-LVM and CLIN-LVM (r = 0.75-0.85). Modest correlations were observed between DL-RVEF and CLIN-RVEF (r = 0.59-0.68). A >10% error between CLIN and DL ejection fraction was present in 5% to 18% of cases for the left ventricle and 23% to 43% for the right ventricle. LVEF classification agreed with CLIN-LVEF classification in 86%, 80%, and 85% cases for the 3 DL-LVEF approaches. There were no differences among the 4 approaches in associations with major adverse cardiovascular events for LVEF, LVM, and RVEF. CONCLUSIONS This study revealed good agreement between automated and expert-derived LVEF and similarly strong associations with outcomes, compared with an expert. However, the ability of these automated measurements to accurately classify left ventricular function for treatment decision remains limited. DL-LVM showed good agreement with CLIN-LVM. DL-RVEF approaches need further refinements.
Collapse
Affiliation(s)
- Shuo Wang
- University of Chicago, Chicago, Illinois,Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hena Patel
- University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | | - Keigo Kawaji
- University of Chicago, Chicago, Illinois,Illinois Institute of Technology, Chicago, Illinois
| | - Xing-Peng Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
27
|
Balancing Speed and Accuracy in Cardiac Magnetic Resonance Function Post-Processing: Comparing 2 Levels of Automation in 3 Vendors to Manual Assessment. Diagnostics (Basel) 2021; 11:diagnostics11101758. [PMID: 34679457 PMCID: PMC8534796 DOI: 10.3390/diagnostics11101758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Automating cardiac function assessment on cardiac magnetic resonance short-axis cines is faster and more reproducible than manual contour-tracing; however, accurately tracing basal contours remains challenging. Three automated post-processing software packages (Level 1) were compared to manual assessment. Subsequently, automated basal tracings were manually adjusted using a standardized protocol combined with software package-specific relative-to-manual standard error correction (Level 2). All post-processing was performed in 65 healthy subjects. Manual contour-tracing was performed separately from Level 1 and 2 automated analysis. Automated measurements were considered accurate when the difference was equal or less than the maximum manual inter-observer disagreement percentage. Level 1 (2.1 ± 1.0 min) and Level 2 automated (5.2 ± 1.3 min) were faster and more reproducible than manual (21.1 ± 2.9 min) post-processing, the maximum inter-observer disagreement was 6%. Compared to manual, Level 1 automation had wide limits of agreement. The most reliable software package obtained more accurate measurements in Level 2 compared to Level 1 automation: left ventricular end-diastolic volume, 98% and 53%; ejection fraction, 98% and 60%; mass, 70% and 3%; right ventricular end-diastolic volume, 98% and 28%; ejection fraction, 80% and 40%, respectively. Level 1 automated cardiac function post-processing is fast and highly reproducible with varying accuracy. Level 2 automation balances speed and accuracy.
Collapse
|
28
|
Demir A, Wiesemann S, Erley J, Schmitter S, Trauzeddel RF, Pieske B, Hansmann J, Kelle S, Schulz-Menger J. Traveling Volunteers: A Multi-Vendor, Multi-Center Study on Reproducibility and Comparability of 4D Flow Derived Aortic Hemodynamics in Cardiovascular Magnetic Resonance. J Magn Reson Imaging 2021; 55:211-222. [PMID: 34173297 DOI: 10.1002/jmri.27804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Implementation of four-dimensional flow magnetic resonance (4D Flow MR) in clinical routine requires awareness of confounders. PURPOSE To investigate inter-vendor comparability of 4D Flow MR derived aortic hemodynamic parameters, assess scan-rescan repeatability, and intra- and interobserver reproducibility. STUDY TYPE Prospective multicenter study. POPULATION Fifteen healthy volunteers (age 24.5 ± 5.3 years, 8 females). FIELD STRENGTH/SEQUENCE 3 T, vendor-provided and clinically used 4D Flow MR sequences of each site. ASSESSMENT Forward flow volume, peak velocity, average, and maximum wall shear stress (WSS) were assessed via nine planes (P1-P9) throughout the thoracic aorta by a single observer (AD, 2 years of experience). Inter-vendor comparability as well as scan-rescan, intra- and interobserver reproducibility were examined. STATISTICAL TESTS Equivalence was tested setting the 95% confidence interval of intraobserver and scan-rescan difference as the limit of clinical acceptable disagreement. Intraclass correlation coefficient (ICC) and Bland-Altman plots were used for scan-rescan reproducibility and intra- and interobserver agreement. A P-value <0.05 was considered statistically significant. ICCs ≥ 0.75 indicated strong correlation (>0.9: excellent, 0.75-0.9: good). RESULTS Ten volunteers finished the complete study successfully. 