1
|
Guo S, Shaoni GLL, Stuart-Smith WA, Davies AJ, Gifford JA. Dietary Intake of Masters Athletes: A Systematic Review. Nutrients 2023; 15:4973. [PMID: 38068832 PMCID: PMC10708321 DOI: 10.3390/nu15234973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Dietary practices of masters athletes (MAs) may promote healthy ageing; however, they are poorly understood. The aims of this systematic review were to synthesise the literature on the dietary intakes of MAs and undertake comparisons between younger (35-50 years) and older (>50 years) MAs and the general population. A search was conducted across seven databases to identify relevant publications for screening and data extraction. Averages for energy intake (EI), macronutrients, and micronutrients were compared with data from the 2011-2012 Australian Health Survey (general population). Twenty-six studies (n = 2819) were included. Energy intake was higher for older (8908 kJ/d versus 7792 kJ/d) but not younger MAs (9073 kJ/d versus 8872 kJ/d) versus the general population. Younger versus older male MAs had higher energy and macronutrient intakes. Energy intake for older was comparable to younger female MAs (7819 kJ/d versus 7485 kJ/d), but older had higher protein, lower carbohydrate, and higher micronutrient intakes. Micronutrient intake was higher in MAs than the general population. Similar EIs for older MAs and younger general population may indicate potential for a higher-quality diet. Younger female MAs may restrict or misreport EI, requiring further investigation. There is a need for more comprehensive assessments of dietary intake in MAs to ascertain diet quality in relation to health.
Collapse
Affiliation(s)
- Sheran Guo
- Discipline of Nutrition and Dietetics, School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (S.G.); (W.A.S.-S.)
| | - Gabriella L. L. Shaoni
- Discipline of Nutrition and Dietetics, School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (S.G.); (W.A.S.-S.)
| | - Wendy A. Stuart-Smith
- Discipline of Nutrition and Dietetics, School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (S.G.); (W.A.S.-S.)
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, North Sydney, NSW 2060, Australia
| | - Alyse J. Davies
- Discipline of Nutrition and Dietetics, School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (S.G.); (W.A.S.-S.)
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Janelle A. Gifford
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Discipline of Exercise and Sport Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sport and Physical Activity Research and Teaching Network (SPARTAN), The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
Jiménez-Alfageme R, Campodónico ME, Sospedra I, Giménez-Monzo D, García-Jaén M, Juliá-Sanchís R, Ausó E, Martínez-Sanz JM. Development of an Instrument to Evaluate the Intake of Liquids, Food and Supplements in Endurance Competitions: Nutritional Intake Questionnaire for Endurance Competitions-NIQEC. Nutrients 2023; 15:nu15081969. [PMID: 37111186 PMCID: PMC10143029 DOI: 10.3390/nu15081969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND In the last few years endurance sports have experienced a great increase in the number of competitions and participants. Dietary-nutritional planning is key for performing well during such competitions. To date, there is no questionnaire expressly developed to be able to analyze the consumption of liquids, foods, and supplements, as well as gastrointestinal problems in these events. This study describes the development of the Nutritional Intake Questionnaire for Endurance Competitions (NIQEC). METHODS The study was composed in the following phases: (1) Bibliographic search for the most important nutrients, (2) focus groups (17 dietitian-nutritionists and 15 experienced athletes) and generation of items, (3) Delphi surveys, and (4) cognitive interviews. RESULTS After an initial shaping of the questionnaire with the items that emerged in the focus groups, their relevance was evaluated by means of the Delphi survey, which showed more than 80% approval for most items. Finally, the cognitive interviews indicated that the questionnaire was simple and complete for its purpose. The final NIQEC (n = 50 items) was divided in 5 sections: Demographic data; sports data; consumption of liquids, food and supplements before, during, and after the competition; gastrointestinal complaints, and dietary-nutritional planning for the competition. CONCLUSIONS The NICEQ is a useful tool that allows collecting information from participants on sociodemographic factors and gastrointestinal complaints, and estimating the intake of liquid, food, and supplements, for endurance competitions.
