1
|
Lu L, Jifu C, Pei B, Gao X, Xu Z, Yin X, Xia J, Wang J. USP18 is a key regulator of immune function in mouse midbrain microglia. Life Sci 2025; 374:123692. [PMID: 40348176 DOI: 10.1016/j.lfs.2025.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS Ubiquitin-specific peptidase 18 (USP18) is an important member of the deubiquitinating enzyme family, which has received much attention in recent years for its role in microglia regulation. The aim of this study was to investigate the role of USP18 in midbrain and its potential molecular mechanisms. METHODS In this study, we assessed behavioural phenotypes and pathological changes by adeno-associated virus (AAV)-mediated midbrain-specific USP18 high-expression mouse model. RNA sequencing and untargeted metabolomics were used for multi-omics analysis, and protein expression was detected by Western blot, and ELISA was used to detect neuroinflammatory factor levels. RESULTS Our analyses suggest that USP18 is a key regulator of immune activity in the midbrain. USP18 helps maintain the resting state of microglia and exerts neuroprotective effects by promoting TH protein expression. In the midbrain, interference with USP18 expression resulted in significant changes in neuroimmune responses, gene expression associated with inflammation, and metabolite levels. Notably, the TLR signalling pathway was significantly enriched. Loss of USP18 led to a significant increase in the expression of TLR2, Iba-1, and GFAP proteins and a significant decrease in TH levels, and this change was particularly pronounced in microglia. Importantly, the changes observed in USP18 silencing were also reflected in brain tissues of human neurodegenerative diseases. SIGNIFICANCE This study reveals the critical role of USP18 in midbrain and microglia, and suggests it can finely regulate neuroinflammatory and immune responses by modulating TLR2 protein levels. The findings provide new ideas for understanding mechanisms of neurodegenerative diseases and developing therapeutic strategies.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Baoxin Pei
- College of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Xuming Gao
- College of Biology and Agriculture, Jiamusi University, Jiamusi, Heilongjiang Province 154007, China
| | - Zhenyu Xu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Xianglin Yin
- College of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; College of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
2
|
Kumbol V, Ivanov A, McGurran H, Schüler J, Zhai Y, Ludwik K, Hinkelmann L, Brehm M, Krüger C, Küchler J, Wallach T, Höltje M, Beule D, Stachelscheid H, Lehnardt S. Neurodegenerative disease-associated microRNAs acting as signaling molecules modulate CNS neuron structure and viability. Cell Commun Signal 2025; 23:196. [PMID: 40275260 PMCID: PMC12020182 DOI: 10.1186/s12964-025-02199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Dysregulation of microRNA (miRNA) expression in the brain is a common feature of neurodegenerative diseases. Beyond their conventional role in regulating gene expression at the post-transcriptional level, certain miRNAs can act extracellularly as signaling molecules. Our study elucidates the identity of such miRNA species serving as ligands for membrane receptors expressed in central nervous system (CNS) neurons and the impact of such miRNAs on neurons in the context of neurodegenerative disease. METHODS We combined a machine learning approach with the analysis of disease-associated miRNA databases to predict Alzheimer's disease (AD)-associated miRNAs as potential signaling molecules for single-stranded RNA-sensing Toll-like receptors (TLRs) 7 and 8. TLR-expressing HEK-Blue reporter cells, primary murine microglia, and human THP-1 macrophages were used to validate the AD miRNAs as ligands for human and mouse TLR7 and/or TLR8. Interaction between mouse cortical neurons and extracellularly applied AD miRNAs was analyzed by live cell imaging and confocal microscopy. Transcriptome changes in cortical neurons exposed to AD miRNAs were assessed by RNAseq and RT-qPCR. The extracellular AD miRNAs' effects on CNS neuron structure were investigated in cell cultures of murine primary cortical neurons and iPSC-derived human cortical neurons by immunocytochemistry. We employed a mouse model of intrathecal injection to assess effects of AD miRNAs acting as signaling molecules on neurons in vivo. RESULTS We identified the AD-associated miRNAs miR-124-5p, miR-92a-1-5p, miR-9-5p, and miR-501-3p as novel endogenous ligands for TLR7 and/or TLR8. These miRNAs being extracellularly stable and active were taken up by murine cortical neurons via endocytosis and induced changes in neuronal inflammation-, proliferation-, and apoptosis-related gene expression. Exposure of both murine and human cortical neurons to the AD-associated miRNAs led to alterations of dendrite and axon structure, synapse protein expression, and cell viability in a sequence-dependent fashion. Extracellular introduction of the AD miRNAs into the cerebrospinal fluid of mice resulted in both changes in neuronal structure and synapses, and neuronal loss in the cerebral cortex. Most of the observed extracellular miRNA-induced effects on cortical neurons involved TLR7/8 signaling. CONCLUSION Neurodegenerative disease-associated miRNAs in extracellular form act as signaling molecules for CNS neurons including human cortical neurons, thereby modulating their structure and viability.
Collapse
Affiliation(s)
- Victor Kumbol
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hugo McGurran
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jutta Schüler
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yuanyuan Zhai
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katarzyna Ludwik
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit pluripotent Stem Cells and Organoids, 13353, Berlin, Germany
| | - Lukas Hinkelmann
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mariam Brehm
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judit Küchler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit pluripotent Stem Cells and Organoids, 13353, Berlin, Germany
| | - Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit pluripotent Stem Cells and Organoids, 13353, Berlin, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
3
|
Zou J, McNair E, DeCastro S, Lyons SP, Mordant A, Herring LE, Vetreno RP, Coleman LG. Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ 1-42 oligomers. J Neuroinflammation 2024; 21:215. [PMID: 39218898 PMCID: PMC11367981 DOI: 10.1186/s12974-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aβ plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aβ oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD. METHODS Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aβ1-42 oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aβ-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aβ-treated HEBSCs. RESULTS Neurotoxicity induced by soluble Aβ1-42 oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aβ-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aβ neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aβ as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aβ-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aβ-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention. CONCLUSION Microglia are key mediators of both protection and neurodegeneration in response to Aβ. Polarizing microglia toward a protective state could be used as a preventative strategy against Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Elizabeth McNair
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sagan DeCastro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott P Lyons
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Soraci L, Corsonello A, Paparazzo E, Montesanto A, Piacenza F, Olivieri F, Gambuzza ME, Savedra EV, Marino S, Lattanzio F, Biscetti L. Neuroinflammaging: A Tight Line Between Normal Aging and Age-Related Neurodegenerative Disorders. Aging Dis 2024; 15:1726-1747. [PMID: 38300639 PMCID: PMC11272206 DOI: 10.14336/ad.2023.1001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Italian National Research Center of Aging (IRCCS INRCA), IRCCS INRCA, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, Italian National Research Center of Aging (IRCCS INRCA), Ancona, Italy.
| | | | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo”, Messina, Italy.
| | | | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
5
|
Sayedahmed EE, Elshafie NO, Zhang G, Mohammed SI, Sambhara S, Mittal SK. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front Immunol 2023; 14:1305937. [PMID: 38077380 PMCID: PMC10702558 DOI: 10.3389/fimmu.2023.1305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Zelenka L, Jarek M, Pägelow D, Geffers R, van Vorst K, Fulde M. Crosstalk of Highly Purified Microglia and Astrocytes in the Frame of Toll-like Receptor (TLR)2/1 Activation. Neuroscience 2023; 526:256-266. [PMID: 37391121 DOI: 10.1016/j.neuroscience.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 07/02/2023]
Abstract
The major immune cells of the central nervous systems (CNS) are microglia and astrocytes, subsets of the glial cell population. The crosstalk between glia via soluble signaling molecules plays an indispensable role for neuropathologies, brain development as well as homeostasis. However, the investigation of the microglia-astrocyte crosstalk has been hampered due to the lack of suitable glial isolation methods. In this study, we investigated for the first time the crosstalk between highly purified Toll-like receptor (TLR)2-knock out (TLR2-KO) and wild-type (WT) microglia and astrocytes. We examined the crosstalk of TLR2-KO microglia and astrocytes in the presence of WT supernatants of the respective other glial cell type. Interestingly, we observed a significant TNF release by TLR2-KO astrocytes, which were activated with Pam3CSK4-stimulated WT microglial supernatants, strongly indicating a crosstalk between microglia and astrocytes after TLR2/1 activation. Furthermore, transcriptome analysis using RNA-seq revealed a wide range of significant up- and down-regulated genes such as Cd300, Tnfrsf9 or Lcn2, which might be involved in the molecular conversation between microglia and astrocytes. Finally, co-culturing microglia and astrocytes confirmed the prior results by demonstrating a significant TNF release by WT microglia co-cultured with TLR2-KO astrocytes. Our findings suggest a molecular TLR2/1-dependent conversation between highly pure activated microglia and astrocytes via signaling molecules. Furthermore, we demonstrate the first crosstalk experiments using ∼100% pure microglia and astrocyte mono-/co-cultures derived from mice with different genotypes highlighting the urgent need of efficient glial isolation protocols, which particularly holds true for astrocytes.
