1
|
Ye L, Chen Y, Gu W, Shao J, Xin Y. Hsa_circ_0004776 regulates the retina neovascularization in progression of diabetic retinopathy via hsa-miR-382-5p/ BDNF axis. Arch Physiol Biochem 2024; 130:921-933. [PMID: 38975651 DOI: 10.1080/13813455.2024.2375981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
The aim of this work was to identify the regulatory function of hsa_circ_0004776 in the progression of diabetic retinopathy (DR). The direct interactions between hsa_circ_0004776 and hsa-miR-382-5p and between hsa-miR-382-5p and BDNF, were confirmed via dual-luciferase reporter assays. Quantitative Real-Time PCR analysis indicated that hsa_circ_0004776 was highly expressed in aqueous humour samples of DR patients and human retinal microvascular epithelial cells (hRECs) under a high-glucose environment, whereas hsa-miR-382-5p showed the opposite trend. Overexpressed hsa_circ_0004776 significantly enhanced DNA synthesis, proliferation, migration, and tube formation in hRECs in hyperglycaemia, while hsa-miR-382-5p mimics reversed these changes. Additionally, in a streptozotocin-induced Sprague-Dawley rat model of DR, vitreous microinjection of rno-miR-382-5p agomir reversed the pathologic features in the progression of DR, including retinal vascular leakage, capillary decellularization, loss of pericytes, fibrosis, and gliosis. Our results indicated that under hyperglycaemic conditions, hsa_circ_0004776 influences the progression of DR via hsa-miR-382-5p and thus represents a potential therapeutic target.
Collapse
Affiliation(s)
- Lu Ye
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Bio Manufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Yixiu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Bio Manufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Wendong Gu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Shao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yu Xin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Research Center for Cereal Fermentation and Food Bio Manufacturing, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Zhu X, Chen W, Thirupathi A. Sprint Interval Training Improves Brain-Derived Neurotropic Factor-Induced Benefits in Brain Health-A Possible Molecular Signaling Intervention. BIOLOGY 2024; 13:562. [PMID: 39194500 DOI: 10.3390/biology13080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Physical exercise can significantly impact our bodies, affecting our functional capacity, structure establishment, and molecular makeup. The magnitude of these changes depends on the specific exercise protocols used. For instance, low-to-moderate-intensity exercise can activate important molecular targets in the short term, such as BDNF-mediated signaling, while high-intensity exercise can maintain these signaling molecules in the active state for a longer term. This makes it challenging to recommend specific exercises for obtaining BDNF-induced benefits. Additionally, exercise-induced molecular signaling targets can have positive and negative effects, with some exercises blunting these targets and others activating them. For example, increasing BDNF concentration through exercise can be beneficial for brain health, but it may also have a negative impact on conditions such as bipolar disorder. Therefore, a deeper understanding of a specific exercise-mediated mechanistic approach is required. This review will delve into how the sprint exercise-mediated activation of BDNF could help maintain brain health and explore potential molecular interventions.
Collapse
Affiliation(s)
- Xueqiang Zhu
- School of Competitive Sports, Shandong Sport University, Rizhao 276826, China
| | - Wenjia Chen
- School of Physical Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Yang L, Fu Q, Yang L, Zhang Y. HIF-1α/MMP-9 promotes spinal cord central sensitization in rats with bone cancer pain. Eur J Pharmacol 2023; 954:175858. [PMID: 37356787 DOI: 10.1016/j.ejphar.2023.175858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Bone cancer pain (BCP) is one of the most prevalent and serious symptoms of patients with cancer. Currently, the medical interventions used for the treatment of BCP do not act with optimal safety and efficacy. In this study, we appraised whether the hypoxia-inducible factor 1α (HIF-1α)/metalloproteinase-9 (MMP9) axis activates the PI3K/AKT pathway, resulting in elevated spinal cord central sensitization and aggravated BCP. BCP rats were established by tibial injection of Walker 256 cells, followed by different interventions in rats using HIF-1ɑ inhibitor LW6 or antibody treatments. After treatment with LW6 or antibody against HIF-1α, central sensitization in the spinal cord tissues of rats was inhibited, and pain perception in rats was reduced. Moreover, the activation of glial cells in the spinal cord tissues was ameliorated. The expression of MMP9 was remarkably suppressed in spinal cord tissues after inhibition of HIF-1ɑ activity, and the activity of the PI3K/AKT signaling pathway was inhibited. Further activation of MMP9 expression suppressed the alleviating effect of HIF-1ɑ inhibitor LW6 or antibody on pain perception in rats inoculated with tumors. Taken together, our studies suggest a HIF-1α/MMP9-mediated activation of PI3K/AKT in the spinal cord tissues, resulting in increased pain perception in a rat model with BCP.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China
| | - Liqing Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China.
| |
Collapse
|
4
|
McNearney TA, Westlund KN. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. Int J Mol Sci 2023; 24:13196. [PMID: 37686003 PMCID: PMC10488196 DOI: 10.3390/ijms241713196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.
Collapse
Affiliation(s)
- Terry A. McNearney
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA;
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
| | - Karin N. Westlund
- Department of Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
5
|
Li X, Teng T, Yan W, Fan L, Liu X, Clarke G, Zhu D, Jiang Y, Xiang Y, Yu Y, Zhang Y, Yin B, Lu L, Zhou X, Xie P. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Transl Psychiatry 2023; 13:200. [PMID: 37308476 DOI: 10.1038/s41398-023-02486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress, chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Spinal cord astrocyte P2X7Rs mediate the inhibitory effect of electroacupuncture on visceral hypersensitivity of rat with irritable bowel syndrome. Purinergic Signal 2023; 19:43-53. [PMID: 35389158 PMCID: PMC9984627 DOI: 10.1007/s11302-021-09830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/17/2021] [Indexed: 10/18/2022] Open
Abstract
This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.