4D flow derived hemodynamic parameters between scanners of three different vendors are not equivalent exceeding the equivalence range. P3-P9 differed significantly between all three scanners for forward flow (59.1 ± 13.1 mL vs. 68.1 ± 12.0 mL vs. 55.4 ± 13.1 mL), maximum WSS (1842.0 ± 190.5 mPa vs. 1969.5 ± 398.7 mPa vs. 1500.6 ± 247.2 mPa), average WSS (1400.0 ± 149.3 mPa vs. 1322.6 ± 211.8 mPa vs. 1142.0 ± 198.5 mPa), and peak velocity between scanners I vs. III (114.7 ± 12.6 cm/s vs. 101.3 ± 15.6 cm/s). Overall, the plane location at the sinotubular junction (P1) presented most inter-vendor stability (forward: 78.5 ± 15.1 mL vs. 80.3 ± 15.4 mL vs. 79.5 ± 19.9 mL [P = 0.368]; peak: 126.4 ± 16.7 cm/s vs. 119.7 ± 13.6 cm/s vs. 111.2 ± 22.6 cm/s [P = 0.097]). Scan-rescan reproducibility and intra- and interobserver variability were good to excellent (ICC ≥ 0.8) with best agreement for forward flow (ICC ≥ 0.98). DATA CONCLUSION The clinical protocol used at three different sites led to differences in hemodynamic parameters assessed by 4D flow. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Aylin Demir
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Stephanie Wiesemann
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jennifer Erley
- Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Ralf Felix Trauzeddel
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Burkert Pieske
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Jochen Hansmann
- Department of Radiology, Theresienkrankenhaus und St. Hedwig-Klinik, Mannheim, Germany
| | - Sebastian Kelle
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
29
|
Penso M, Moccia S, Scafuri S, Muscogiuri G, Pontone G, Pepi M, Caiani EG. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 204:106059. [PMID: 33812305 DOI: 10.1016/j.cmpb.2021.106059] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Segmentation of the left ventricular (LV) myocardium (Myo) and RV endocardium on cine cardiac magnetic resonance (CMR) images represents an essential step for cardiac-function evaluation and diagnosis. In order to have a common reference for comparing segmentation algorithms, several CMR image datasets were made available, but in general they do not include the most apical and basal slices, and/or gold standard tracing is limited to only one of the two ventricles, thus not fully corresponding to real clinical practice. Our aim was to develop a deep learning (DL) approach for automated segmentation of both RV and LV chambers from short-axis (SAX) CMR images, reporting separately the performance for basal slices, together with the applied criterion of choice. METHOD A retrospectively selected database (DB1) of 210 cine sequences (3 pathology groups) was considered: images (GE, 1.5 T) were acquired at Centro Cardiologico Monzino (Milan, Italy), and end-diastolic (ED) and end-systolic frames (ES) were manually segmented (gold standard, GS). Automatic ED and ES RV and LV segmentation were performed with a U-Net inspired architecture, where skip connections were redesigned introducing dense blocks to alleviate the semantic gap between the U-Net encoder and decoder. The proposed architecture was trained including: A) the basal slices where the Myo surrounded the LV for at least the 50% and all the other slice; B) all the slices where the Myo completely surrounded the LV. To evaluate the clinical relevance of the proposed architecture in a practical use case scenario, a graphical user interface was developed to allow clinicians to revise, and correct when needed, the automatic segmentation. Additionally, to assess generalizability, analysis of CMR images obtained in 12 healthy volunteers (DB2) with different equipment (Siemens, 3T) and settings was performed. RESULTS The proposed architecture outperformed the original U-Net. Comparing the performance on DB1 between the two criteria, no significant differences were measured when considering all slices together, but were present when only basal slices were examined. Automatic and manually-adjusted segmentation performed similarly compared to the GS (bias±95%LoA): LVEDV -1±12 ml, LVESV -1±14 ml, RVEDV 6±12 ml, RVESV 6±14 ml, ED LV mass 6±26 g, ES LV mass 5±26 g). Also, generalizability showed very similar performance, with Dice scores of 0.944 (LV), 0.908 (RV) and 0.852 (Myo) on DB1, and 0.940 (LV), 0.880 (RV), and 0.856 (Myo) on DB2. CONCLUSIONS Our results support the potential of DL methods for accurate LV and RV contours segmentation and the advantages of dense skip connections in alleviating the semantic gap generated when high level features are concatenated with lower level feature. The evaluation on our dataset, considering separately the performance on basal and apical slices, reveals the potential of DL approaches for fast, accurate and reliable automated cardiac segmentation in a real clinical setting.