Collapse
Affiliation(s)
- Rubén Jiménez-Alfageme
- Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
- Food and Nutrition Research Group (ALINUT), University of Alicante, 03690 Alicante, Spain
- Physiotherapy Department, Faculty of Health Sciences, European University of Gasteiz-EUNEIZ, 01013 Vitoria-Gasteiz, Spain
| | | | - Isabel Sospedra
- Food and Nutrition Research Group (ALINUT), University of Alicante, 03690 Alicante, Spain
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
| | - Daniel Giménez-Monzo
- Food and Nutrition Research Group (ALINUT), University of Alicante, 03690 Alicante, Spain
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science Health, University of Alicante, 03690 Alicante, Spain
| | - Miguel García-Jaén
- Area of Physical Education and Sports, Faculty of Education, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Rocío Juliá-Sanchís
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
| | - Eva Ausó
- Department of Optics, Pharmacology and Anatomy, Faculty of Sciences, University of Alicante, 03690 Alicante, Spain
| | - José Miguel Martínez-Sanz
- Food and Nutrition Research Group (ALINUT), University of Alicante, 03690 Alicante, Spain
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
3
|
Scrivin R, Costa RJS, Pelly F, Lis D, Slater G. Carbohydrate knowledge, beliefs, and intended practices, of endurance athletes who report exercise-associated gastrointestinal symptoms. Front Nutr 2023; 10:1133022. [PMID: 37125044 PMCID: PMC10130506 DOI: 10.3389/fnut.2023.1133022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
This study aimed to explore carbohydrate (CHO) knowledge, beliefs, and intended practices of endurance athletes who experience exercise-associated gastrointestinal symptoms (Ex-GIS) compared to those without Ex-GIS. A validated online questionnaire was completed by endurance athletes (n = 201) participating in >60 min of exercise that present with Ex-GIS (n = 137) or without (n = 64). Descriptive statistics were used for parametric and non-parametric data with appropriate significance tests. Associations between categorical data were assessed by Chi-square analysis, and post-hoc Bonferroni tests were applied when significant. A content analysis of open-ended responses was grouped into themes, and quantitative statistics were applied. Participants included runners (n = 114, 57%), triathletes (n = 43, 21%) and non-running sports (n = 44, 21%) who participate in recreational competitive (n = 74, 37%), recreational non-competitive (n = 64, 32%), or competitive regional, national, or international levels (n = 63, 31%). Athletes correctly categorized CHO (x̄ = 92-95%) and non-CHO (x̄ = 88-90%) food and drink sources. On a Likert scale of 1 (strongly disagree) to 5 (strongly agree) athletes typically agree or strongly agree that consuming CHO around key training sessions and competitions enhances athletic performance [median = 4 (IQR, 4-5)], and they intend to consume more CHO around exercise [median = 3 (IQR, 2-3)]. No differences in beliefs and intentions were found among athletes with or without Ex-GIS. To enhance athletic performance, most endurance athletes intend to consume more CHO around exercise. Adequate knowledge of CHO-containing food sources was apparent; however, specific CHO ingestion practices remain to be verified.
Collapse
Affiliation(s)
- Rachel Scrivin
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Faculty of Health, Education and Environment, Te Pukenga, New Zealand Institute of Skills and Technology, Tauranga, New Zealand
| | - Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Melbourne, VIC, Australia
| | - Fiona Pelly
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Dana Lis
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, United States
| | - Gary Slater
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
4
|
de Souza JG, Del Coso J, Fonseca FDS, Silva BVC, de Souza DB, da Silva Gianoni RL, Filip-Stachnik A, Serrão JC, Claudino JG. Risk or benefit? Side effects of caffeine supplementation in sport: a systematic review. Eur J Nutr 2022; 61:3823-3834. [PMID: 35380245 DOI: 10.1007/s00394-022-02874-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/17/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE The aim of this study was to systematically review evidence on the prevalence and magnitude of side effects associated with caffeine supplementation in athletes. METHODS Systematic searches through the PubMed, VHL, Scopus, and Web of Science databases were conducted according to the PRISMA guidelines. Peer-reviewed articles written in English that reported the prevalence/percentage or magnitude/effect size of side effects after caffeine supplementation in athletes in a sports context were included. Studies were grouped by the dose of caffeine administered as follows: low = ≤ 3.0 mg/kg; moderate = from 3.1 to 6.0 mg/kg; high = ≥ 6.1 mg/kg. The magnitude of the side effects was calculated with effect sizes. RESULTS The search retrieved 25 studies that met the inclusion/exclusion criteria with a pooled sample of 421 participants. The supplementation with caffeine produced a higher prevalence or magnitude of all side effects under investigation when compared to placebo/control situations. The prevalence (magnitude) was between 6 and 34% (ES between 0.13 and 1.11) for low doses of caffeine, between 0 and 34% (ES between -0.13 and 1.20) for moderate doses of caffeine, and between 8 and 83% (ES between 0.04 and 1.52) with high doses of caffeine. The presence of tachycardia/heart palpitations and the negative effects on sleep onset had the highest prevalence and magnitude, in athletes using supplementation with caffeine. CONCLUSION In summary, caffeine supplementation in the doses habitually used to enhance physical performance produces several side effects, both after exercise and at least 24 h after the ingestion. However, the prevalence and magnitude of side effects with high doses of caffeine were habitually higher than with low doses of caffeine. From a practical perspective, using ~3.0 mg/kg of caffeine may be the dose of choice to obtain the ergogenic benefits of caffeine with the lowest prevalence and magnitude of side effects.