Collapse
|
7
|
Phạm TL, Noh C, Neupane C, Sharma R, Shin HJ, Park KD, Lee CJ, Kim HW, Lee SY, Park JB. MAO-B Inhibitor, KDS2010, Alleviates Spinal Nerve Ligation-induced Neuropathic Pain in Rats Through Competitively Blocking the BDNF/TrkB/NR2B Signaling. THE JOURNAL OF PAIN 2022; 23:2092-2109. [PMID: 35940543 DOI: 10.1016/j.jpain.2022.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
MAO-B inhibitors have been implicated to reverse neuropathic pain behaviors. Our previous study has demonstrated that KDS2010 (KDS), a newly developed reversible MAO-B inhibitor, could attenuate Paclitaxel (PTX)-induced tactile hypersensitivity in mice through suppressing reactive oxidant species (ROS)-decreased inhibitory GABA synaptic transmission in the spinal cord. In this study, we evaluated the analgesic effect of KDS under a new approach, in which KDS acts on dorsal horn sensory neurons to reduce excitatory transmission. Oral administration of KDS effectively enhanced mechanical thresholds in the spinal nerve ligation (SNL) induced neuropathic pain in rats. Moreover, we discovered that although treatment with KDS increased brain-derived neurotrophic factor (BDNF) levels, KDS inhibited Tropomyosin receptor kinase B (TrkB) receptor activation, suppressing increased p-NR2B-induced hyperexcitability in spinal dorsal horn sensory neurons after nerve injury. In addition, KDS showed its anti-inflammatory effects by reducing microgliosis and astrogliosis and the activation of MAPK and NF-ᴋB inflammatory pathways in these glial cells. The levels of ROS production in the spinal cords after the SNL procedure were also decreased with KDS treatment. Taken together, our results suggest that KDS may represent a promising therapeutic option for treating neuropathic pain. PERSPECTIVE: Our study provides evidence suggesting the mechanisms by which KDS, a novel MAO-B inhibitor, can be effective in pain relief. KDS, by targeting multiple mechanisms involved in BDNF/TrkB/NR2B-related excitatory transmission and neuroinflammation, may represent the next future of pain medicine.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Histo-Pathology, Hai Phong University of Medicine & Pharmacy, Hai Phong 042-12, Vietnam
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Chiranjivi Neupane
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramesh Sharma
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jin Shin
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Bong Park
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Tian YQ, Zhang SP, Zhang KL, Cao D, Zheng YJ, Liu P, Zhou HH, Wu YN, Xu QX, Liu XP, Tang XD, Zheng YQ, Wang FY. Paeoniflorin Ameliorates Colonic Fibrosis in Rats with Postinfectious Irritable Bowel Syndrome by Inhibiting the Leptin/LepRb Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6010858. [PMID: 36225193 PMCID: PMC9550452 DOI: 10.1155/2022/6010858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Postinfectious irritable bowel syndrome (PI-IBS) is a highly prevalent gastrointestinal disorder associated with immune dysregulation and depression- and anxiety-like behaviors. Through traditional medicine, the active ingredient of Paeoniae Radix called paeoniflorin (PF) was previously found to prevent the symptoms of PI-IBS. However, there is limited information on the effects of PF on intestinal function and depression- and anxiety-like symptoms in PI-IBS animal models. Here, we aimed to determine the effects of PF treatment on the symptoms of PI-IBS in a rat model. The PI-IBS rat model was established via early postnatal sibling deprivation (EPSD), trinitrobenzenesulfonic acid (TNBS), and chronic unpredictable mild stress (CUMS) stimulation and then treated with different dosages of PF (10, 20, and 40 mg/kg) and leptin (1 and 10 mg/kg). The fecal water content and body weight were measured to evaluate the intestinal function, while the two-bottle test for sucrose intake, open field test (OFT), and elevated plus maze test (EMT) were performed to assess behavioral changes. The serum leptin levels were also measured using an enzyme-linked immunosorbent assay. Furthermore, the expressions of leptin and its receptor, LepRb, were detected in colonic mucosal tissues through an immunohistochemical assay. The activation of the PI3K/AKT signaling pathway and the expression of brain-derived neurotrophic factor (BDNF) were also detected via western blotting. After the experimental period, the PI-IBS rats presented decreased body weight and increased fecal water content, which coincided with elevated leptin levels and heightened depression- and anxiety-like behaviors (e.g., low sucrose intake, less frequency in the center areas during OFT, and fewer activities in the open arms during EMT). However, the PF treatment ameliorated these observed symptoms. Furthermore, PF not only inhibited leptin/LepRb expression but also reduced the PI3K/AKT phosphorylation and BDNF expression in PI-IBS rats. Notably, cotreatment with leptin (10 mg/kg) reduced the effects of PF (20 mg/kg) on colonic fibrosis, leptin/LepRb expression, and PI3K/AKT activation. Therefore, our findings suggest that leptin is targeted by PF via the leptin/LepRb pathway, consequently ameliorating the symptoms of PI-IBS. Our study also contributes novel insights for elucidating the pharmacological action of PF on gastrointestinal disorders and may be used for the clinical treatment of PI-IBS in the future.
Collapse
Affiliation(s)
- Ya-Qing Tian
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Sheng-Peng Zhang
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Kun-Li Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Cao
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Yi-Jun Zheng
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Liu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Hui Zhou
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Ya-Ning Wu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Qi-Xiang Xu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xiao-Ping Liu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong-Qiu Zheng
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Feng-Yun Wang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
10
|
Abstract
N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are excitatory neurotransmission receptors of the central nervous system and play vital roles in synaptic plasticity. Although not fully elucidated, visceral hypersensitivity is one of the most well-characterized pathophysiologic abnormalities of functional gastrointestinal diseases and appears to be associated with increased synaptic plasticity. In this study, we review the updated findings on the physiology of NMDARs and AMPARs and their relation to visceral hypersensitivity, which propose directions for future research in this field with evolving importance.
Collapse
|
11
|
Moghaddam MH, Hatari S, Shahidi AMEJ, Nikpour F, Omran HS, Fathi M, Vakili K, Abdollahifar MA, Tizro M, Eskandari N, Raoofi A, Ebrahimi V, Aliaghaei A. Human olfactory epithelium-derived stem cells ameliorate histopathological deficits and improve behavioral functions in a rat model of cerebellar ataxia. J Chem Neuroanat 2022; 120:102071. [PMID: 35051594 DOI: 10.1016/j.jchemneu.2022.102071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/18/2021] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
Abstract
Cell replacement therapy (CRT) is one of the most effective approaches used to alleviate symptoms of neurodegenerative syndromes such as cerebellar ataxia (CA). Human olfactory epithelium mesenchymal stem cells (OE-MSCs) have been recognized as a promising candidate for CRT, due to their distinctive features including immunomodulatory properties and ease of accessible compared to other types of MSCs. Hence, the main goal of our study was to explore the impacts of OE-MSCs transplantation on behavioral, structural, and histological deficiencies in a rat model of CA. After obtained an informed consent from volunteers, OE-MSCs were obtained from their nasal cavity. Then, OE-MSCs were characterized by the positive expression of CD73, CD90, and CD105 as MSCs as well as nestin and vimentin as primitive neuroectodermal stem cells markers. Then, the animals were randomized into three control, 3-acetylpyridine (3-AP) treated, and 3-AP + cell groups. In both experimental groups, the rats received intraperitoneal injection of 3-AP (75 mg/kg), followed by the implantation of OE-MSCs into the cerebellum of 3-AP + cell group. The impact of engrafted OE-MSCs on motor coordination and performance along with biochemical, immunohistochemical, and stereological changes in the cerebellum of the rat models of CA were investigated. According to our findings, the administration of 3-AP decreased the cerebellar GSH concentration. The injection of 3-AP also altered the morphological characteristics of the cerebellar Golgi cells. On the other hand, OE-MSCs transplantation improved motor coordination in CA. Besides, the implantation of OE-MSCs reduced caspase-3 expression and microglia proliferation in the cerebellum upon 3-AP administration. Finally, the transplant of OE-MSCs protected Purkinje cells against 3-AP toxicity. In sum, the present study revealed considerable advantages of OE-MSCs in managing CA animal model.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Saba Hatari
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mahdi Emam Jome Shahidi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tizro
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbas Aliaghaei
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Electroacupuncture and Moxibustion Modulate the BDNF and TrkB Expression in the Colon and Dorsal Root Ganglia of IBS Rats with Visceral Hypersensitivity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8137244. [PMID: 34621325 DOI: 10.1155/2021/8137244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Objective To evaluate the effects of electroacupuncture and moxibustion on brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) protein and mRNA expressions in the colon and dorsal root ganglia of IBS rats with visceral hypersensitivity and to explore their underlying therapeutic mechanisms. Method Forty Sprague Dawley rats were randomly divided into normal, model, model + mild moxibustion (MM), model + electroacupuncture (EA), and model + pinaverium bromide (PB) groups, with eight rats in each group. Chronic visceral hypersensitive IBS rat models were established by colorectal distension (CRD) with mustard oil clyster. Rats in the MM and EA groups, respectively, received moxibustion and electroacupuncture treatments on the Tianshu (ST25) and Shangjuxu (ST37) acupoints once daily for 7 days, and rats in the PB group received pinaverium bromide by oral gavage once daily for 7 consecutive days. After treatment, rats underwent abdominal withdrawal reflex (AWR) scoring under CRD and colon histopathological examination. Immunohistochemistry and real-time quantitative PCR (RT-qPCR) were used to study the protein and mRNA expressions of BDNF and TrkB in the rat colon and dorsal root ganglia. Results Compared with the normal group, AWR scores and body weight were clearly increased in the model group rats (both P < 0.01). The body weights were significantly elevated (P < 0.01, P < 0.05), but the AWR scores were reduced (P < 0.05, P < 0.01), after electroacupuncture and mild moxibustion treatment. Compared with levels in normal rats, BDNF and TrkB protein and mRNA expressions were significantly elevated in the IBS model rats (P < 0.01) but were downregulated after mild moxibustion, electroacupuncture, and Western medicine treatment (P < 0.01). Conclusion Electroacupuncture and moxibustion improved visceral hypersensitivity of IBS rats possibly by reducing BDNF and TrkB protein and mRNA expressions in the colon and dorsal root ganglia.