Collapse
Affiliation(s)
- Laura Zelenka
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Michael Jarek
- Helmholtz Centre for Infection Research, Research Group Genome Analytics (GMAK), Braunschweig, Germany
| | - Dennis Pägelow
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Research Group Genome Analytics (GMAK), Braunschweig, Germany
| | - Kira van Vorst
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Van Acker ZP, Perdok A, Hellemans R, North K, Vorsters I, Cappel C, Dehairs J, Swinnen JV, Sannerud R, Bretou M, Damme M, Annaert W. Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism. Nat Commun 2023; 14:2847. [PMID: 37225734 DOI: 10.1038/s41467-023-38501-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Ruben Hellemans
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Katherine North
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Cedric Cappel
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Markus Damme
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium.
| |
Collapse
|
8
|
Campbell GR, Rawat P, Teodorof-Diedrich C, Spector SA. IRAK1 inhibition blocks the HIV-1 RNA mediated pro-inflammatory cytokine response from microglia. J Gen Virol 2023; 104:001858. [PMID: 37256770 PMCID: PMC10336426 DOI: 10.1099/jgv.0.001858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are a common source of morbidity in people living with HIV (PLWH). Although antiretroviral therapy (ART) has lessened the severity of neurocognitive disorders, cognitive impairment still occurs in PLWH receiving ART. The pathogenesis of HAND is likely multifaceted, but common factors include the persistence of HIV transcription within the central nervous system, higher levels of pro-inflammatory cytokines in the cerebrospinal fluid, and the presence of activated microglia. Toll-like receptor (TLR) 7 and TLR8 are innate pathogen recognition receptors located in microglia and other immune and non-immune cells that can recognise HIV RNA and trigger pro-inflammatory responses. IL-1 receptor-associated kinase (IRAK) 1 is key to these signalling pathways. Here, we show that IRAK1 inhibition inhibits the TLR7 and TLR8-dependent pro-inflammatory response to HIV RNA. Using genetic and pharmacological inhibition, we demonstrate that inhibition of IRAK1 prevents IRAK1 phosphorylation and ubiquitination, and the subsequent recruitment of TRAF6 and the TAK1 complex to IRAK1, resulting in the inhibition of downstream signalling and the suppression of pro-inflammatory cytokine and chemokine release.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Present address: Microbiologics Inc, San Diego, CA, USA
| | - Carmen Teodorof-Diedrich
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| |
Collapse
|
9
|
Harding CF, Liao D, Persaud R, DeStefano RA, Page KG, Stalbow LL, Roa T, Ford JC, Goman KD, Pytte CL. Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris water maze performance. Behav Brain Res 2023; 442:114294. [PMID: 36638914 PMCID: PMC10460635 DOI: 10.1016/j.bbr.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1β-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.
Collapse
Affiliation(s)
- Cheryl F Harding
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - David Liao
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA
| | - Ramona Persaud
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Richard A DeStefano
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kimberly G Page
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Lauren L Stalbow
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| | - Tina Roa
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jordan C Ford
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ksenia D Goman
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Carolyn L Pytte
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| |
Collapse
|
10
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
11
|
Wang Z, Song Y, Bai S, Xiang W, Zhou X, Han L, Zhu D, Guan Y. Imaging of microglia in post-stroke inflammation. Nucl Med Biol 2023; 118-119:108336. [PMID: 37028196 DOI: 10.1016/j.nucmedbio.2023.108336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Microglia constantly survey the central nervous system microenvironment and maintain brain homeostasis. Microglia activation, polarization and inflammatory response are of great importance in the pathophysiology of ischemic stroke. For exploring biochemical processes in vivo, positron emission tomography (PET) is a superior imaging tool. Translocator protein 18 kDa (TSPO), is a validated neuroinflammatory biomarker which is widely used to evaluate various central nervous system (CNS) pathologies in both preclinical and clinical studies. TSPO level can be elevated due to peripheral inflammatory cells infiltration and glial cells activation. Therefore, a clear understanding of the dynamic changes between microglia and TSPO is critical for interpreting PET studies and understanding the pathophysiology after ischemic stroke. Our review discusses alternative biological targets that have attracted considerable interest for the imaging of microglia activation in recent years, and the potential value of imaging of microglia in the assessment of stroke therapies.
Collapse
|
12
|
Wei C, Li P, Liu L, Zhang H, Zhao T, Chen Y. Degradable Poly(amino acid) Vesicles Modulate DNA-Induced Inflammation after Traumatic Brain Injury. Biomacromolecules 2023; 24:909-920. [PMID: 36629517 DOI: 10.1021/acs.biomac.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Following brain trauma, secondary injury from molecular and cellular changes causes progressive cerebral tissue damage. Acute/chronic neuroinflammation following traumatic brain injury (TBI) is a key player in the development of secondary injury. Rapidly elevated cell-free DNAs (cfDNAs) due to cell death could lead to production of inflammatory cytokines that aggravate TBI. Herein, we designed poly(amino acid)-based cationic nanoparticles (cNPs) and applied them intravenously in a TBI mice model with the purpose of scavenging cfDNA in the brain and suppressing the acute inflammation. In turn, these cNPs could effectively eliminate endogenous cfDNA, inhibit excessive activation of inflammation, and promote neural functional recovery.