Collapse
Affiliation(s)
- Marco Penso
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Sara Moccia
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy; The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Stefano Scafuri
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Giuseppe Muscogiuri
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Mauro Pepi
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Enrico Gianluca Caiani
- Department of Electronics, Information and Biomedical engineering, Politecnico di Milano, Milan, Italy; Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Milan, Italy.
| |
Collapse
|
30
|
Reiter C, Reiter U, Kräuter C, Nizhnikava V, Greiser A, Scherr D, Schmidt A, Fuchsjäger M, Reiter G. Differences in left ventricular and left atrial function assessed during breath-holding and breathing. Eur J Radiol 2021; 141:109756. [PMID: 34023727 DOI: 10.1016/j.ejrad.2021.109756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To analyze differences in systolic and diastolic left ventricular (LV) as well as left atrial (LA) function parameters obtained from identical cardiac magnetic resonance (MR) imaging techniques during inspiratory breath-holding and breathing (breath-hold to breathing differences). METHOD 56 subjects without signs of heart failure (23/33 male/female, age 58 ± 14 years) underwent 3 T MR cine real-time and transmitral phase contrast imaging with the same spatial and temporal resolution during inspiratory breath-holding and free breathing. LV and LA volumetric function parameters were derived from segmentation of cine series, transmitral peak velocities and early-diastolic myocardial peak velocity from phase contrast series. Corresponding breath-hold and breathing parameters were compared by Bland-Altman analysis; repeatability of breath-hold and breathing measurements was quantified by variance component analysis. p < 0.05 was regarded as statistically significant. RESULTS Mean differences between results obtained during inspiratory breath-holding vs. breathing were significant for LV volumetric function (end-diastolic volume=-7 mL, p = 0.002; end-systolic volume=-7 mL, p < 0.001; ejection fraction = 3 %, p < 0.001; peak ejection rate = 22 mL/s, p = 0.002; early-diastolic peak filling rate=-34 mL/s, p = 0.025), LA volumetric function (maximum volume=-6 mL, p < 0.001; total ejection fraction=-4%, p < 0.001; active ejection fraction=-2%, p = 0.013; before contraction ejection fraction=-4%, p < 0.001) and early-diastolic velocities (transmitral=-6 cm/s, p < 0.001; tissue velocity=-1.8 cm/s, p < 0.001). Standard deviations of breath-hold-to-breathing differences exceeded the corresponding repeatabilities of breath-hold and breathing measurements. CONCLUSIONS Systolic and diastolic LV and LA function parameters acquired during inspiratory breath-holding and breathing differ, and large inter-individual breath-hold-to-breathing variations are possible. Thus, the breathing state should be taken into account, especially when comparing results in patient follow-up acquired in different respiratory states.
Collapse
Affiliation(s)
- Clemens Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria; Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria.
| | - Corina Kräuter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria; Institute of Medical Engineering, Graz University of Technology, Austria.
| | - Volha Nizhnikava
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria.
| | - Andreas Greiser
- Research and Development, Siemens Healthcare GmbH, Erlangen, Germany.
| | - Daniel Scherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria.
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria.
| | - Gert Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria; Research and Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria.