Collapse
|
13
|
Yin N, Yan E, Duan W, Mao C, Fei Q, Yang C, Hu Y, Xu X. The role of microglia in chronic pain and depression: innocent bystander or culprit? Psychopharmacology (Berl) 2021; 238:949-958. [PMID: 33544194 DOI: 10.1007/s00213-021-05780-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Clinical evidence shows that chronic pain and depression often accompany each other, but the underlying pathogenesis of comorbid chronic pain and depression remains mostly undetermined. Biotechnology is gradually revealing the phenotype and function of microglia, with great progress regarding microglia's role in neurodegeneration, depression, chronic pain, and other conditions. This article summarizes the role of microglia in chronic pain, depression, and comorbidities, which is conducive to finding new targets to treat chronic pain and depression.
Collapse
Affiliation(s)
- Nan Yin
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Enshi Yan
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Wenbin Duan
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Changyuan Mao
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Qin Fei
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yimin Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Qiao LY, Madar J. An objective approach to assess colonic pain in mice using colonometry. PLoS One 2021; 16:e0245410. [PMID: 33711031 PMCID: PMC7954293 DOI: 10.1371/journal.pone.0245410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
The present study presents a non-surgical approach to assess colonic mechanical sensitivity in mice using colonometry, a technique in which colonic stretch-reflex contractions are measured by recording intracolonic pressures during saline infusion into the distal colon in a constant rate. Colonometrical recording has been used to assess colonic function in healthy individuals and patients with neurological disorders. Here we found that colonometry can also be implemented in mice, with an optimal saline infusion rate of 1.2 mL/h. Colonometrograms showed intermittent pressure rises that was caused by periodical colonic contractions. In the sceneries of colonic hypersensitivity that was generated post 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colonic inflammation, following chemogenetic activation of primary afferent neurons, or immediately after noxious stimulation of the colon by colorectal distension (CRD), the amplitude of intracolonic pressure (AICP) was markedly elevated which was accompanied by a faster pressure rising (ΔP/Δt). Colonic hypersensitivity-associated AICP elevation was a result of the enhanced strength of colonic stretch-reflex contraction which reflected the heightened activity of the colonic sensory reflex pathways. The increased value of ΔP/Δt in colonic hypersensitivity indicated a lower threshold of colonic mechanical sensation by which colonic stretch-reflex contraction was elicited by a smaller saline infusion volume during a shorter period of infusion time. Chemogenetic inhibition of primary afferent pathway that was governed by Nav1.8-expressing cells attenuated TNBS-induced up-regulations of AICP, ΔP/Δt, and colonic pain behavior in response to CRD. These findings support that colonometrograms can be used for analysis of colonic pain in mice.
Collapse
Affiliation(s)
- Liya Y. Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| | - Jonathan Madar
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
15
|
Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol 2020; 319:G748-G760. [PMID: 33084399 PMCID: PMC7792669 DOI: 10.1152/ajpgi.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), historically considered as regional gastrointestinal disorders with heightened colonic sensitivity, are increasingly recognized to have concurrent dysfunction of other visceral and somatic organs, such as urinary bladder hyperactivity, leg pain, and skin hypersensitivity. The interorgan sensory cross talk is, at large, termed "cross-organ sensitization." These organs, anatomically distant from one another, physiologically interlock through projecting their sensory information into dorsal root ganglia (DRG) and then the spinal cord for integrative processing. The fundamental question of how sensitization of colonic afferent neurons conveys nociceptive information to activate primary afferents that innervate distant organs remains ambiguous. In DRG, primary afferent neurons are surrounded by satellite glial cells (SGCs) and macrophage accumulation in response to signals of injury to form a neuron-glia-macrophage triad. Astrocytes and microglia are major resident nonneuronal cells in the spinal cord to interact, physically and chemically, with sensory synapses. Cumulative evidence gathered so far indicate the indispensable roles of paracrine/autocrine interactions among neurons, glial cells, and immune cells in sensory cross-activation. Dichotomizing afferents, sensory convergency in the spinal cord, spinal nerve comingling, and extensive sprouting of central axons of primary afferents each has significant roles in the process of cross-organ sensitization; however, more results are required to explain their functional contributions. DRG that are located outside the blood-brain barrier and reside upstream in the cascade of sensory flow from one organ to the other in cross-organ sensitization could be safer therapeutic targets to produce less central adverse effects.