Collapse
Affiliation(s)
- Cong Wei
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Peipei Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510006, Guangdong, China.,Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hong Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510006, Guangdong, China.,Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
13
|
Zhang Z, Jiang J, He Y, Cai J, Xie J, Wu M, Xing M, Zhang Z, Chang H, Yu P, Chen S, Yang Y, Shi Z, Liu Q, Sun H, He B, Zeng J, Huang J, Chen J, Li H, Li Y, Lin WJ, Tang Y. Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 2022; 19:231. [PMID: 36131309 PMCID: PMC9490947 DOI: 10.1186/s12974-022-02596-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is the most serious complication of radiotherapy in patients with head and neck tumors, which seriously affects the quality of life. Currently, there is no effective treatment for patients with RIBI, and identifying new treatment that targets the pathological mechanisms of RIBI is urgently needed. METHODS Immunofluorescence staining, western blotting, quantitative real-time polymerase chain reaction (Q-PCR), co-culture of primary neurons and microglia, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and CRISPR-Cas9-mediated gene editing techniques were employed to investigate the protective effects and underlying mechanisms of pregabalin that ameliorate microglial activation and neuronal injury in the RIBI mouse model. RESULTS Our findings showed that pregabalin effectively repressed microglial activation, thereby reducing neuronal damage in the RIBI mouse model. Pregabalin mitigated inflammatory responses by directly inhibiting cytoplasmic translocation of high-mobility group box 1 (HMGB1), a pivotal protein released by irradiated neurons which induced subsequent activation of microglia and inflammatory cytokine expression. Knocking out neuronal HMGB1 or microglial TLR2/TLR4/RAGE by CRISPR/Cas9 technique significantly inhibited radiation-induced NF-κB activation and pro-inflammatory transition of microglia. CONCLUSIONS Our findings indicate the protective mechanism of pregabalin in mitigating microglial activation and neuronal injury in RIBI. It also provides a therapeutic strategy by targeting HMGB1-TLR2/TLR4/RAGE signaling pathway in the microglia for the treatment of RIBI.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong He
- Radiotherapeutic Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Mengdan Xing
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Pei Yu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haohui Sun
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junbo Zeng
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jialin Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Primary Cortical Cell Tri-Culture-Based Screening of Neuroinflammatory Response in Toll-like Receptor Activation. Biomedicines 2022; 10:biomedicines10092122. [PMID: 36140221 PMCID: PMC9495748 DOI: 10.3390/biomedicines10092122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of toll-like receptors (TLRs) in the central nervous system (CNS) can lead to neuroinflammation and contribute to many neurological disorders, including autoimmune diseases. Cell culture models are powerful tools for studying specific molecular and cellular mechanisms that contribute to these disease states and identifying potential therapeutics. However, most cell culture models have limitations in capturing biologically relevant phenomena, due in part to the non-inclusion of necessary cell types. Neurons, astrocytes, and microglia (critical cell types that play a role in neuroinflammation) all express at least a subset of TLRs. However, the response of each of these cell types to various TLR activation, along with their relative contribution to neuroinflammatory processes, is far from clear. In this study, we demonstrate the screening capabilities of a primary cortical cell tri-culture of neuron, astrocyte, and microglia from neonatal rats. Specifically, we compare the neuroinflammatory response of tri-cultures to that of primary neuron-astrocyte co-cultures to a suite of known TLR agonists. We demonstrate that microglia are required for observation of neurotoxic neuroinflammatory responses, such as increased cell death and apoptosis, in response to TLR2, 3, 4, and 7/8 activation. Additionally, we show that following TLR3 agonist treatment, microglia and astrocytes play opposing roles in the neuroinflammatory response, and that the observed response is dictated by the degree of TLR3 activation. Overall, we demonstrate that microglia play a significant role in the neuroinflammatory response to TLR activation in vitro and, hence, the tri-culture has the potential to serve as a screening platform that better replicates the in vivo responses.
Collapse
|
15
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
16
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
17
|
Fernández-Arjona MDM, León-Rodríguez A, Grondona JM, López-Ávalos MD. Microbial neuraminidase induces TLR4-dependent long-term immune priming in the brain. Front Cell Neurosci 2022; 16:945229. [PMID: 35966200 PMCID: PMC9366060 DOI: 10.3389/fncel.2022.945229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immune memory explains the plasticity of immune responses after repeated immune stimulation, leading to either enhanced or suppressed immune responses. This process has been extensively reported in peripheral immune cells and also, although modestly, in the brain. Here we explored two relevant aspects of brain immune priming: its persistence over time and its dependence on TLR receptors. For this purpose, we used an experimental paradigm consisting in applying two inflammatory stimuli three months apart. Wild type, toll-like receptor (TLR) 4 and TLR2 mutant strains were used. The priming stimulus was the intracerebroventricular injection of neuraminidase (an enzyme that is present in various pathogens able to provoke brain infections), which triggers an acute inflammatory process in the brain. The second stimulus was the intraperitoneal injection of lipopolysaccharide (a TLR4 ligand) or Pam3CSK4 (a TLR2 ligand). One day after the second inflammatory challenge the immune response in the brain was examined. In wild type mice, microglial and astroglial density, as well as the expression of 4 out of 5 pro-inflammatory genes studied (TNFα, IL1β, Gal-3, and NLRP3), were increased in mice that received the double stimulus compared to those exposed only to the second one, which were initially injected with saline instead of neuraminidase. Such enhanced response suggests immune training in the brain, which lasts at least 3 months. On the other hand, TLR2 mutants under the same experimental design displayed an enhanced immune response quite similar to that of wild type mice. However, in TLR4 mutant mice the response after the second immune challenge was largely dampened, indicating the pivotal role of this receptor in the establishment of immune priming. Our results demonstrate that neuraminidase-induced inflammation primes an enhanced immune response in the brain to a subsequent immune challenge, immune training that endures and that is largely dependent on TLR4 receptor.
Collapse
Affiliation(s)
- María del Mar Fernández-Arjona
- Laboratorio de Medicina Regenerativa, Grupo de investigación en Neuropsicofarmacología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Ana León-Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús M. Grondona
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - María Dolores López-Ávalos
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- *Correspondence: María Dolores López-Ávalos
| |
Collapse
|
18
|
Patrycy M, Chodkowski M, Krzyzowska M. Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens 2022; 11:pathogens11070809. [PMID: 35890053 PMCID: PMC9324537 DOI: 10.3390/pathogens11070809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is defined as an inflammatory state within the central nervous system (CNS). Microglia conprise the resident tissue macrophages of the neuronal tissue. Upon viral infection of the CNS, microglia become activated and start to produce inflammatory mediators important for clearance of the virus, but an excessive neuroinflammation can harm nearby neuronal cells. Herpesviruses express several molecular mechanisms, which can modulate apoptosis of infected neurons, astrocytes and microglia but also divert immune response initiated by the infected cells. In this review we also describe the link between virus-related neuroinflammation, and development of neurodegenerative diseases.
Collapse
|
19
|
García-Martínez M, Cortez LM, Otero A, Betancor M, Serrano-Pérez B, Bolea R, Badiola JJ, Garza MC. Distinctive Toll-like Receptors Gene Expression and Glial Response in Different Brain Regions of Natural Scrapie. Int J Mol Sci 2022; 23:ijms23073579. [PMID: 35408945 PMCID: PMC8998348 DOI: 10.3390/ijms23073579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.
Collapse
Affiliation(s)
- Mirta García-Martínez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Leonardo M. Cortez
- Department of Medicine and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: (L.M.C.); (A.O.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
- Correspondence: (L.M.C.); (A.O.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Beatriz Serrano-Pérez
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Spain;
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - María Carmen Garza
- Departamento de Anatomía e Histología Humanas, IIS Aragón, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
20
|
Cysteine Peptidase Cathepsin X as a Therapeutic Target for Simultaneous TLR3/4-mediated Microglia Activation. Mol Neurobiol 2022; 59:2258-2276. [PMID: 35066760 PMCID: PMC9016010 DOI: 10.1007/s12035-021-02694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022]
Abstract
Microglia are resident macrophages in the central nervous system that are involved in immune responses driven by Toll-like receptors (TLRs). Microglia-mediated inflammation can lead to central nervous system disorders, and more than one TLR might be involved in these pathological processes. The cysteine peptidase cathepsin X has been recognized as a pathogenic factor for inflammation-induced neurodegeneration. Here, we hypothesized that simultaneous TLR3 and TLR4 activation induces synergized microglia responses and that these phenotype changes affect cathepsin X expression and activity. Murine microglia BV2 cells and primary murine microglia were exposed to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)) and the TLR4 ligand lipopolysaccharide (LPS), individually and simultaneously. TLR3 and TLR4 co-activation resulted in increased inflammatory responses compared to individual TLR activation, where poly(I:C) and LPS induced distinct patterns of proinflammatory factors together with different patterns of cathepsin X expression and activity. TLR co-activation decreased intracellular cathepsin X activity and increased cathepsin X localization at the plasma membrane with concomitant increased extracellular cathepsin X protein levels and activity. Inhibition of cathepsin X in BV2 cells by AMS36, cathepsin X inhibitor, significantly reduced the poly(I:C)- and LPS-induced production of proinflammatory cytokines as well as apoptosis. Additionally, inhibiting the TLR3 and TLR4 common signaling pathway, PI3K, with LY294002 reduced the inflammatory responses of the poly(I:C)- and LPS-activated microglia and recovered cathepsin X activity. We here provide evidence that microglial cathepsin X strengthens microglia activation and leads to subsequent inflammation-induced neurodegeneration. As such, cathepsin X represents a therapeutic target for treating neurodegenerative diseases related to excess inflammation.