Collapse
Affiliation(s)
- Jefferson Gomes de Souza
- Laboratory of Nutrition and Sports Training, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| | - Fabiano de Souza Fonseca
- Physical Education Department - Laboratory of Sports Science, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Bruno Victor Corrêa Silva
- Faculty of Physical Education, University of Itaúna, Itaúna, Minas Gerais, Brazil
- Physical Education College, University Center of Belo Horizonte -Uni BH, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Aleksandra Filip-Stachnik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland.
| | - Julio Cerca Serrão
- Laboratory of Biomechanics - School of Physical Education and Sport, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - João Gustavo Claudino
- Faculty of Physical Education, University of Itaúna, Itaúna, Minas Gerais, Brazil
- Research and Development Department, LOAD CONTROL, Contagem, Minas Gerais, Brazil
- Laboratory of Biomechanics - School of Physical Education and Sport, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Physical Education - Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
5
|
Running-Induced Metabolic and Physiological Responses Using New Zealand Blackcurrant Extract in a Male Ultra-Endurance Runner: A Case Study. J Funct Morphol Kinesiol 2022; 7:jfmk7040104. [PMID: 36547650 PMCID: PMC9787938 DOI: 10.3390/jfmk7040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Physical training for ultra-endurance running provides physiological adaptations for exercise-induced substrate oxidation. We examined the effects of New Zealand blackcurrant (NZBC) extract on running-induced metabolic and physiological responses in a male amateur ultra-endurance runner (age: 40 years, body mass: 65.9 kg, BMI: 23.1 kg·m−2, body fat: 14.7%, V˙O2max: 55.3 mL·kg−1·min−1, resting heart rate: 45 beats·min−1, running history: 6 years, marathons: 20, ultra-marathons: 28, weekly training distance: ~80 km, weekly running time: ~9 h). Indirect calorimetry was used and heart rate recorded at 15 min intervals during 120 min of treadmill running (speed: 10.5 km·h−1, 58% V˙O2max) in an environmental chamber (temperature: ~26 °C, relative humidity: ~70%) at baseline and following 7 days intake of NZBC extract (210 mg of anthocyanins·day−1) with constant monitoring of core temperature. The male runner had unlimited access to water and consumed a 100-kcal energy gel at 40- and 80 min during the 120 min run. There were no differences (mean of 8, 15 min measurements) for minute ventilation, oxygen uptake, carbon dioxide production and core temperature. With NZBC extract, the respiratory exchange ratio was 0.02 units lower, carbohydrate oxidation was 11% lower and fat oxidation was 23% higher (control: 0.39 ± 0.08, NZBC extract: 0.48 ± 0.12 g·min−1, p < 0.01). Intake of the energy gel did not abolish the enhanced fat oxidation by NZBC extract. Seven days’ intake of New Zealand blackcurrant extract altered exercise-induced substrate oxidation in a male amateur ultra-endurance runner covering a half-marathon distance in 2 h. More studies are required to address whether intake of New Zealand blackcurrant extract provides a nutritional ergogenic effect for ultra-endurance athletes to enhance exercise performance.
Collapse
|
6
|
Running for Your Life: Metabolic Effects of a 160.9/230 km Non-Stop Ultramarathon Race on Body Composition, Inflammation, Heart Function, and Nutritional Parameters. Metabolites 2022; 12:metabo12111138. [DOI: 10.3390/metabo12111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Moderate endurance exercise leads to an improvement in cardiovascular performance, stress resilience, and blood function. However, the influence of chronic endurance exercise over several hours or days is still largely unclear. We examined the influence of a non-stop 160.9/230 km ultramarathon on body composition, stress/cardiac response, and nutrition parameters. Blood samples were drawn before (pre) and after the race (post) and analyzed for ghrelin, insulin, irisin, glucagon, cortisol, kynurenine, neopterin, and total antioxidant capacity. Additional measurements included heart function by echocardiography, nutrition questionnaires, and body impedance analyses. Of the 28 included ultra-runners (7f/21m), 16 participants dropped out during the race. The remaining 12 finishers (2f/10m) showed depletion of antioxidative capacities and increased inflammation/stress (neopterin/cortisol), while energy metabolism (insulin/glucagon/ghrelin) remained unchanged despite a high negative energy balance. Free fat mass, protein, and mineral content decreased and echocardiography revealed a lower stroke volume, left end diastolic volume, and ejection fraction post race. Optimizing nutrition (high-density protein-rich diet) during the race may attenuate the observed catabolic and inflammatory effects induced by ultramarathon running. As a rapidly growing discipline, new strategies for health prevention and extensive monitoring are needed to optimize the athletes’ performance.