Collapse
Affiliation(s)
- Liya Y. Qiao
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia,2Department of Internal Medicine, Commonwealth University School of Medicine, Richmond, Virginia
| | - Namrata Tiwari
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
16
|
Wang F, Zhang C, Hou S, Geng X. Synergistic Effects of Mesenchymal Stem Cell Transplantation and Repetitive Transcranial Magnetic Stimulation on Promoting Autophagy and Synaptic Plasticity in Vascular Dementia. J Gerontol A Biol Sci Med Sci 2020; 74:1341-1350. [PMID: 30256913 DOI: 10.1093/gerona/gly221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and mesenchymal stem cells (MSCs) transplantation both showed therapeutic effects on cognition impairment in vascular dementia (VD) model rats. However, whether these two therapies have synergistic effects and the molecular mechanisms remain unclear. In our present study, rats were randomly divided into six groups: control group, sham operation group, VD group, MSC group, rTMS group, and MSC+rTMS group. The VD model rats were prepared using a modified 2VO method. rTMS treatment was implemented at a frequency of 5 Hz, the stimulation intensity for 0.5 Tesla, 20 strings every day with 10 pulses per string and six treatment courses. The results of the Morris water maze test showed that the learning and memory abilities of the MSC group, rTMS group, and MSC+rTMS group were better than that of the VD group, and the MSC+rTMS group showed the most significant effect. The protein expression levels of brain-derived neurotrophic factor, NR1, LC3-II, and Beclin-1 were the highest and p62 protein was the lowest in the MSC+rTMS group. Our findings demonstrated that rTMS could further enhance the effect of MSC transplantation on VD rats and provided an important basis for the combined application of MSC transplantation and rTMS to treat VD or other neurological diseases.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, China
| | - Chi Zhang
- Department of Neurology, General Hospital, Tianjin Medical University, China
| | - Siyuan Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China
| |
Collapse
|
17
|
Ma Y, Deng M, Zhao XQ, Liu M. Alternatively Polarized Macrophages Regulate the Growth and Differentiation of Ependymal Stem Cells through the SIRT2 Pathway. Exp Neurobiol 2020; 29:150-163. [PMID: 32408405 PMCID: PMC7237271 DOI: 10.5607/en19078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ependymal stem cells (EpSCs) are dormant stem cells in the adult spinal cord that proliferate rapidly and migrate to the site of injury after spinal cord injury (SCI). Although they can differentiate into neurons under appropriate conditions in vitro, EpSCs mainly differentiate into astrocytes in vivo. Our previous study confirmed that alternatively polarized macrophages (M2) facilitate the differentiation of EpSCs towards neurons, but the detailed mechanism remains elusive. In the present study, we found that M2 conditioned medium could upregulate the expression of Sirtuin 2 (SIRT2) in EpSCs in vitro through the BDNF/TrkB-MEK/ERK signaling pathway. As an important deacetylase, SIRT2 deacetylated stable Ac-α-tubulin (Acetyl alpha Tubulin) in microtubules and thus promoted EpSC differentiation into neurons. The present study provides a theoretical basis and a new way to improve neural recovery, such as regulating the growth and differentiation of EpSCs by increasing the proportion of M2 cells in the local microenvironment or upregulating the expression of SIRT2 in EpSCs.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Orthopaedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ming Deng
- Department of Orthopaedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Xiao-Qi Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Min Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Electroacupuncture Inhibits the Activity of Astrocytes in Spinal Cord in Rats with Visceral Hypersensitivity by Inhibiting P2Y 1 Receptor-Mediated MAPK/ERK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4956179. [PMID: 32184891 PMCID: PMC7061128 DOI: 10.1155/2020/4956179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Background Irritable bowel syndrome (IBS) is a chronic functional bowel disease characterized by abdominal pain and changes in bowel habits in the absence of organic disease. Electroacupuncture (EA) has been shown to alleviate visceral hypersensitivity (VH) in IBS rat models by inhibiting the activation of astrocytes in the spinal cord. However, the underlying molecular mechanisms mediated by P2Y1 receptor of this effect of electroacupuncture remain unclear. Aim To explore whether EA inhibits the activity of astrocytes in the spinal cord dorsal horn of rat with visceral hypersensitivity by inhibiting P2Y1 receptor and its downstream mitogen activated protein kinase/extracellular regulated kinase 1 (MAPK/ERK) pathway. Methods Ten-day-old Sprague-Dawley (SD) male rats were given an intracolonic injection of 0.2 ml of 0.5% acetic acid (AA) to establish a visceral hypersensitivity model. EA was performed at Zusanli (ST 36) and Shangjuxu (ST 37) at 100 Hz for 1.05 s and 2 Hz for 2.85 s alternately, pulse width for 0.1 ms, 1 mA, 30 min/d, once a day, for 1 week. Cytokines IL-6, IL-1β, and TNF-α were analyzed by ELISA. The expressions of the P2Y1 receptor and pERK1/2 were analyzed by Western Blot and real-time PCR in the model and EA treated animals to explore the molecular mechanism of EA in inhibiting the activity of spinal cord dorsal horn (L6-S2 segment) astrocytes in rats with IBS visceral hypersensitivity. Results EA significantly reduced the behavioral abdominal withdrawal reflex score (AWRs) of IBS rats with visceral hypersensitivity induced by AA. For comparison, intrathecal injection of astrocytes activity inhibitor fluorocitrate (FCA) also reduced visceral hypersensitivity in IBS rats. EA at Zusanli and Shangjuxu inhibited the mRNA and protein expression of the glial fibrillary acidic protein (GFAP) and in rat spinal cord and reduced the release of inflammatory cytokines IL-6, IL-1, and TNF-α were analyzed by ELISA. The expressions of the P2Y1 receptor and pERK1/2 were analyzed by Western Blot and real-time PCR in the model and EA treated animals to explore the molecular mechanism of EA in inhibiting the activity of spinal cord dorsal horn (L6-S2 segment) astrocytes in rats with IBS visceral hypersensitivity. β, and TNF-μg, 10 μg, 10 Conclusion EA inhibited astrocyte activity in the spinal cord dorsal horn of rat with IBS visceral hypersensitivity by inhibiting the P2Y1 receptor and its downstream, PKC, and MAPK/ERK1/2 pathways.
Collapse
|
19
|
Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, Liu B, Zhou X. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation 2020; 17:19. [PMID: 31931832 PMCID: PMC6958761 DOI: 10.1186/s12974-020-1704-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) often grieve over a low quality of life brought about by chronic pain. In our previous studies, we determined that neuroinflammation of the spinal dorsal horn (SDH) was associated with mechanisms of interstitial cystitis. Moreover, it has been shown that brain-derived neurotrophic factor (BDNF) participates in the regulation of neuroinflammation and pathological pain through BDNF-TrkB signaling; however, whether it plays a role in cyclophosphamide (CYP)-induced cystitis remains unclear. This study aimed to confirm whether BDNF-TrkB signaling modulates neuroinflammation and mechanical allodynia in CYP-induced cystitis and determine how it occurs. METHODS Systemic intraperitoneal injection of CYP was performed to establish a rat cystitis model. BDNF-TrkB signaling was modulated by intraperitoneal injection of the TrkB receptor antagonist, ANA-12, or intrathecal injection of exogenous BDNF. Mechanical allodynia in the suprapubic region was assessed using the von Frey filaments test. The expression of BDNF, TrkB, p-TrkB, Iba1, GFAP, p-p38, p-JNK, IL-1β, and TNF-α in the L6-S1 SDH was measured by Western blotting and immunofluorescence analysis. RESULTS BDNF-TrkB signaling was upregulated significantly in the SDH after CYP was injected. Similarly, the expressions of Iba1, GFAP, p-p38, p-JNK, IL-1β, and TNF-α in the SDH were all upregulated. Treatment with ANA-12 could attenuate mechanical allodynia, restrain activation of astrocytes and microglia and alleviate neuroinflammation. Besides, the intrathecal injection of exogenous BDNF further decreased the mechanical withdrawal threshold, promoted activation of astrocytes and microglia, and increased the release of TNF-α and IL-1β in the SDH of our CYP-induced cystitis model. CONCLUSIONS In our CYP-induced cystitis model, BDNF promoted the activation of astrocytes and microglia to release TNF-α and IL-1β, aggravating neuroinflammation and leading to mechanical allodynia through BDNF-TrkB-p38/JNK signaling.