Collapse
|
21
|
Zelenka L, Pägelow D, Krüger C, Seele J, Ebner F, Rausch S, Rohde M, Lehnardt S, van Vorst K, Fulde M. Novel protocol for the isolation of highly purified neonatal murine microglia and astrocytes. J Neurosci Methods 2022; 366:109420. [PMID: 34808220 DOI: 10.1016/j.jneumeth.2021.109420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The crosstalk and reactivity of the cell type glia, especially microglia and astrocytes, have progressively gathered research attention in understanding proper brain function regulated by the innate immune response. Therefore, methods to isolate highly viable and pure glia for the analysis on a cell-specific level are indispensable. NEW METHOD We modified previously established techniques: Animal numbers were reduced by multiple microglial harvests from the same mixed glial culture, thereby maximizing microglial yields following the principles of the 3Rs (replacement, reduction, and refinement). We optimized Magnetic-activated cell sorting (MACS®) of microglia and astrocytes by applying cultivated primary glial cell suspensions instead of directly sorting dissociated single cell suspension. RESULTS We generated highly viable and pure microglia and astrocytes derived from a single mixed culture with a purity of ~99%, as confirmed by FACS analysis. Field emission scanning electron microscopy (FESEM) demonstrated integrity of the MACS-purified glial cells. Tumor necrosis factor (TNF) and Interleukin-10 (IL-10) ELISA confirmed pro- and anti-inflammatory responses to be functional in purified glia, but significantly weakened compared to non-purified cells, further highlighting the importance of cellular crosstalk for proper immune activation. COMPARISON WITH EXISTING METHOD(S) Unlike previous studies that either isolated a single type of glia or displayed a substantial proportion of contamination with other cell types, we achieved isolation of both microglia and astrocytes at an increased purity (99-100%). CONCLUSIONS We have created an optimized protocol for the efficient purification of both primary microglia and astrocytes. Our results clearly demonstrate the importance of purity in glial cell cultivation in order to examine immune responses, which particularly holds true for astrocytes. We propose the novel protocol as a tool to investigate the cell type-specific crosstalk between microglia and astrocytes in the frame of CNS diseases.
Collapse
Affiliation(s)
- Laura Zelenka
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Dennis Pägelow
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Seele
- University Medical Center Göttingen, Institute of Neuropathology, Göttingen, Germany
| | - Friederike Ebner
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Sebastian Rausch
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
22
|
Czerwińska-Błaszczyk A, Pawlak E, Pawłowski T. The Significance of Toll-Like Receptors in the Neuroimmunologic Background of Alcohol Dependence. Front Psychiatry 2022; 12:797123. [PMID: 35095609 PMCID: PMC8791063 DOI: 10.3389/fpsyt.2021.797123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Toll-like receptors (TLR) are a group of protein belonging to the family of Pattern Recognition Receptors (PRR) which have the ability to distinguish between an organism's own antigens and foreign ones and to induce immunological response. TLR play a significant part in non-specific immunity but at the same time they are also a vital element linking non-specific response to the specific one. A growing number of data seems to indicate that the non-specific immunity mechanisms affect the development and sustenance of alcohol addiction. Alcohol damages the organism's cells not only directly but also through an increase inintestinal permeability which induces innate immune response of peripheral blood cells. The signaling pathway of Toll-like receptors located on the surface of brain immune cells intensifies the inflammatory reaction and, through modifying gene expression of proinflammatory factors, unnaturally supports it. This overly protracted "sterile inflammatory reaction" positively correlates with alcohol craving affecting also the functioning of the reward system structures and increasing the risk of relapse of alcoholism. Recurrent alcoholic binges sensitize the microglia and cause an escalation in inflammatory reaction which also leads to neurodegeneration. The induction of innate immunity signaling pathways exposes clinical symptoms of alcohol addiction such as increased impulsivity, loss of behavioral control, depressive-anxiety symptoms and cognitive dysfunctions. Traditional methods of treating alcohol addiction have tended to focus predominantly on reducing symptoms which-given the frequency of relapses-seems insufficient. The aim of the present paper is to discuss the role of toll-like receptors as elements of the immunity system which, together with the nervous system, plays a crucial part in the pathogenesis of alcohol addiction. We also wish to present pharmacotherapeutic perspectives targeted at the neuroimmunological mechanisms of alcohol addiction.
Collapse
Affiliation(s)
| | - Edyta Pawlak
- Laboratory of Immunopatology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
23
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
24
|
TLR Signaling in Brain Immunity. Handb Exp Pharmacol 2021; 276:213-237. [PMID: 34761292 DOI: 10.1007/164_2021_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toll-like receptors (TLRs) comprise a group of transmembrane proteins with crucial roles in pathogen recognition, immune responses, and signal transduction. This family represented the first line of immune homeostasis in an evolutionarily conserved manner. Extensive researches in the past two decades had emphasized their structural and functional characteristics under both healthy and pathological conditions. In this review, we summarized the current understanding of TLR signaling in the central nervous system (CNS), which had been viewed as a previously "immune-privileged" but now "immune-specialized" area, with major implications for further investigation of pathological nature as well as potential therapeutic manipulation of TLR signaling in various neurological disorders.
Collapse
|
25
|
Adhikarla SV, Jha NK, Goswami VK, Sharma A, Bhardwaj A, Dey A, Villa C, Kumar Y, Jha SK. TLR-Mediated Signal Transduction and Neurodegenerative Disorders. Brain Sci 2021; 11:brainsci11111373. [PMID: 34827372 PMCID: PMC8615980 DOI: 10.3390/brainsci11111373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
A special class of proteins called Toll-like receptors (TLRs) are an essential part of the innate immune system, connecting it to the adaptive immune system. There are 10 different Toll-Like Receptors that have been identified in human beings. TLRs are part of the central nervous system (CNS), showing that the CNS is capable of the immune response, breaking the long-held belief of the brain's "immune privilege" owing to the blood-brain barrier (BBB). These Toll-Like Receptors are present not just on the resident macrophages of the central nervous system but are also expressed by the neurons to allow them for the production of proinflammatory agents such as interferons, cytokines, and chemokines; the activation and recruitment of glial cells; and their participation in neuronal cell death by apoptosis. This study is focused on the potential roles of various TLRs in various neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD), namely TLR2, TLR3, TLR4, TLR7, and TLR9 in AD and PD in human beings and a mouse model.
Collapse
Affiliation(s)
- Shashank Vishwanath Adhikarla
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology (Formerly NSIT, University of Delhi), New Delhi 110078, India;
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India; (N.K.J.); (A.B.)
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India;
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham 2770, Australia;
| | - Ankur Sharma
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham 2770, Australia;
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Anuradha Bhardwaj
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India; (N.K.J.); (A.B.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Yatender Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology (Formerly NSIT, University of Delhi), New Delhi 110078, India;
- Correspondence: (Y.K.); (S.K.J.)
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India; (N.K.J.); (A.B.)