Collapse
|
7
|
Takayama F, Mori H. The Relationship between 24 h Ultramarathon Performance and the "Big Three" Strategies of Training, Nutrition, and Pacing. Sports (Basel) 2022; 10:sports10100162. [PMID: 36287775 PMCID: PMC9609733 DOI: 10.3390/sports10100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The present case study examined the relationship between 24 h ultramarathon performance and the "big three" strategies of training, nutrition, and pacing. METHODS A 32-year-old male ultramarathon runner (body mass: 68.5 kg, height: 179 cm) participated in a 24 h ultramarathon race. Training status was quantified based on from a GPS sports watch. The nutritional status was evaluated during the week leading up to the race, and blood glucose level and heart rate were measured during the race. RESULTS His aim of the distance was 200 km, but the actual performance was 171.760 km. The blood glucose level was stable because of adequate CHO intake before (7.2 ± 0.8 g/kg/day) and during the race (48 g/h). The running speed decreased in the middle and later stages of the race despite adequate CHO intake and a lack of high intensity running in the early stage of the race. The longest training session before the race (80 km) had to be significantly shorter compared to the aim. CONCLUSIONS For optimal 24 h ultramarathon performance, the "big three" strategies of training, nutrition, and pacing are all important. However, the performance level estimated based on previous studies may be achievable even with insufficient training, as long as the nutritional and pacing strategies are appropriate.
Collapse
|
8
|
Machado ÁS, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P. Effects of different hydration supports on stride kinematics, comfort, and impact accelerations during running. Gait Posture 2022; 97:115-121. [PMID: 35917702 DOI: 10.1016/j.gaitpost.2022.07.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Different supports for hydration can influence total body mass and affect running biomechanics. RESEARCH QUESTION Do different hydration supports affect the perceived exertion and comfort, stride kinematics, and impact accelerations during running? METHODS This was a crossover study design. Thirteen trail runners completed a treadmill running test divided into four different durations and randomized hydration supports conditions, lasting 8 min each at moderate intensity: A) waist bag (0.84 kg); B) medium load backpack (0.84 kg); C) full load backpack (3.40 kg); and D) a control condition without water support. Impact accelerations were measured for 30 s in 4, 6, and 8 min. The rate of perceived exertion and heart rate were registered on minutes 4 and 8. At the last minute of each condition, comfort perception was registered RESULTS AND SIGNIFICANCE: No condition affected the stride kinematics. Full load backpack condition reduced head acceleration peak (-0.21 g; p = 0.04; ES=0.4) and head acceleration magnitude (-0.23 g; p = 0.03; ES=0.4), and increased shock attenuation (3.08 g; p = 0.04; ES=0.3). It also elicited higher perceived exertion (p < 0.05; ES>0.8) being considered heavier (p < 0.01; ES > 1.1). The waist bag condition was more comfortable in terms of noise (p = 0.006; ES=1.3) and humidity/heat (p = 0.001; ES=0.8). The waist bag was the most comfortable support. On the other hand, the full backpack elicited lower comfort and was the only generating compensatory adjustments. These results may help to improve design of full load backpack aiming at comfort for runners.
Collapse
Affiliation(s)
- Álvaro S Machado
- Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, Brazil
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain; Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, Valencia, Spain.
| | - Irene Jimenez-Perez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain; Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, Valencia, Spain
| | - Marina Gil-Calvo
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain; IIS Aragon - iHealthy, Department of physiatry and nursing, University of Zaragoza, Huesca, Spain
| | - Felipe P Carpes
- Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, Brazil
| | - Pedro Perez-Soriano
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| |
Collapse
|
9
|
Habitual Total Drinking Fluid Intake Did Not Affect Plasma Hydration Biomarkers among Young Male Athletes in Beijing, China: A Cross-Sectional Study. Nutrients 2022; 14:nu14112311. [PMID: 35684112 PMCID: PMC9182946 DOI: 10.3390/nu14112311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
The purposes of this study were to explore the drinking patterns, and urinary and plasma hydration biomarkers of young adults with different levels of habitual total drinking fluid intake. A cross-sectional study was conducted among 111 young male athletes in Beijing, China. Total drinking fluids and water from food were assessed by a 7-day, 24-h fluid intake questionnaire and the duplicate portion method, respectively. The osmolality and electrolyte concentrations of the 24-h urine and fasting blood samples were tested. Differences in groups LD1 (low drinker), LD2, HD1, and HD2 (high drinker), divided according to the quartiles of total drinking fluids, were compared using one-way ANOVA, Kruskal−Wallis H-tests, and chi-squared tests. A total of 109 subjects completed the study. The HD2 group had greater amounts of TWI (total water intake) and higher and lower contributions of total drinking fluids and water from food to TWI, respectively, than the LD1, LD2, and HD1 groups (p < 0.05), but the amounts of water from food did not differ significantly among the four groups (all p > 0.05). Participants in the HD2 group had higher amounts of water than participants in the LD1, LD2, and HD1 groups (p < 0.05); SSBs were the second top contributor of total drinking fluids, ranging from 24.0% to 31.8%. The percentage of subjects in optimal hydration status increased from 11.8% in the LD1 group to 58.8% in the HD2 group (p < 0.05). The HD2 and HD1 groups had 212−227 higher volumes of urine than the LD1 and LD2 groups (p < 0.05). No significant differences were found in the plasma biomarkers (p > 0.05), with the exception of higher concentrations of K in the HD1 group than in the LD1 group (p < 0.05). Subjects with higher amounts of total drinking fluids had better hydration status than those with lower total drinking fluids, but not better drinking patterns. Habitual total drinking fluids did not affect the plasma biomarkers.