Collapse
Affiliation(s)
- Honglu Ding
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Jialiang Chen
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Rd, Guangzhou, 510700, China
| | - Zhijun Lin
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Hailun Zhan
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Fei Yang
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Wenbiao Li
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Juncong Xie
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Yong Huang
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Xianguo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bolong Liu
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Xiangfu Zhou
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| |
Collapse
|
20
|
Jiang L, Ye B, Wang Y, Yu T, Xu H. Effect and mechanisms of sacral nerve stimulation on visceral hypersensitivity mediated by nerve growth factor. J Cell Mol Med 2019; 23:8019-8024. [PMID: 31638328 PMCID: PMC6850964 DOI: 10.1111/jcmm.14660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
To investigate the efficacy of sacral nerve stimulation (SNS) on nerve growth factor (NGF) mediated visceral sensitivity in normal rat and visceral hypersensitivity model rats. 120 male newborn rats were randomly divided into 6 groups: group A was normal model group; group B ~ F were all sensitized with acetic acid enema and grouped again. Group c2 was given NGF antagonist, d2 group was given NGF agonist, e2 group was given PI3K inhibitor, and f2 group was given PLC‐γ inhibitor. After treatment, the expression of NGF, TrKA, PI3K, AKT, PLC‐γ, NF‐κB, TRPV1, pTRPV1 and intracellular Ca2+ content were detected. The expression of protein TRPV1 and pTRPV1 was increased, and Ca2+ was increased in the visceral hypersensitive group. NGF, TrKA in NGF antagonist group, PI3K, AKT, NF‐κB in PI3K inhibitor group, PLC‐γ in PLC‐γ inhibitor group were all almost not expressed. The relative expression of NGF, TrKA, PI3K, AKT, PLC‐γ and NF‐κB in NGF antagonist group was lower than that in visceral hypersensitivity group and NGF activator group (P < .01). The relative expression of NGF, TrKA, PI3K and AKT mRNA in NGF antagonist group was lower than that in the normal model group (P < .01). There was no significant difference in the relative expression of PLC‐γ and NF‐κB mRNA (P > .05). The expression level of MAPK, ERK1 and ERK2 in visceral hypersensitivity group was higher than that in PI3K inhibitor group and PLC‐γ inhibitor group. The normal group Ca2+ curve was flat, and the NGF agonist group had the highest Ca2+ curve peak. Calcium concentration in visceral hypersensitivity group was higher than that in PI3K inhibitor group and that in PLC‐γ inhibitor group was higher than that in NGF antagonist group. The binding of TrkA receptor to NGF activates the MAPK/ERK pathway, the PI3K/Akt pathway and the PLC‐γ pathway, causing changes in the fluidity of intracellular and extracellular Ca2+, resulting in increased sensitivity of visceral tissues and organs.
Collapse
Affiliation(s)
- Liuqin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hairong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Pisano S, Pozzi M, Catone G, Scrinzi G, Clementi E, Coppola G, Milone A, Bravaccio C, Santosh P, Masi G. Putative Mechanisms of Action and Clinical Use of Lithium in Children and Adolescents: A Critical Review. Curr Neuropharmacol 2019; 17:318-341. [PMID: 29256353 PMCID: PMC6482478 DOI: 10.2174/1570159x16666171219142120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023] Open
Abstract
Background: Lithium is a first-line treatment for bipolar disorder in adults, but its mechanism of action is still far from clear. Furthermore, evidences of its use in pediatric populations are sparse, not only for bipolar disorders, but also for other possible indications. Objectives: To provide a synthesis of published data on the possible mechanisms of action of lithium, as well as on its use in pediatric samples, including pharmacokinetics, efficacy, and safety data. Methods: Clinical trials in pediatric samples with at least one standardized measure of efficacy/effectiveness were included in this review. We considered: i) randomized and open label trials, ii) combination studies iii) augmentation studies iv) case series including at least 5 patients. Results: Different and non-alternative mechanisms of action can explain the clinical efficacy of lithium. Clinical studies in pediatric samples suggest that lithium is effective in managing manic symptoms/episodes of bipolar disorder, both in the acute phase and as maintenance strategy. Efficacy on depressive symptoms/phases of bipolar disorder is much less clear, while studies do not support its use in unipolar depression and severe mood dysregulation. Conversely, it may be effective on aggression in the context of conduct disorder. Other possible indications, with limited published evidence, are the acute attacks in Kleine-Levin syndrome, behavioral symptoms of X-fragile syndrome, and the management of clozapine- or chemotherapy- induced neutropenia. Generally, lithium resulted relatively safe. Conclusions: Lithium seems an effective and well-tolerated medication in pediatric bipolar disorder and aggression, while further evidences are needed for other clinical indications.
Collapse
Affiliation(s)
- Simone Pisano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Gennaro Catone
- Dept. of Mental and Physical Health and Preventive Medicine, Child and Adolescent Psychiatry Division, Campania University- Luigi Vanvitelli, Italy
| | - Giulia Scrinzi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Child Neuropsychiatry Unit, University of Verona, Verona 37126, Italy
| | - Emilio Clementi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy.,Unit of Clinical Pharmacology, CNR Institute of Neuroscience, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, 20157 Milan, Italy
| | - Giangennaro Coppola
- Clinic of Child and Adolescent Neuropsychiatry, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Annarita Milone
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, University Federico II of Naples, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), National and Specialist Child and Adolescent Mental Health Services, Maudsley Hospital, London, United States.,HealthTracker Ltd, Gillingham, United States
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| |
Collapse
|
22
|
Zheng Q, Liu L, Liu H, Zheng H, Sun H, Ji J, Sun Y, Yang T, Zhao H, Qi F, Li K, Li J, Zhang N, Fan Y, Wang L. The Bu Shen Yi Sui Formula Promotes Axonal Regeneration via Regulating the Neurotrophic Factor BDNF/TrkB and the Downstream PI3K/Akt Signaling Pathway. Front Pharmacol 2019; 10:796. [PMID: 31379571 PMCID: PMC6650751 DOI: 10.3389/fphar.2019.00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal damage is recognized as an important pathological feature in the chronic progressive neurological disorder multiple sclerosis (MS). Promoting axonal regeneration is a critical strategy for the treatment of MS. Our clinical and experimental studies have shown that the Bu Shen Yi Sui formula (BSYS) promotes axonal regeneration in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, but the exact mechanism has not been thoroughly elucidated to date. In this study, we investigated the effects of BSYS and its two decomposed formulas-the Bu Shen formula (BS) and the Hua Tan Huo Xue formula (HTHX)-on brain-derived neurotrophic factor (BDNF)/TrkB and related signaling pathways to explore the mechanism by which axonal regeneration is promoted in vitro and in vivo. Damaged SH-SY5Y cells incubated with low serum were treated with BSYS-, BS-, and HTHX-containing serum, and EAE mice induced by the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide were treated with BSYS. The results showed that the BSYS-containing serum markedly increased cell viability and increased the levels of growth associated protein (GAP)-43, phosphorylated (p)-cAMP-response element binding protein (CREB), BDNF, TrkB, and p-PI3K. The BS and HTHX treatments also induced the protein expression of GAP-43 and p-extracellular signal-regulated kinase (ERK) in the cells. Furthermore, the effects of BSYS on cell viability, GAP-43, p-CREB, and neurite outgrowth were clearly inhibited by LY294002, a specific antagonist of the PI3K signaling pathways. The addition of U0126 and U73122, antagonists of the ERK and PLCγ pathway, respectively, significantly inhibited cell viability and GAP-43 protein expression. Moreover, BSYS treatment significantly increased the expression of the 68-, 160-, and 200-kDa neurofilaments (NFs) of proteins and the BDNF, TrkB, PI3K, and Akt mRNA and proteins in the brain or spinal cord of mice at different stages. These results indicated that BSYS promotes nerve regeneration, and its mechanism is mainly related to the upregulation of the BDNF/TrkB and PI3K/Akt signaling pathways. BS and HTHX also promoted nerve regeneration, and this effect involved the ERK pathway.
Collapse
Affiliation(s)
- Qi Zheng
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.,Oncology Department, Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.,Physical Examination Department, The Chinese Medicine Hospital of Sanmenxia City, Henan, China
| | - Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hong Zheng
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hao Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Kangning Li
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Junling Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Abstract
Beyond their well-known role in embryonic development of the central and peripheral nervous system, neurotrophins, particularly nerve growth factor and brain-derived neurotrophic factor, exert an essential role in pain production and sensitization. This has mainly been studied within the framework of somatic pain, and even antibodies (tanezumab and fasinumab) have recently been developed for their use in chronic somatic painful conditions, such as osteoarthritis or low back pain. However, data suggest that neurotrophins also exert an important role in the occurrence of visceral pain and visceral sensitization. Visceral pain is a distressing symptom that prompts many consultations and is typically encountered in both 'organic' (generally inflammatory) and 'functional' (displaying no obvious structural changes in routine clinical evaluations) disorders of the gut, such as inflammatory bowel disease and irritable bowel syndrome, respectively. The present review provides a summary of neurotrophins as a molecular family and their role in pain in general and addresses recent investigations of the involvement of nerve growth factor and brain-derived neurotrophic factor in visceral pain, particularly that associated with inflammatory bowel disease and irritable bowel syndrome.