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham 2770, Australia;
- Correspondence: (Y.K.); (S.K.J.)
| |
Collapse
|
26
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Varga E, Pap R, Jánosa G, Sipos K, Pandur E. IL-6 Regulates Hepcidin Expression Via the BMP/SMAD Pathway by Altering BMP6, TMPRSS6 and TfR2 Expressions at Normal and Inflammatory Conditions in BV2 Microglia. Neurochem Res 2021; 46:1224-1238. [PMID: 33835366 PMCID: PMC8053173 DOI: 10.1007/s11064-021-03322-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
The hormone hepcidin plays a central role in controlling iron homeostasis. Iron-mediated hepcidin synthesis is triggered via the BMP/SMAD pathway. At inflammation, mainly IL-6 pro-inflammatory cytokine mediates the regulation of hepcidin via the JAK/STAT signalling pathway. Microglial cells of the central nervous system are able to recognize a broad spectrum of pathogens via toll-like receptors and initiate inflammatory response. Although the regulation of hepcidin synthesis is well described in many tissues, little is known about the inflammation mediated hepcidin regulation in microglia. In this study, we investigated the pathways, which are involved in HAMP regulation in BV2 microglia due to inflammatory mediators and the possible relationships between the iron regulatory pathways. Our results showed that IL-6 produced by resting BV2 cells was crucial in maintaining the basal HAMP expression and hepcidin secretion. It was revealed that IL-6 neutralization decreased both STAT3 and SMAD1/5/9 phosphorylation suggesting that IL-6 proinflammatory cytokine is necessary to maintain SMAD1/5/9 activation. We revealed that IL-6 influences BMP6 and TMPRSS6 protein levels, moreover it modified TfR2 expression, as well. In this study, we revealed that BV2 microglia increased their hepcidin secretion upon IL-6 neutralization although the major regulatory pathways were inhibited. Based on our results it seems that both at inflammation and at normal condition the absence of IL-6 triggered HAMP transcription and hepcidin secretion via the NFκB pathway and possibly by the autocrine effect of TNFα cytokine on BV2 microglia.
Collapse
Affiliation(s)
- Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary.
| |
Collapse
|
28
|
Qin L, Zou J, Barnett A, Vetreno RP, Crews FT, Coleman LG. TRAIL Mediates Neuronal Death in AUD: A Link between Neuroinflammation and Neurodegeneration. Int J Mol Sci 2021; 22:2547. [PMID: 33806288 PMCID: PMC7961445 DOI: 10.3390/ijms22052547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Although the cause of progressive neurodegeneration is often unclear, neuronal death can occur through several mechanisms. In conditions such as Alzheimer's or alcohol use disorder (AUD), Toll-like receptor (TLR) induction is observed with neurodegeneration. However, links between TLR activation and neurodegeneration are lacking. We report a role of apoptotic neuronal death in AUD through TLR7-mediated induction of death receptor signaling. In postmortem human cortex, a two-fold increase in apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in neurons was found in AUD versus controls. This occurred with the increased expression of TLR7 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors. Binge ethanol treatment in C57BL/6 mice increased TLR7 and induced neuronal apoptosis in cortical regions that was blocked by TLR7 antagonism. Mechanistic studies in primary organotypic brain slice culture (OBSC) found that the inhibition of TLR7 and its endogenous ligand let-7b blocked ethanol-induced neuronal cell death. Both IMQ and ethanol induced the expression of TRAIL and its death receptor. In addition, TRAIL-neutralizing monoclonal antibodies blocked both imiquimod (IMQ) and ethanol induced neuronal death. These findings implicate TRAIL as a mediator of neuronal apoptosis downstream of TLR7 activation. TLR7 and neuronal apoptosis are implicated in other neurodegenerative diseases, including Alzheimer's disease. Therefore, TRAIL may represent a therapeutic target to slow neurodegeneration in multiple diseases.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jian Zou
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Alexandra Barnett
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Crews FT, Zou J, Coleman LG. Extracellular microvesicles promote microglia-mediated pro-inflammatory responses to ethanol. J Neurosci Res 2021; 99:1940-1956. [PMID: 33611821 PMCID: PMC8451840 DOI: 10.1002/jnr.24813] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) pathology features pro-inflammatory gene induction and microglial activation. The underlying cellular processes that promote this activation remain unclear. Previously considered cellular debris, extracellular vesicles (EVs) have emerged as mediators of inflammatory signaling in several disease states. We investigated the role of microvesicles (MVs, 50 nm-100 µm diameter EVs) in pro-inflammatory and microglial functional gene expression using primary organotypic brain slice culture (OBSC). Ethanol caused a unique immune gene signature that featured: temporal induction of pro-inflammatory TNF-α and IL-1β, reduction of homeostatic microglia state gene Tmem119, progressive increases in purinergic receptor P2RY12 and the microglial inhibitory fractalkine receptor CX3CR1, an increase in the microglial presynaptic gene C1q, and a reduction in the phagocytic gene TREM2. MV signaling was implicated in this response as reduction of MV secretion by imipramine blocked pro-inflammatory TNF-α and IL-1β induction by ethanol, and ethanol-conditioned MVs (EtOH-MVs) reproduced the ethanol-associated immune gene signature in naïve OBSC slices. Depletion of microglia prior to ethanol treatment prevented pro-inflammatory activity of EtOH-MVs, as did incubation of EtOH-MVs with the HMGB1 inhibitor glycyrrhizin. Ethanol caused HMGB1 secretion from cultured BV2 microglia in MVs through activation of PI3 kinase. In summary, these studies find MVs modulate pro-inflammatory gene induction and microglial activation changes associated with ethanol. Thus, MVs may represent a novel therapeutic target to reduce neuroinflammation in the setting of alcohol abuse or other diseases that feature a neuroimmune component. [Correction added on 5 April 2021, after first online publication: The copyright line was changed.].
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.,Department of Psychiatry, The University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim SC, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol 2020; 11:566279. [PMID: 33162981 PMCID: PMC7581917 DOI: 10.3389/fimmu.2020.566279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Previous studies demonstrated that retinal damage correlates with a massive remodeling of extracellular matrix (ECM) molecules and reactive gliosis. However, the functional significance of the ECM in retinal neurodegeneration is still unknown. In the present study, we used an intraocular pressure (IOP) independent experimental autoimmune glaucoma (EAG) mouse model to examine the role of the ECM glycoprotein tenascin-C (Tnc). Wild type (WT ONA) and Tnc knockout (KO ONA) mice were immunized with an optic nerve antigen (ONA) homogenate and control groups (CO) obtained sodium chloride (WT CO, KO CO). IOP was measured weekly and electroretinographies were recorded at the end of the study. Ten weeks after immunization, we analyzed retinal ganglion cells (RGCs), glial cells, and the expression of different cytokines in retina and optic nerve tissue in all four groups. IOP and retinal function were comparable in all groups. Although RGC loss was less severe in KO ONA, WT as well as KO mice displayed a significant cell loss after immunization. Compared to KO ONA, less βIII-tubulin+ axons, and downregulated oligodendrocyte markers were noted in WT ONA optic nerves. In retina and optic nerve, we found an enhanced GFAP+ staining area of astrocytes in immunized WT. A significantly higher number of retinal Iba1+ microglia was found in WT ONA, while a lower number of Iba1+ cells was observed in KO ONA. Furthermore, an increased expression of the glial markers Gfap, Iba1, Nos2, and Cd68 was detected in retinal and optic nerve tissue of WT ONA, whereas comparable levels were observed in KO ONA. In addition, pro-inflammatory Tnfa expression was upregulated in WT ONA, but downregulated in KO ONA. Vice versa, a significantly increased anti-inflammatory Tgfb1 expression was measured in KO ONA animals. We conclude that Tnc plays an important role in glial and inflammatory response during retinal neurodegeneration. Our results provide evidence that Tnc is involved in glaucomatous damage by regulating retinal glial activation and cytokine release. Thus, this transgenic EAG mouse model for the first time offers the possibility to investigate IOP-independent glaucomatous damage in direct relation to ECM remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Zülal Cibir
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Qaradakhi T, Gadanec LK, McSweeney KR, Abraham JR, Apostolopoulos V, Zulli A. The Anti-Inflammatory Effect of Taurine on Cardiovascular Disease. Nutrients 2020; 12:E2847. [PMID: 32957558 PMCID: PMC7551180 DOI: 10.3390/nu12092847] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Taurine is a non-protein amino acid that is expressed in the majority of animal tissues. With its unique sulfonic acid makeup, taurine influences cellular functions, including osmoregulation, antioxidation, ion movement modulation, and conjugation of bile acids. Taurine exerts anti-inflammatory effects that improve diabetes and has shown benefits to the cardiovascular system, possibly by inhibition of the renin angiotensin system. The beneficial effects of taurine are reviewed.