| |
Collapse
|
31
|
Raisi-Estabragh Z, Kenawy AAM, Aung N, Cooper J, Munroe PB, Harvey NC, Petersen SE, Khanji MY. Variation in left ventricular cardiac magnetic resonance normal reference ranges: systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2021; 22:494-504. [PMID: 32460308 PMCID: PMC8081427 DOI: 10.1093/ehjci/jeaa089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS To determine population-related and technical sources of variation in cardiac magnetic resonance (CMR) reference ranges for left ventricular (LV) quantification through a formal systematic review and meta-analysis. METHODS AND RESULTS This study is registered with the International Prospective Register of Systematic Reviews (CRD42019147161). Relevant studies were identified through electronic searches and assessed by two independent reviewers based on predefined criteria. Fifteen studies comprising 2132 women and 1890 men aged 20-91 years are included in the analysis. Pooled LV reference ranges calculated using random effects meta-analysis with inverse variance weighting revealed significant differences by age, sex, and ethnicity. Men had larger LV volumes and higher LV mass than women [LV end-diastolic volume (mean difference = 6.1 mL/m2, P-value = 0.014), LV end-systolic volume (MD = 4 mL/m2, P-value = 0.033), LV mass (mean difference = 12 g/m2, P-value = 7.8 × 10-9)]. Younger individuals had larger LV end-diastolic volumes than older ages (20-40 years vs. ≥65 years: women MD = 14.0 mL/m2, men MD = 14.7 mL/m2). East Asians (Chinese, Korean, Singaporean-Chinese, n = 514) had lower LV mass than Caucasians (women: MD = 6.4 g/m2, P-value = 0.016; men: MD = 9.8 g/m2, P-value = 6.7 × 10-5). Between-study heterogeneity was high for all LV parameters despite stratification by population-related factors. Sensitivity analyses identified differences in contouring methodology, magnet strength, and post-processing software as potential sources of heterogeneity. CONCLUSION There is significant variation between CMR normal reference ranges due to multiple population-related and technical factors. Whilst there is need for population-stratified reference ranges, limited sample sizes and technical heterogeneity precludes derivation of meaningful unified ranges from existing reports. Wider representation of different populations and standardization of image analysis is urgently needed to establish such reference distributions.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Asmaa A M Kenawy
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Jackie Cooper
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Patricia B Munroe
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit (MRCLEU), Tremona Rd, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Mohammed Y Khanji
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
32
|
Yousef HA, Hamdan AES, Elminshawy A, Mohammed NAA, Ibrahim AS. Corrected calculation of the overestimated ejection fraction in valvular heart disease by phase-contrast cardiac magnetic resonance imaging for better prediction of patient morbidity. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-019-0130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To establish a more accurate technique for the assessment of the left ventricular function correlated with patients’ clinical condition avoiding the miscalculation of the ejection fraction in valvular regurgitation. A prospective study carried out between July 2018 and June 2019. The studied group included 35 subjects, 25 patients with valvular regurgitation, and 10 healthy control subjects. All subjects underwent cardiovascular magnetic resonance examination to evaluate the ejection fraction by two methods: the volumetric method which assesses stroke volume via subtraction of the end-systolic volume from the end-diastolic volume, and phase-contrast method which assesses the aortic stroke volume via a through-plane phase contrast across the aortic valve. The sensitivity, specificity, P value and the area under the curve of both methods were calculated.
Results
In the healthy group, using the volumetric method, the calculated mean ejection fraction was 62.44 ± 6.61, while that calculated by the phase-contrast method was 64.34 ± 5.33, with a non-significant difference (P = 0.62) showing the validity of the phase-contrast method. In the patients’ group, by using the volumetric method, the calculated mean ejection fraction was 47.17 ± 14.31%, which was significantly higher than that calculated by the phase-contrast method (29.39 ± 7.98%) (P = 0.02). According to the results of the calculation of the ejection fraction by the volumetric method, there were 18 patients (72%) having impaired cardiac function and 7 (28%) patients of normal function; while according to the phase-contrast method, all the 25 patients had impaired cardiac function. The current study shows that the phase-contrast cardiac magnetic resonance had 89.29% sensitivity and 85.7% specificity in diagnosing impaired cardiac function with the area under the curve of 0.87 (P = 0.00).
Conclusion
The phase-contrast cardiac magnetic resonance can provide a better assessment of the ejection fraction in valvular regurgitation.
Collapse
|
33
|
Ahmad M, Wu G, Frank L, Dimaano MM. Validation of left ventricular volume and ejection fraction measurements by high‐definition blood flow imaging: Comparisons with cardiac magnetic resonance imaging and contrast echocardiography. Echocardiography 2020; 37:1975-1980. [DOI: 10.1111/echo.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Masood Ahmad
- Division of Cardiology Department of Internal Medicine University of Texas Medical Branch Galveston TX USA
| | - Geru Wu
- Division of Cardiology Department of Internal Medicine University of Texas Medical Branch Galveston TX USA
| | - Luba Frank
- Division of Cardiology Department of Internal Medicine University of Texas Medical Branch Galveston TX USA
| | - Meneleo M. Dimaano
- Division of Cardiology Department of Internal Medicine University of Texas Medical Branch Galveston TX USA
| |
Collapse
|