Collapse
|
24
|
Microglial BDNF, PI3K, and p-ERK in the Spinal Cord Are Suppressed by Pulsed Radiofrequency on Dorsal Root Ganglion to Ease SNI-Induced Neuropathic Pain in Rats. Pain Res Manag 2019; 2019:5948686. [PMID: 31182984 PMCID: PMC6512068 DOI: 10.1155/2019/5948686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/07/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022]
Abstract
Background Pulsed radiofrequency (PRF) on the dorsal root ganglion (DRG) has been applied to alleviate neuropathic pain effectively, yet the mechanisms underlying pain reduction owing to this treatment are not clarified completely. The activated microglia, brain-derived neurotrophic factor (BDNF), phosphatidylinositol 3-kinase (PI3K), and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal cord were demonstrated to be involved in developing neuropathic pain. Also, it has been just known that PRF on DRG inhibits the microglial activation in nerve injury rats. Here, we aim to investigate whether PRF treatment could regulate the levels of BDNF, PI3K, and p-ERK in the spinal cord of rats with spared nerve injury (SNI) via suppressing the spinal microglia activation to ease neuropathic pain. Methods The rats with SNI were intrathecally treated with minocycline (specific microglia inhibitor) or same volume of dimethyl sulfoxide once daily, beginning from 1 h before nerve transection to 7 days. PRF was applied adjacent to the L4-L5 DRG of rats with SNI at 45 V for 6 min on the seventh postoperative day, whereas the free-PRF rats were treated without PRF. The withdrawal thresholds were studied, and the spinal levels of ionized calcium-binding adapter molecule 1 (Iba1), BDNF, PI3K, and p-ERK were calculated by western blot analysis, reverse transcription-polymerase chain reaction, and immunofluorescence. Results The paw withdrawal mechanical threshold and paw withdrawal thermal latency decreased in the ipsilateral hind paws after SNI, and the spinal levels of Iba1, BDNF, PI3K, and p-ERK increased on day 21 after SNI compared with baseline (P < 0.01). An intrathecal injection of minocycline led to the reversal of SNI-induced allodynia and increase in levels of Iba1, BDNF, PI3K, and p-ERK. Withdrawal thresholds recovered partially after a single PRF treatment for 14 days, and SNI-induced microglia hyperactivity, BDNF upregulation, and PI3K and ERK phosphorylation in the spinal cord reduced on D14 due to the PRF procedure. Conclusion Microglial BDNF, PI3K, and p-ERK in the spinal cord are suppressed by the therapy of PRF on DRG to ease SNI-induced neuropathic pain in rats.
Collapse
|
25
|
Garabadu D, Verma J. Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1-42)-induced cognitive deficit rats. Neurochem Int 2019; 128:39-49. [PMID: 31004737 DOI: 10.1016/j.neuint.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, disorientation and gradual deterioration of intellectual ability. In the pharmacotherapy of AD, the mitochondrial protective activity of Exendin-4 in experimental studies is yet to be established though its effectiveness is demonstrated in these patients. Therefore, the mitochondria protective activity of Exendin-4 (5 μg/kg, i.p.) was investigated in hippocampus and pre-frontal cortex (PFC) of AD-like animals. The amyloid beta (Aβ) was injected through bilateral intracerebroventricular route into lateral ventricles to induce AD-like manifestations in the male rats. Exendin-4 significantly attenuated Aβ-induced memory-deficits in the Morris water maze and Y-maze test protocols. Exendin-4 significantly decreased Aβ-induced increase in the level of Aβ in both brain regions. Exendin-4 significantly increased Aβ-induced decrease in acetylcholine level and activity of cholineacetyl transferase in all brain regions. Moreover, Exendin-4 significantly decreased Aβ-induced increase in the activity of acetylcholinestrase in both the brain regions. E4 significantly increased Aβ-induced decrease in mitochondrial function, integrity, respiratory control rate and ADP/O in all brain regions. Further, Exendin-4 significantly decreased Aβ-induced increase in the mitochondrial complex enzyme-I, IV and V activities in all brain regions. Furthermore, Exendin-4 significantly increased Aβ-induced decrease in the level of phosphorylated Akt and the ratio of phosphorylated Akt to Akt in both brain regions. However, LY294002 diminished the therapeutic effects of Exendin-4 on behavioral, biochemical and molecular observations in AD-like animals. Pearson's analysis showed that the attributes of mitochondrial dysfunction (MMP and RCR) exhibited significant correlation to the loss in memory formation, level of Aβ and cholinergic dysfunction in these animals. Thus, it can be speculated that Exendin-4 may mitigate AD-like manifestations including mitochondrial toxicity perhaps through PI3K/Akt-mediated pathway in the experimental animals. Hence, Exendin-4 could be a potential therapeutic alternative candidate in the management of AD.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| | - Jaya Verma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| |
Collapse
|
26
|
Electroacupuncture Alleviated Referral Hindpaw Hyperalgesia via Suppressing Spinal Long-Term Potentiation (LTP) in TNBS-Induced Colitis Rats. Neural Plast 2019; 2019:2098083. [PMID: 30984253 PMCID: PMC6432704 DOI: 10.1155/2019/2098083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/09/2018] [Accepted: 02/03/2019] [Indexed: 12/15/2022] Open
Abstract
Although referred pain or hypersensitivity has been repeatedly reported in irritable bowel syndrome (IBS) patients and experimental colitis rodents, little is known about the neural mechanisms. Spinal long-term potentiation (LTP) of nociceptive synaptic transmission plays a critical role in the development of somatic hyperalgesia in chronic pain conditions. Herein, we sought to determine whether spinal LTP contributes to the referral hyperalgesia in colitis rats and particularly whether electroacupuncture (EA) is effective to alleviate somatic hyperalgesia via suppressing spinal LTP. Rats in the colitis group (induced by colonic infusion of 2,4,6-trinitrobenzenesulfonic acid, TNBS), instead of the control and vehicle groups, displayed evident focal inflammatory destruction of the distal colon accompanied not only with the sensitized visceromotor response (VMR) to noxious colorectal distension (CRD) but also with referral hindpaw hyperalgesia indicated by reduced mechanical and thermal withdrawal latencies. EA at Zusanli (ST36) and Shangjuxu (ST37) attenuated the severity of colonic inflammation, as well as the visceral hypersensitivity and referral hindpaw hyperalgesia in colitis rats. Intriguingly, the threshold of C-fiber-evoked field potentials (CFEFP) was significantly reduced and the spinal LTP was exaggerated in the colitis group, both of which were restored by EA treatment. Taken together, visceral hypersensitivity and referral hindpaw hyperalgesia coexist in TNBS-induced colitis rats, which might be attributed to the enhanced LTP of nociceptive synaptic transmission in the spinal dorsal horn. EA at ST36 and ST37 could relieve visceral hypersensitivity and, in particular, attenuate referral hindpaw hyperalgesia by suppressing the enhanced spinal LTP.