Collapse
Affiliation(s)
- Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (L.K.G.); (K.R.M.); (J.R.A.); (V.A.); (A.Z.)
| | | | | | | | | | | |
Collapse
|
32
|
Synergistic Toll-like Receptor 3/9 Signaling Affects Properties and Impairs Glioma-Promoting Activity of Microglia. J Neurosci 2020; 40:6428-6443. [PMID: 32631940 DOI: 10.1523/jneurosci.0666-20.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
In murine experimental glioma models, TLR3 or TLR9 activation of microglial/macrophages has been shown to impair glioma growth, which could, however, not been verified in recent clinical trials. We therefore tested whether combined TLR3 and TLR9 activation of microglia/macrophages would have a synergistic effect. Indeed, combined TLR3/TLR9 activation augmented the suppression of glioma growth in organotypic brain slices from male mice in a microglia-dependent fashion, and this synergistic suppression depended on interferon β release and phagocytic tumor clearance. Combined TLR3/TLR9 stimulation also augmented several functional features of microglia, such as the release of proinflammatory factors, motility, and phagocytosis activity. TLR3/TLR9 stimulation combined with CD47 blockade further augmented glioma clearance. Finally, we confirmed that the coactivation of TLR3/TLR9 also augments the impairment of glioma growth in vivo Our results show that combined activation of TLR3/TLR9 in microglia/macrophages results in a more efficient glioma suppression, which may provide a potential strategy for glioma treatment.SIGNIFICANCE STATEMENT Glioma-associated microglia/macrophages (GAMs) are the predominant immune cells in glioma growth and are recently considered as antitumor targets. TLRs are involved in glioma growth, but the TLR3 or TLR9 ligands were not successful in clinical trials in treating glioma. We therefore combined TLR3 and TLR9 activation of GAMs, resulting in a strong synergistic effect of tumor clearance in vitro, ex vivo, and in vivo Mechanisms of this GAM-glioma interaction involve IFNβ signaling and increased tumor clearance by GAMs. Interfering with CD47 signaling had an additional impact on tumor clearance. We propose that these signaling pathways could be exploited as anti-glioma targets.
Collapse
|
33
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
34
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
35
|
Mold inhalation causes innate immune activation, neural, cognitive and emotional dysfunction. Brain Behav Immun 2020; 87:218-228. [PMID: 31751617 PMCID: PMC7231651 DOI: 10.1016/j.bbi.2019.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 01/01/2023] Open
Abstract
Individuals living or working in moldy buildings complain of a variety of health problems including pain, fatigue, increased anxiety, depression, and cognitive deficits. The ability of mold to cause such symptoms is controversial since no published research has examined the effects of controlled mold exposure on brain function or proposed a plausible mechanism of action. Patient symptoms following mold exposure are indistinguishable from those caused by innate immune activation following bacterial or viral exposure. We tested the hypothesis that repeated, quantified doses of both toxic and nontoxic mold stimuli would cause innate immune activation with concomitant neural effects and cognitive, emotional, and behavioral symptoms. We intranasally administered either 1) intact, toxic Stachybotrys spores; 2) extracted, nontoxic Stachybotrys spores; or 3) saline vehicle to mice. As predicted, intact spores increased interleukin-1β immunoreactivity in the hippocampus. Both spore types decreased neurogenesis and caused striking contextual memory deficits in young mice, while decreasing pain thresholds and enhancing auditory-cued memory in older mice. Nontoxic spores also increased anxiety-like behavior. Levels of hippocampal immune activation correlated with decreased neurogenesis, contextual memory deficits, and/or enhanced auditory-cued fear memory. Innate-immune activation may explain how both toxic mold and nontoxic mold skeletal elements caused cognitive and emotional dysfunction.
Collapse
|
36
|
Oikawa K, Ver Hoeve JN, Teixeira LBC, Snyder KC, Kiland JA, Ellinwood NM, McLellan GJ. Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma. Mol Neurobiol 2020; 57:2620-2638. [PMID: 32266645 DOI: 10.1007/s12035-020-01910-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
Glaucoma, a multifactorial neurodegenerative disease characterized by progressive loss of retinal ganglion cells and their axons in the optic nerve, is a leading cause of irreversible vision loss. Intraocular pressure (IOP) is a risk factor for axonal damage, which initially occurs at the optic nerve head (ONH). Complex cellular and molecular mechanisms involved in the pathogenesis of glaucomatous optic neuropathy remain unclear. Here we define early molecular events in the ONH in an inherited large animal glaucoma model in which ONH structure resembles that of humans. Gene expression profiling of ONH tissues from rigorously phenotyped feline subjects with early-stage glaucoma and precisely age-matched controls was performed by RNA-sequencing (RNA-seq) analysis and complementary bioinformatic approaches applied to identify molecular processes and pathways of interest. Immunolabeling supported RNA-seq findings while providing cell-, region-, and disease stage-specific context in the ONH in situ. Transcriptomic evidence for cell proliferation and immune/inflammatory responses is identifiable in early glaucoma, soon after IOP elevation and prior to morphologically detectable axon loss, in this large animal model. In particular, proliferation of microglia and oligodendrocyte precursor cells is a prominent feature of early-stage, but not chronic, glaucoma. ONH microgliosis is a consistent hallmark in both early and chronic stages of glaucoma. Molecular pathways and cell type-specific responses strongly implicate toll-like receptor and NF-κB signaling in early glaucoma pathophysiology. The current study provides critical insights into molecular pathways, highly dependent on cell type and sub-region in the ONH even prior to irreversible axon degeneration in glaucoma.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - James N Ver Hoeve
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - Leandro B C Teixeira
- McPherson Eye Research Institute, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin C Snyder
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - Julie A Kiland
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Gillian J McLellan
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, Madison, WI, USA.
| |
Collapse
|
37
|
Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochem Soc Trans 2020; 47:1651-1660. [PMID: 31845742 DOI: 10.1042/bst20190081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.