Collapse
|
10
|
McCubbin AJ. Modelling sodium requirements of athletes across a variety of exercise scenarios - identifying when to test and target, or season to taste. Eur J Sport Sci 2022; 23:992-1000. [PMID: 35616504 DOI: 10.1080/17461391.2022.2083526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEvidence suggests the focus for sodium replacement during exercise should be maintenance of plasma sodium concentration ([Na+]plasma) for any given total body water (TBW) volume. The sodium intake to achieve stable [Na+]plasma given known fluid and electrolyte intakes and losses can be mathematically estimated. Therefore the aim of this investigation was to model sodium requirements of athletes during exercise, observing the influence of sweat rate, exercise duration, body mass, baseline [Na+]plasma and sweat potassium [K+]sweat, and relevance to competition (soccer, elite marathon, and 160 km ultramarathon running). Models were constructed across a range of sweat sodium concentrations ([Na+]sweat) (20-80 mmol·L-1), sweat rates (0.5-2.5 L·h-1) and fluid replacement (10-90% of losses). In the competition-specific scenarios, fluid replacement was calculated to achieve 2% TBW losses. Sodium requirements were driven by fluid replacement (% of losses) and [Na+]sweat, with minimal or no influence of other variables. Replacing sodium was unnecessary in all realistic scenarios modelled for a soccer match and elite marathon. In contrast, the 160 km ultramarathon required ≥47% sodium replacement when [Na+]sweat was ≥40 mmol·L-1 and >80% of fluid losses were replaced. In conclusion, sodium requirements to maintain stable [Na+]plasma during exercise depend on both the proportion of fluid losses replaced, and [Na+]sweat. Only when prolonged exercise is coupled with aggressive fluid replacement (>80%) and whole body [Na+]sweat ≥40 mmol·L-1 does sweat composition testing and significant, targeted sodium replacement appear necessary.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
11
|
Charlot K, Lavoué C, Siracusa J, Chalchat E, Hertert P, Bourrilhon C. Fluctuations in food and fluid intake during a 24-h World Championship: analysis of the deviation from nutritional programs. J Int Soc Sports Nutr 2022; 19:92-109. [PMID: 35599914 PMCID: PMC9116402 DOI: 10.1080/15502783.2022.2046443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background A food and fluid intake program is essential for ultraendurance athletes to maximize performance and avoid possible gastrointestinal symptoms (GIS). However, the ability to follow such a program during a race has been under-assessed. We thus investigated the fluctuations of food and fluid intake during the 24-h run World Championship of 12 elite athletes (6 men and 6 women; age: 46 ± 7 years, height: 170 ± 9 cm, weight: 61.1 ± 9.6 kg, total distance run: 193–272 km) and assessed their ability to follow their nutritional program. Methods Real-time overall intake (fluids, energy, and macronutrients) was recorded and compared to that of their program. The temporal difference in absolute values and the degree of divergence from their program were assessed, divided into four 6-h periods. GIS were recorded during the race. A questionnaire identifying the details of their nutritional program and the self-assessed causes of their inability to follow it was completed by the participants the day after the race. Results Water, total fluid, carbohydrates (CHO), and energy intake decreased during the last quarter of the 24-h ultramarathon relative to the first half (p = 0.024, 0.022, 0.009, and 0.042). However, the differences were no longer significant after these values were normalized by the number of passages in front of the supply tent. The participants progressively failed to follow their nutritional program, with the intake of their planned items dropping to approximately 50% during the last quarter. However, this was adequately compensated by increases in unplanned foods allowing them to match their expected targets. GIS, lack of appeal of the planned items, and attractivity of unplanned items were the main explanations given for their deviation from the program (64, 27, and 27%, respectively). Conclusion Despite evident difficulty in following their nutritional programs (mostly attributed to GIS), elite ultraendurance runners managed to maintain high rates of fluid and food intake during a 24-h ultramarathon and therefore still met their planned elevated nutritional objectives. Abbreviations: CHO: carbohydrates, GIS: gastrointestinal symptoms
Collapse
Affiliation(s)
- Keyne Charlot
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie de l’Exercice et des Activités en Conditions Extrêmes, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Chloé Lavoué
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie de l’Exercice et des Activités en Conditions Extrêmes, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
- School of Psychology, Appetite Control Energy Balance Group, University of Leeds, Leeds UK
| | - Julien Siracusa
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie de l’Exercice et des Activités en Conditions Extrêmes, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Emeric Chalchat
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie de l’Exercice et des Activités en Conditions Extrêmes, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
- Research Center in Human Nutrition, Laboratory AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Cyprien Bourrilhon
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie de l’Exercice et des Activités en Conditions Extrêmes, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| |
Collapse
|
12
|