Collapse
|
27
|
Clyburn C, Browning KN. Role of astroglia in diet-induced central neuroplasticity. J Neurophysiol 2019; 121:1195-1206. [PMID: 30699056 DOI: 10.1152/jn.00823.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by increased adiposity that develops when energy intake outweighs expenditure, is rapidly becoming a serious health crisis that affects millions of people worldwide and is associated with severe comorbid disorders including hypertension, cardiovascular disease, and type II diabetes. Obesity is also associated with the dysregulation of central neurocircuits involved in the control of autonomic, metabolic, and cognitive functions. Systemic inflammation associated with diet-induced obesity (DIO) has been proposed to be responsible for the development of these comorbidities as well as the dysregulation of central neurocircuits. A growing body of evidence suggests, however, that exposure to a high-fat diet (HFD) may cause neuroinflammation and astroglial activation even before systemic inflammation develops, which may be sufficient to cause dysregulation of central neurocircuits involved in energy homeostasis before the development of obesity. The purpose of this review is to summarize the current literature exploring astroglial-dependent modulation of central circuits following exposure to HFD and DIO, including not only dysregulation of neurocircuits involved in energy homeostasis and feeding behavior, but also the dysregulation of learning, memory, mood, and reward pathways.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
28
|
Primary Afferent-Derived BDNF Contributes Minimally to the Processing of Pain and Itch. eNeuro 2018; 5:eN-NWR-0402-18. [PMID: 30627644 PMCID: PMC6325548 DOI: 10.1523/eneuro.0402-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.
Collapse
|
29
|
Retamal J, Reyes A, Ramirez P, Bravo D, Hernandez A, Pelissier T, Villanueva L, Constandil L. Burst-Like Subcutaneous Electrical Stimulation Induces BDNF-Mediated, Cyclotraxin B-Sensitive Central Sensitization in Rat Spinal Cord. Front Pharmacol 2018; 9:1143. [PMID: 30364099 PMCID: PMC6191473 DOI: 10.3389/fphar.2018.01143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
Intrathecal administration of brain derived neurotrophic factor (BDNF) induces long-term potentiation (LTP) and generates long-lasting central sensitization in spinal cord thus mimicking chronic pain, but the relevance of these observations to chronic pain mechanisms is uncertain. Since C-fiber activation by a high-frequency subcutaneous electrical stimulation (SES) protocol causes spinal release of BDNF and induces spinal cord LTP, we propose that application of such protocol would be a sufficient condition for generating long-lasting BDNF-mediated central sensitization. Results showed that application of burst-like SES to rat toes produced (i) rapid induction of hyperalgesia that lasted for more than 3 weeks, (ii) early increase of C-reflex activity followed by increased wind-up scores lasting for more than 1 week, and (iii) early increase followed by late decrease in BDNF protein levels and phosphorylated TrkB that lasted for more than 1 week. These changes were prevented by the TrkB antagonist cyclotraxin-B administered shortly before SES, while hyperalgesia was reversed by cyclotraxin-B administered 3 days after SES. Results suggest that mechanisms underlying central sensitization first involve BDNF release of probably neuronal origin, followed by brief increased expression of likely glial BDNF and pTrkB that could switch early phase sensitization into late one.
Collapse
Affiliation(s)
- Jeffri Retamal
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Andrea Reyes
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Paulina Ramirez
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - David Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandro Hernandez
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Teresa Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Villanueva
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| | - Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| |
Collapse
|
30
|
Li S, Zeng J, Wan X, Yao Y, Zhao N, Yu Y, Yu C, Xia Z. Enhancement of spinal dorsal horn neuron NMDA receptor phosphorylation as the mechanism of remifentanil induced hyperalgesia: Roles of PKC and CaMKII. Mol Pain 2018; 13:1744806917723789. [PMID: 28714352 PMCID: PMC5549877 DOI: 10.1177/1744806917723789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Modulation of N-methyl-D-aspartate receptor subunits NR1 and NR2 through phosphorylation mediates opioid-induced hyperalgesia, and activations of protein kinase C and extracellular signal-regulated kinase 1/2 potentiate while activation of calcium/calmodulin-dependent protein kinase II inhibits opioid-induced hyperalgesia. However, the mechanism of opioid-induced hyperalgesia development and in particular the potential interplay between N-methyl-D-aspartate receptors and protein kinase C or calcium/calmodulin-dependent protein kinase II or extracellular signal-regulated kinase 1/2 in the development of remifentanil-induced hyperalgesia is unclear. Methods Remifentanil (1 µg ċ kg−1 ċ min−1) was given intravenously over 60 min in rats, followed by the infusion of either vehicle solution or the respective inhibitors of protein kinase C (chelerythrine), extracellular signal-regulated kinase II (KN93), or extracellular signal-regulated kinase 1/2 (PD98059). Thereafter, the pain behaviors were evaluated by the paw withdrawal mechanical threshold and paw withdrawal thermal latency. In in vitro studies, fetal spinal cord dorsal horn neurons were primary cultured in the presence of 4 nM remifentanil for 60 min, and then the remifentanil was washed out and replaced immediately by culturing in the absence or presence of chelerythrine, KN93 or PD98059, respectively for up to 8 h. The expressions of N-methyl-D-aspartate receptors subunits and their phosphorylation (NR1, NR2B, p-NR1, p-NR2B) were analyzed by Western blotting after the completion of treatments. Functional changes of N-methyl-D-aspartate receptors were evaluated by electrophysiologic recordings of N-methyl-D-aspartate currents. Results Remifentanil induced significant thermal and mechanical hyperalgesia, which were significantly attenuated by Chelerythrine or KN93 but not PD98059. The expressions of NR1, NR2B, p-NR1, and p-NR2B were increased significantly and progressively over time after remifentanil administration, and these increases were all significantly attenuated by either chelerythrine or KN93 but not PD98059. Intriguingly, N-methyl-D-aspartate receptor functional enhancement induced by remifentanil was attenuated by Chelerythrine, KN93, and PD98059. Conclusions It is concluded that the enhancements in function and quantity of N-methyl-D-aspartate receptor via phosphorylation of its subunits through protein kinase C and calcium/calmodulin-dependent protein kinase II activation may represent the major mechanism whereby remifentanil induced hyperalgesia.
Collapse
Affiliation(s)
- Sisi Li
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Wan
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ying Yao
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Nan Zhao
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yujia Yu
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
31
|
Yu WB, Cao L, Zhao YY, Xiao W, Xiao BG. Comparing the role of Ginkgolide B and Ginkgolide K on cultured astrocytes exposed to oxygen‑glucose deprivation. Mol Med Rep 2018; 18:4417-4427. [PMID: 30221704 PMCID: PMC6172388 DOI: 10.3892/mmr.2018.9450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022] Open
Abstract
Ginkgolide B (GB) and ginkgolide K (GK) are two main active monomers of ginkgolides that present a unique group of diterpenes found naturally in the leaves of the Ginkgo biloba tree. Astrocytes are the most abundant cell type within the central nervous system (CNS) and serve essential roles in maintaining healthy brain function. The present study compared the biological effects of GB and GK on astrocytes exposed to oxygen-glucose deprivation (OGD). The results demonstrated that GB and GK exhibit many different actions. The level of the platelet-activating factor (PAF) was elevated on astrocytes exposed to OGD, and inhibited by GB and GK treatment. Although GB and GK inhibited the expression of p-NF-κB/p65, GK exerted stronger anti-inflammatory and antioxidant effects on astrocytes exposed to OGD than GB by inhibiting interleukin (IL)-6 and tumor necrosis factor-α, and inducing IL-10 and the nuclear factor-erythroid 2-related factor 2/HO-1 signaling pathway. When compared with GB treatment, GK treatment maintained high levels of phosphoinositide 3-kinase/phosphorylated-protein kinase B expression, and induced a marked upregulation of Wnt family member 1 and brain derived neurotrophic factor, indicating that GK, as a natural plant compound, may have more attractive prospects for clinical application in the treatment of neurological disorders than GB.