Collapse
|
38
|
Alshammari TK, Alghamdi H, Alkhader LF, Alqahtani Q, Alrasheed NM, Yacoub H, Alnaem N, AlNakiyah M, Alshammari MA. Analysis of the molecular and behavioral effects of acute social isolation on rats. Behav Brain Res 2020; 377:112191. [DOI: 10.1016/j.bbr.2019.112191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023]
|
39
|
Fernández-Arjona MDM, Grondona JM, Fernández-Llebrez P, López-Ávalos MD. Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors. J Neuroinflammation 2019; 16:245. [PMID: 31791382 PMCID: PMC6889729 DOI: 10.1186/s12974-019-1643-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Neuraminidase (NA) is a sialidase present, among various locations, in the envelope/membrane of some bacteria/viruses (e.g., influenza virus), and is involved in infectiveness and/or dispersion. The administration of NA within the brain lateral ventricle represents a model of acute sterile inflammation. The relevance of the Toll-like receptors TLR2 and TLR4 (particularly those in microglial cells) in such process was investigated. Methods Mouse strains deficient in either TLR2 (TLR2-/-) or TLR4 (TLR4-/-) were used. NA was injected in the lateral ventricle, and the inflammatory reaction was studied by immunohistochemistry (IBA1 and IL-1β) and qPCR (cytokine response). Also, microglia was isolated from those strains and in vitro stimulated with NA, or with TLR2/TLR4 agonists as positive controls (P3C and LPS respectively). The relevance of the sialidase activity of NA was investigated by stimulating microglia with heat-inactivated NA, or with native NA in the presence of sialidase inhibitors (oseltamivir phosphate and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid). Results In septofimbria and hypothalamus, IBA1-positive and IL-1β-positive cell counts increased after NA injection in wild type (WT) mice. In TLR4-/- mice, such increases were largely abolished, while were only slightly diminished in TLR2-/- mice. Similarly, the NA-induced expression of IL-1β, TNFα, and IL-6 was completely blocked in TLR4-/- mice, and only partially reduced in TLR2-/- mice. In isolated cultured microglia, NA induced a cytokine response (IL-1β, TNFα, and IL-6) in WT microglia, but was unable to do so in TLR4-/- microglia; TLR2 deficiency partially affected the NA-induced microglial response. When WT microglia was exposed in vitro to heat-inactivated NA or to native NA along with sialidase inhibitors, the NA-induced microglia activation was almost completely abrogated. Conclusions NA is able to directly activate microglial cells, and it does so mostly acting through the TLR4 receptor, while TLR2 has a secondary role. Accordingly, the inflammatory reaction induced by NA in vivo is partially dependent on TLR2, while TLR4 plays a crucial role. Also, the sialidase activity of NA is critical for microglial activation. These results highlight the relevance of microbial NA in the neuroinflammation provoked by NA-bearing pathogens and the possibility of targeting its sialidase activity to ameliorate its impact.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Jesús M Grondona
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Pedro Fernández-Llebrez
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - María Dolores López-Ávalos
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain. .,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
| |
Collapse
|
40
|
Justin A, Mandal S, Prabitha P, Dhivya S, Yuvaraj S, Kabadi P, Sekhar SJ, Sandhya CH, Wadhwani AD, Divakar S, Bharathi JJ, Durai P, Prashantha Kumar BR. Rational Design, Synthesis, and In Vitro Neuroprotective Evaluation of Novel Glitazones for PGC-1α Activation via PPAR-γ: a New Therapeutic Strategy for Neurodegenerative Disorders. Neurotox Res 2019; 37:508-524. [DOI: 10.1007/s12640-019-00132-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
|
41
|
Alshammari TK, Alghamdi H, Green TA, Niazy A, Alkahdar L, Alrasheed N, Alhosaini K, Alswayyed M, Elango R, Laezza F, Alshammari MA, Yacoub H. Assessing the role of toll-like receptor in isolated, standard and enriched housing conditions. PLoS One 2019; 14:e0222818. [PMID: 31647818 PMCID: PMC6812767 DOI: 10.1371/journal.pone.0222818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
Depression is a common psychiatric disorder that has been poorly understood. Consequently, current antidepressant agents have clinical limitations. Until today, most have exhibited the slow onset of therapeutic action and, more importantly, their effect on remission has been minimal. Thus, the need to find new forms of therapeutic intervention is urgent. The inflammation hypothesis of depression is widely acknowledged and is one that theories the relationship between the function of the immune system and its contribution to the neurobiology of depression. In this research, we utilized an environmental isolation (EI) approach as a valid animal model of depression, employing biochemical, molecular, and behavioral studies. The aim was to investigate the anti-inflammatory effect of etanercept, a tumor necrosis factor-α inhibitor on a toll-like receptor 7 (TLR 7) signaling pathway in a depressive rat model, and compare these actions to fluoxetine, a standard antidepressant agent. The behavioral analysis indicates that depression-related symptoms are reduced after acute administration of fluoxetine and, to a lesser extent, etanercept, and are prevented by enriched environment (EE) housing conditions. Experimental studies were conducted by evaluating immobility time in the force swim test and pleasant feeling in the sucrose preference test. The mRNA expression of the TLR 7 pathway in the hippocampus showed that TLR 7, MYD88, and TRAF6 were elevated in isolated rats compared to the standard group, and that acute treatment with an antidepressant and anti-inflammatory drugs reversed these effects. This research indicates that stressful events have an impact on behavioral well-being, TLR7 gene expression, and the TLR7 pathway. We also found that peripheral administration of etanercept reduces depressive-like behaviour in isolated rats: this could be due to the indirect modulation of the TLR7 pathway and other TLRs in the brain. Furthermore, fluoxetine treatment reversed depressive-like behaviour and molecularly modulated the expression of TLR7, suggesting that fluoxetine exerts antidepressant effects partially by modulating the TLR7 signaling pathway.
Collapse
Affiliation(s)
- Tahani K. Alshammari
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Hajar Alghamdi
- Pharmacology & Toxicology Graduate Program, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Thomas A. Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Abdurahman Niazy
- Prince Naïf Bin Abdul-Aziz Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Lama Alkahdar
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alrasheed
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhosaini
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Ramesh Elango
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Hazar Yacoub
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Xue R, Meng Q. The Management of Glucocorticoid Therapy in Liver Failure. Front Immunol 2019; 10:2490. [PMID: 31749799 PMCID: PMC6843006 DOI: 10.3389/fimmu.2019.02490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Liver failure is characterized by rapid progression and high mortality. Excessive systemic inflammation is considered as the trigger of liver failure. Glucocorticoids (GCs) can rapidly suppress excessive inflammatory reactions and immune response. GCs have been applied in the treatment of liver failure since the 1970s. However, until now, the use of GCs in the treatment of liver failure has been somewhat unclear and controversial. New research regarding the molecular mechanisms of GCs may explain the controversial actions of GCs in liver failure. More results should be confirmed in a larger randomized clinical trial; this can aid the discovery of better definitions in terms of treatment schedules according to different clinical settings. Meanwhile, the timing and dosing of GCs in the treatment of liver failure should also be explored.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
A20 protects neuronal apoptosis stimulated by lipopolysaccharide-induced microglial exosomes. Neurosci Lett 2019; 712:134480. [PMID: 31493550 DOI: 10.1016/j.neulet.2019.134480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
LPS-induced microglial activation has a major influence on neuronal damage in the inflammatory process. Integral to this is the cellular and molecular interaction between microglia and neurons. Exosomes, a mediator of communication between cells, can transfer lipids, proteins and nucleic acids, affecting many donor and recipient cells. To investigate the mechanism by which microglial exosomes regulate neuronal inflammation after traumatic brain injury, this study primarily analyzed the effect of microglial exosomes on neuronal apoptosis. Exosomes derived from lipopolysaccharide (LPS)-activated microglial cultures were identified and purified. Neurons treated with these exosomes underwent apoptosis. A20 (also known as TNF-inducible protein 3, TNFAIP3) is a deubiquitinating enzyme with key anti-inflammatory functions. A20 is of huge significance to the degeneration and development of neuron. Importantly, A20 protects the exosomes-induced neuronal death, while A20 knockdown increases neuronal death. This study shows that exosomes may be critical for communication between microglia and neurons.
Collapse
|
44
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
45
|
Zhang K, Wang X, Tu J, Rong H, Werz O, Chen X. The interplay between depression and tuberculosis. J Leukoc Biol 2019; 106:749-757. [PMID: 31254317 DOI: 10.1002/jlb.mr0119-023r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Depression is a major mental health condition and is expected be the most debilitating and widespread health disorder by 2030. Tuberculosis (TB) is also a leading cause of morbidity and mortality worldwide and interestingly, is a common comorbidity of depression. As such, much attention has been paid to the association between these 2 pathologies. Based on clinical reports, the association between TB and depression seems to be bidirectional, with a substantial overlap in symptoms between the 2 conditions. TB infection or reactivation may precipitate depression, likely as a consequence of the host's inflammatory response and/or dysregulation of the hypothalamic-pituitary-adrenal axis. Nevertheless, few studies have considered whether patients with depression are at a higher risk for TB. In this review, we discuss the hypotheses on the association between depression and TB, highlighting the immuno-inflammatory response and lipid metabolism as potential mechanisms. Improving our understanding of the interplay between these 2 disorders should help guide TB clinical care and prevention both in patients with comorbid depression and in the general population.
Collapse
Affiliation(s)
- Kehong Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jie Tu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Chinese Academy of Sciences, Shenzhen, China
| | - Han Rong
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
46
|
Preoperative Sleep Disturbance Exaggerates Surgery-Induced Neuroinflammation and Neuronal Damage in Aged Mice. Mediators Inflamm 2019; 2019:8301725. [PMID: 31011286 PMCID: PMC6442479 DOI: 10.1155/2019/8301725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is defined as new cognitive impairment (memory impairment and impaired performance) after surgery, especially in aged patients. Sleep disturbance is a common phenomenon before surgery that has been increasingly thought to affect patient recovery. However, little is known about the functional impact of preoperative sleep disturbance on POCD. Here, we showed that tibial fracture surgery induced cognitive deficit and production of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β, along with microglia and astrocyte activation, neuronal damage, and blood-brain barrier (BBB) disruption. Preoperative sleep disturbance enhanced the surgery-induced neuroinflammation, neuronal damage, BBB disruption, and memory impairment 24 h after surgery. Taken together, these results demonstrated that preoperative sleep disturbance aggravated postoperative cognitive function in aged mice and the mechanism may be related to central nervous system (CNS) inflammation and neuronal damage.