Kinrade EJ, Galloway SDR. Dietary Observations of Ultra-Endurance Runners in Preparation for and During a Continuous 24-h Event. Front Physiol 2021; 12:765888. [PMID: 34899391 PMCID: PMC8652078 DOI: 10.3389/fphys.2021.765888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Carbohydrate (CHO) intake recommendations for events lasting longer than 3h indicate that athletes should ingest up to 90g.h.−1 of multiple transportable carbohydrates (MTC). We examined the dietary intake of amateur (males: n=11, females: n=7) ultra-endurance runners (mean age and mass 41.5±5.1years and 75.8±11.7kg) prior to, and during a 24-h ultra-endurance event. Heart rate and interstitial glucose concentration (indwelling sensor) were also tracked throughout the event. Pre-race diet (each 24 over 48h) was recorded via weighed intake and included the pre-race meal (1–4h pre-race). In-race diet (24h event) was recorded continuously, in-field, by the research team. Analysis revealed that runners did not meet the majority of CHO intake recommendations. CHO intake over 24–48h pre-race was lower than recommended (4.0±1.4g·kg−1; 42±9% of total energy), although pre-race meal CHO intake was within recommended levels (1.5±0.7g·kg−1). In-race CHO intake was only in the 30–60g·h−1 range (mean intake 33±12g·h−1) with suboptimal amounts of multiple transportable CHO consumed. Exercise intensity was low to moderate (mean 68%HRmax 45%VO2max) meaning that there would still be an absolute requirement for CHO to perform optimally in this ultra-event. Indeed, strong to moderate positive correlations were observed between distance covered and both CHO and energy intake in each of the three diet periods studied. Independent t-tests showed significantly different distances achieved by runners consuming ≥5 vs. <5g·kg−1 CHO in pre-race diet [98.5±18.7miles (158.5±30.1km) vs. 78.0±13.5miles (125.5±21.7km), p=0.04] and ≥40 vs. <40g·h−1 CHO in-race [92.2±13.9miles (148.4±22.4km) vs. 74.7±13.5miles (120.2±21.7km), p=0.02]. Pre-race CHO intake was positively associated with ultra-running experience, but no association was found between ultra-running experience and race distance. No association was observed between mean interstitial glucose and dietary intake, or with race distance. Further research should explore approaches to meeting pre-race dietary CHO intake as well as investigating strategies to boost in-race intake of multiple transportable CHO sources. In 24-h ultra-runners, studies examining the performance enhancing benefits of getting closer to meeting pre-race and in-race carbohydrate recommendations are required.
Collapse
Affiliation(s)
- Emma J Kinrade
- Department of Occupational Therapy and Human Nutrition and Dietetics, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Stuart D R Galloway
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
13
|
Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years' Perspective. Nutrients 2021; 13:4223. [PMID: 34959776 PMCID: PMC8704222 DOI: 10.3390/nu13124223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Emmanouil D. Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Nickos D. Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Tripoli, Greece;
| |
Collapse
|
14
|
Smith KA, Pugh JN, Duca FA, Close GL, Ormsbee MJ. Gastrointestinal pathophysiology during endurance exercise: endocrine, microbiome, and nutritional influences. Eur J Appl Physiol 2021; 121:2657-2674. [PMID: 34131799 DOI: 10.1007/s00421-021-04737-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Michael J Ormsbee
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA. .,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
15
|
Chalchat E, Charlot K, Garcia-Vicencio S, Hertert P, Baugé S, Bourdon S, Bompard J, Farges C, Martin V, Bourrilhon C, Siracusa J. Circulating microRNAs after a 24-h ultramarathon run in relation to muscle damage markers in elite athletes. Scand J Med Sci Sports 2021; 31:1782-1795. [PMID: 34021921 DOI: 10.1111/sms.14000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Ultra-endurance sports are growing in popularity but can be associated with adverse health effects, such as exercise-induced muscle damage (EIMD), which can lead to exertional rhabdomyolysis. Circulating microRNAs (miRNAs) may be useful to approach the degree of EIMD. We aimed to (1) investigate the relevance of circulating miRNAs as biomarkers of muscle damage and (2) examine the acute response of skeletal/cardiac muscle and kidney biomarkers to a 24-h run in elite athletes. Eleven elite athletes participated in the 24-h run World Championships. Counter-movement jump (CMJ), creatine kinase (CK), myoglobin (Mb), creatinine (Cr), high-sensitive cardiac troponin T (hs-cTnT), and muscle-specific miRNA (myomiR) levels were measured before, immediately after, and 24 and 48h after the race. CMJ height was reduced immediately after the race (-84.0 ± 25.2%, p < 0.001) and remained low at 24 h (-43.6 ± 20.4%, p = 0.002). We observed high CK activity (53 239 ± 63 608 U/L, p < 0.001) immediately after the race, and it remained elevated 24h after (p < 0.01). Circulating myomiR levels (miR-1-3p, miR-133a-3p, miR-133b, miR-208a-3p, miR-208b-3p, and miR-499a-5p) were elevated immediately after the 24-h run (fold changes: 18-124,723, p<0.001) and significantly (p < 0.05) correlated or tended to significantly (p < 0.07) correlate with the reduction in CMJ height at 24 h. We found no significant correlation between CMJ height loss at 24 h and CK (p = 0.23) or Mb (p = 0.41) values. All elite ultramarathon runners included in our study were diagnosed with exertional rhabdomyolysis after the 24-h ultramarathon race. MyomiR levels may be useful to approach the degree of muscle damage.
Collapse
Affiliation(s)
- Emeric Chalchat
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Keyne Charlot
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Sebastian Garcia-Vicencio
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | | | - Stéphane Baugé
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Stéphanie Bourdon
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Julie Bompard
- Hôpital d'Instruction des Armées Percy, Clamart, France
| | | | - Vincent Martin
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France.,Institut Universitaire de France (IUF), Paris, France
| | - Cyprien Bourrilhon
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France.,Fédération française d'athlétisme, Paris Cedex, France
| | - Julien Siracusa
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| |
Collapse
|
16
|
Relationship of Carbohydrate Intake during a Single-Stage One-Day Ultra-Trail Race with Fatigue Outcomes and Gastrointestinal Problems: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115737. [PMID: 34071815 PMCID: PMC8197833 DOI: 10.3390/ijerph18115737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Due to the high metabolic and physical demands in single-stage one-day ultra-trail (SOUT) races, athletes should be properly prepared in both physical and nutritional aspects in order to delay fatigue and avoid associated difficulties. However, high carbohydrate (CHO) intake would seem to increase gastrointestinal (GI) problems. The main purpose of this systematic review was to evaluate CHO intake during SOUT events as well as its relationship with fatigue (in terms of internal exercise load, exercise-induced muscle damage (EIMD) and post-exercise recovery) and GI problems. A structured search was carried out in accordance with PRISMA guidelines in the following: Web of Science, Cochrane Library and Scopus databases up to 16 March 2021. After conducting the search and applying the inclusion/exclusion criteria, eight articles in total were included in this systematic review, in all of which CHO intake involved gels, energy bars and sports drinks. Two studies associated higher CHO consumption (120 g/h) with an improvement in internal exercise load. Likewise, these studies observed that SOUT runners whose intake was 120 g/h could benefit by limiting the EIMD observed by CK (creatine kinase), LDH (lactate dehydrogenase) and GOT (aspartate aminotransferase), and also improve recovery of high intensity running capacity 24 h after a trail marathon. In six studies, athletes had GI symptoms between 65–82%. In summary, most of the runners did not meet CHO intake standard recommendations for SOUT events (90 g/h), while athletes who consumed more CHO experienced a reduction in internal exercise load, limited EIMD and improvement in post-exercise recovery. Conversely, the GI symptoms were recurrent in SOUT athletes depending on altitude, environmental conditions and running speed. Therefore, a high CHO intake during SOUT events is important to delay fatigue and avoid GI complications, and to ensure high intake, it is necessary to implement intestinal training protocols.