Collapse
|
47
|
Taetzsch T, Benusa S, Levesque S, Mumaw CL, Block ML. Loss of NF-κB p50 function synergistically augments microglial priming in the middle-aged brain. J Neuroinflammation 2019; 16:60. [PMID: 30871598 PMCID: PMC6419422 DOI: 10.1186/s12974-019-1446-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background While NF-κB p50 function is impaired in central nervous system disease, aging in non-CNS tissues, and response to reactive oxygen species, the role of NF-κB p50 in aging-associated microglial pro-inflammatory priming is poorly understood. Methods Male NF-κB p50+/+ and NF-κB p50−/− mice at three different ages (1.5–3.0 month old, 8.0–11.0 month old, and 16.0–18.0 month old) were treated with LPS (5 mg/kg, IP) to trigger peripheral inflammation, where circulating cytokines, neuroinflammation, microglia morphology, and NF-κB p50/p65 function in brain tissue were determined 3 h later. Results Peripheral LPS injection in 9-month-old C57BL/6 mice resulted in lower NF-κB p50 DNA binding of nuclear extracts from the whole brain, when compared to 3-week-old C57BL/6 mice, revealing differences in LPS-induced NF-κB p50 activity in the brain across the mouse lifespan. To examine the consequences of loss NF-κB p50 function with aging, NF-κB p50+/+ and NF-κB p50−/− mice of three different age groups (1.5–3.0 month old, 8.0–11.0 month old, and 16.0–18.0 month old) were injected with LPS (5 mg/kg, IP). NF-κB p50−/− mice showed markedly elevated circulating, midbrain, and microglial TNFα when compared to NF-κB p50+/+ mice at all ages. Notably, the 16.0–18.0-month-old (middle aged) NF-κB p50−/− mice exhibited synergistically augmented LPS-induced serum and midbrain TNFα when compared to the younger (1.5–3.0 month old, young adult) NF-κB p50−/− mice. The 16.0–18.0-month-old LPS-treated NF-κB p50−/− mice also had the highest midbrain IL-1β expression, largest number of microglia with changes in morphology, and greatest elevation of pro-inflammatory factors in isolated adult microglia. Interestingly, aging NF-κB p50−/− mice exhibited decreased brain NF-κB p65 expression and activity. Conclusions These findings support that loss of NF-κB p50 function and aging in middle-aged mice may interact to excessively augment peripheral/microglial pro-inflammatory responses and point to a novel neuroinflammation signaling mechanism independent the NF-κB p50/p65 transcription factor in this process.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, 23298, USA
| | - Savannah Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, 23298, USA
| | - Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, 23298, USA
| | - Christen L Mumaw
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
48
|
Warden AS, Azzam M, DaCosta A, Mason S, Blednov YA, Messing RO, Mayfield RD, Harris RA. Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice. Brain Behav Immun 2019; 77:55-65. [PMID: 30550931 PMCID: PMC6399060 DOI: 10.1016/j.bbi.2018.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Many genes differentially expressed in brain tissue from human alcoholics and animals that have consumed large amounts of alcohol are components of the innate immune toll-like receptor (TLR) pathway. TLRs initiate inflammatory responses via two branches: (1) MyD88-dependent or (2) TRIF-dependent. All TLRs signal through MyD88 except TLR3. Prior work demonstrated a direct role for MyD88-dependent signaling in regulation of alcohol consumption. However, the role of TLR3 as a potential regulator of excessive alcohol drinking has not previously been investigated. To test the possibility TLR3 activation regulates alcohol consumption, we injected mice with the TLR3 agonist polyinosinic:polycytidylic acid (poly(I:C)) and tested alcohol consumption in an every-other-day two-bottle choice test. Poly(I:C) produced a persistent increase in alcohol intake that developed over several days. Repeated poly(I:C) and ethanol exposure altered innate immune transcript abundance; increased levels of TRIF-dependent pathway components correlated with increased alcohol consumption. Administration of poly(I:C) before exposure to alcohol did not alter alcohol intake, suggesting that poly(I:C) and ethanol must be present together to change drinking behavior. To determine which branch of TLR signaling mediates poly(I:C)-induced changes in drinking behavior, we tested either mice lacking MyD88 or mice administered a TLR3/dsRNA complex inhibitor. MyD88 null mutants showed poly(I:C)-induced increases in alcohol intake. In contrast, mice pretreated with a TLR3/dsRNA complex inhibitor reduced their alcohol intake, suggesting poly(I:C)-induced escalations in alcohol intake are, at least partially, dependent on TLR3. Together, these results strongly suggest that TLR3-dependent signaling drives excessive alcohol drinking behavior.
Collapse
Affiliation(s)
- Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | - Moatasem Azzam
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Adriana DaCosta
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
49
|
Sánchez-Ruiz M, Polakos NK, Blau T, Utermöhlen O, Brunn A, Montesinos-Rongen M, Hünig T, Deckert M. TLR signals license CD8 T cells to destroy oligodendrocytes expressing an antigen shared with a Listeria pathogen. Eur J Immunol 2019; 49:413-427. [PMID: 30666625 DOI: 10.1002/eji.201847834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/22/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Increasing evidence suggests a role of CD8 T cells in autoimmune demyelinating CNS disease, which, however, is still controversially discussed. Mice, which express ovalbumin (OVA) as cytosolic self-antigen in oligodendrocytes (ODC-OVA mice), respond to CNS infection induced by OVA-expressing attenuated Listeria with CD8 T cell-mediated inflammatory demyelination. This model is suitable to decipher the contribution of CD8 T cells and the pathogen in autoimmune CNS disease. Here, we show that both antigen and pathogen are required in the CNS for disease induction, though not in a physically linked fashion. Intracerebral challenge with combined toll like receptor (TLR) TLR2 and TLR9 as well as TLR7 and TLR9 agonists substituted for the bacterial stimulus, but not with individual TLR agonists (TLR2, TLR3,TLR5,TLR7, TLR9). Furthermore, MyD88 inactivation rendered ODC-OVA mice resistant to disease induction. Collectively, CD8 T cell-mediated destruction of oligodendrocytes is activated if (i) an antigen shared with an infectious agent is provided in the CNS microenvironment and (ii) innate immune signals inform the CNS microenvironment that pathogen removal warrants an immune attack by CD8 T cells, even at the expense of locally restricted demyelination.
Collapse
Affiliation(s)
- Monica Sánchez-Ruiz
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Tobias Blau
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology, and Hygiene, Medical Center, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Anna Brunn
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Manuel Montesinos-Rongen
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
50
|
Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Role of Microglia TLRs in Neurodegeneration. Front Cell Neurosci 2018; 12:329. [PMID: 30333729 PMCID: PMC6176466 DOI: 10.3389/fncel.2018.00329] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of receptors widely distributed in the organism. In the central nervous system, they are expressed in neurons, astrocytes and microglia. Although their involvement in immunity is notorious, different articles have demonstrated their roles in physiological and pathological conditions, including neurodegeneration. There is increasing evidence of an involvement of TLRs, especially TLR2, 4 and 9 in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this sense, their expression in microglia might modulate the activity of these cells, which in turn, lead to protective or deleterious effects over neurons and other cells. Therefore, TLRs might mediate the link between inflammation and neurodegenerative diseases. However, further studies have to be performed to elucidate the role of the other TLRs in these diseases and to further prove and confirm the pathophysiological role of all TLRs in neurodegeneration. In this article, we revise and summarize the current knowledge regarding the role of TLRs in neurodegeneration with the focus on the possible functions of these receptors in microglia.
Collapse
Affiliation(s)
- Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nizar M Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|