Collapse
|
17
|
Davitt PM, Saenz C, Hartman T, Barone P, Estremera S. Physiological Impact of a Single Serving Slow Absorption Carbohydrate on Metabolic, Hemodynamic, and Performance Markers in Endurance Athletes During a Bout of Exercise. J Strength Cond Res 2021; 35:1262-1272. [PMID: 33900259 DOI: 10.1519/jsc.0000000000003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Davitt, PM, Saenz, C, Hartman, T, Barone, P, and Estremera, S. Physiological impact of a single serving slow absorption carbohydrate on metabolic, hemodynamic, and performance markers in endurance athletes during a bout of exercise. J Strength Cond Res 35(5): 1262-1272, 2021-The purpose of this study was to determine how a slow-absorbing carbohydrate affected markers of metabolism, hemodynamics, and performance in well-trained endurance athletes. We examined total and exogenous carbohydrate oxidation (CHO ox), glucose, and performance after consuming different glucose beverages, before a treadmill run. Ten male runners (32.4 years; V̇o2max, 55.9 ml·kg-1·min-1) participated on 3 occasions: slow digestion CHO (S), fast digestion CHO (F), and water (W). Subjects consumed a 50 g dose of either S or F before a 3-hour treadmill run at 57% V̇o2max. Variables were assessed at -15, 0, 30, 60, 90, 135, and 180 minutes. Immediately postrun, subjects completed a time-to-fatigue test at 110% V̇o2max. There was a significant difference in CHO ox for W vs. F and S (C,1.14; S,1.52; F,1.66 ± 0.2 g·min-1, p < 0.05). Fat ox was significantly higher in S vs. F (S,0.54; F,0.47 ± 0.08 g·min-1, p < 0.05). Exogenous CHO ox was significantly higher in F vs. S (F,0.26; S,0.19 + 0.04 g·min-1, p < 0.05). There was a significant difference in average blood glucose for trial (F,94.5; S,97.1 vs. W,88.4 + 2.1 mg·dl-1) and time × trial for F vs. S (0 minutes, p < 0.05). There were no significant performance differences. Consumption of a single bolus of CHO beverage before a 3-hour run elicits significant alterations in energy metabolism compared with just water, with S CHO oxidizing significantly more fat than a rapidly digested carbohydrate. These findings suggest that slow-digesting modified starch provides a consistent blood glucose level and sustained exogenous energy supply during a sustained, 3-hour endurance run. Significance was set at p < 0.05.
Collapse
Affiliation(s)
- Patrick M Davitt
- Department of Kinesiology, University of the Sciences, Philadelphia, Pennsylvania.,Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| | - Catherine Saenz
- Department of Kinesiology, Jacksonville University, Jacksonville, Florida
| | - Troy Hartman
- Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| | - Phil Barone
- Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| | - Steven Estremera
- Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| |
Collapse
|
18
|
Lavoué C, Siracusa J, Chalchat É, Bourrilhon C, Charlot K. Correction to: Analysis of food and fluid intake in elite ultra-endurance runners during a 24-h world championship. J Int Soc Sports Nutr 2021; 18:32. [PMID: 33879146 PMCID: PMC8058957 DOI: 10.1186/s12970-021-00427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Chloé Lavoué
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Julien Siracusa
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Émeric Chalchat
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Cyprien Bourrilhon
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Keyne Charlot
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France. .,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France.
| |
Collapse
|
19
|
Bouscaren N, Faricier R, Millet GY, Racinais S. Heat Acclimatization, Cooling Strategies, and Hydration during an Ultra-Trail in Warm and Humid Conditions. Nutrients 2021; 13:1085. [PMID: 33810371 PMCID: PMC8065615 DOI: 10.3390/nu13041085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to assess the history of exertional heat illness (EHI), heat preparation, cooling strategies, heat related symptoms, and hydration during an ultra-endurance running event in a warm and humid environment. This survey-based study was open to all people who participated in one of the three ultra-endurance races of the Grand Raid de la Réunion. Ambient temperature and relative humidity were 18.6 ± 5.7 °C (max = 29.7 °C) and 74 ± 17%, respectively. A total of 3317 runners (56% of the total eligible population) participated in the study. Overall, 78% of the runners declared a history of heat-related symptoms while training or competing, and 1.9% reported a previous diagnosis of EHI. Only 24.3% of study participants living in temperate climates declared having trained in the heat before the races, and 45.1% of all respondents reported a cooling strategy during the races. Three quarter of all participants declared a hydration strategy. The planned hydration volume was 663 ± 240 mL/h. Fifty-nine percent of the runners had enriched their food or drink with sodium during the race. The present study shows that ultra-endurance runners have a wide variability of hydration and heat preparation strategies. Understandings of heat stress repercussions in ultra-endurance running need to be improved by specific field research.
Collapse
Affiliation(s)
- Nicolas Bouscaren
- Inserm CIC1410, CHU Réunion, 97448 Saint Pierre, France
- Inter-University Laboratory of Human Movement Biology, UJM-Saint-Etienne, Univ Lyon, EA 7424, 42023 Saint-Etienne, France; (R.F.); (G.Y.M.)
| | - Robin Faricier
- Inter-University Laboratory of Human Movement Biology, UJM-Saint-Etienne, Univ Lyon, EA 7424, 42023 Saint-Etienne, France; (R.F.); (G.Y.M.)
| | - Guillaume Y. Millet
- Inter-University Laboratory of Human Movement Biology, UJM-Saint-Etienne, Univ Lyon, EA 7424, 42023 Saint-Etienne, France; (R.F.); (G.Y.M.)
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Sébastien Racinais
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, Doha 29222, Qatar;
| |
Collapse
|