Collapse
Affiliation(s)
- Wen-Bo Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| | - Liang Cao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222047, P.R. China
| | - Yan-Yin Zhao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| | - Wei Xiao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222047, P.R. China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
32
|
Wang J, Xu W, Shao J, He Z, Ding Z, Huang J, Guo Q, Zou W. miR-219-5p targets CaMKIIγ to attenuate morphine tolerance in rats. Oncotarget 2018; 8:28203-28214. [PMID: 28423675 PMCID: PMC5438643 DOI: 10.18632/oncotarget.15997] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Morphine tolerance is a clinical challenge in pain management. Emerging evidence suggests that microRNA (miRNA) plays a regulatory role in the development of morphine tolerance. miR-219-5p (miR-219) targets calmodulin-dependent protein kinase II γ (CaMKIIγ) to activate central pain sensitization via N-methyl-D-aspartate (NMDA) receptor. Therefore, we hypothesized that miR-219-5p attenuates morphine tolerance by targeting CaMKIIγ. We found that the expression of miR-219-5p was decreased significantly after chronic morphine treatment. Overexpression of miR-219-5p by lentivirus injection prevents the development of morphine tolerance. CaMKIIγ, the target gene of miR-219-5p was downregulated by overexpression of miR-219-5p both in vivo and in vitro. Furthermore, we found that lentiviral-mediated miR-219-5p decreased the expression of NMDA receptor subunit 1 (NR1), leading to attenuation of morphine tolerance. Overall, the data demonstrate that miR-219-5p plays a crucial role in alleviating morphine tolerance by inhibiting the CaMKII/NMDA receptor pathway. Overexpression of miR-219-5p may be a potential strategy to ameliorate morphine tolerance.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiali Shao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenghua He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
33
|
Jiang S, Li X, Jin W, Duan X, Bo L, Wu J, Zhang R, Wang Y, Kang R, Huang L. Ketamine-induced neurotoxicity blocked by N-Methyl-d-aspartate is mediated through activation of PKC/ERK pathway in developing hippocampal neurons. Neurosci Lett 2018; 673:122-131. [PMID: 29501685 DOI: 10.1016/j.neulet.2018.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 11/26/2022]
Abstract
Ketamine, a non-competitive N-methyl d-aspartate (NMDA) receptor antagonist, is widely used in pediatric clinical practice. However, prolonged exposure to ketamine results in widespread anesthetic neurotoxicity and long-term neurocognitive deficits. The molecular mechanisms that underlie this important event are poorly understood. We investigated effects of anesthetic ketamine on neuroapoptosis and further explored role of NMDA receptors in ketamine-induced neurotoxicity. Here we demonstrate that ketamine induces activation of cell cycle entry, resulting in cycle-related neuronal apoptosis. On the other hand, ketamine administration alters early and late apoptosis of cultured hippocampus neurons by inhibiting PKC/ERK pathway, whereas excitatory NMDA receptor activation reverses these effects. Ketamine-induced neurotoxicity blocked by NMDA is mediated through activation of PKC/ERK pathway in developing hippocampal neurons.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xuze Li
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Xiaofeng Duan
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lijun Bo
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jiangli Wu
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Rui Zhang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ying Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
34
|
Wang Y, Sawyer TW, Tse YC, Fan C, Hennes G, Barnes J, Josey T, Weiss T, Nelson P, Wong TP. Primary Blast-Induced Changes in Akt and GSK 3β Phosphorylation in Rat Hippocampus. Front Neurol 2017; 8:413. [PMID: 28868045 PMCID: PMC5563325 DOI: 10.3389/fneur.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350–400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.
Collapse
Affiliation(s)
- Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Thomas W Sawyer
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Yiu Chung Tse
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Changyang Fan
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Julia Barnes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tyson Josey
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tracy Weiss
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Peggy Nelson
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Zhou H, Yang C, Bai F, Ma Z, Wang J, Wang F, Li F, Wang Q, Xiong L. Electroacupuncture Alleviates Brain Damage Through Targeting of Neuronal Calcium Sensor 1 by miR-191a-5p After Ischemic Stroke. Rejuvenation Res 2017; 20:492-505. [PMID: 28537507 DOI: 10.1089/rej.2017.1920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Electroacupuncture (EA) administration before or after cerebral ischemia has been shown to afford protection against ischemic injury. However, the underlying mechanism of EA-mediated protection is still unclear. Functional microRNAs (miRNAs) are believed to play important roles in neuroprotection and synaptic plasticity during and after ischemia. In a previous study, we identified 20 miRNAs that are expressed in the penumbra and are significantly changed after EA treatment. Here, we used bioinformatic analysis to predict the biological functions and gene networks of these miRNAs. Consistent with our predictions, downregulation of miR-191a-5p in primary neurons and in cortexes of rats increased cell viability, decreased apoptosis, reduced infarct volumes, and improved neurological scores; whereas upregulation of miR-191a-5p exacerbated neuronal injury and partly reversed the neuroprotective effect of EA treatment after ischemia/reperfusion injury. In silico analysis predicted that miR-191a-5p targets neuronal calcium sensor 1 (NCS-1), brain-derived neurotrophic factor, and growth-associated protein 43 (GAP43), and using luciferase reporter assays, we confirmed that the NCS-1 3'UTR (untranslated region) is targeted by miR-191a-5p. Furthermore, lentivirus-mediated overexpression of NCS-1 in primary neurons and in the cortexes of rats induced neuroprotection, while lentivirus-mediated knockdown had the opposite effect. Taken together, these data suggest that miRNAs participate in the response to EA treatment after cerebral ischemia and further imply that NCS-1 may constitute a miR-191a-5p target gene and a potential therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Heng Zhou
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Cen Yang
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Fuhai Bai
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Zhi Ma
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Jingyi Wang
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Feng Wang
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| | - Feng Li
- 2 Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Qiang Wang
- 2 Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Lize Xiong
- 1 Department of Anesthesiology, Xijing Hospital, Forth Military Medical University , Xi'an, China
| |
Collapse
|
36
|
Marcos J, Galleguillos D, Pelissier T, Hernández A, Velásquez L, Villanueva L, Constandil L. Role of the spinal TrkB-NMDA receptor link in the BDNF-induced long-lasting mechanical hyperalgesia in the rat: A behavioural study. Eur J Pain 2017; 21:1688-1696. [DOI: 10.1002/ejp.1075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 11/05/2022]
Affiliation(s)
- J.L. Marcos
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
- Laboratory of Veterinary Pharmacology and Therapeutics; School of Veterinary Science; Viña del Mar University; Chile
| | - D. Galleguillos
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
| | - T. Pelissier
- Program of Molecular and Clinical Pharmacology; Institute of Biomedical Sciences (ICBM); Faculty of Medicine; University of Chile; Santiago Chile
| | - A. Hernández
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
| | - L. Velásquez
- Center for Integrative Medicine and Innovative Science (CIMIS); Faculty of Medicine; Andres Bello University; Santiago Chile
| | - L. Villanueva
- Centre de Psychiatrie et Neurosciences; INSERM UMR 894; Paris France
| | - L. Constandil
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA); University of Santiago of Chile; Chile
| |
Collapse
|
37
|
Shen S, Al-Thumairy HW, Hashmi F, Qiao LY. Regulation of transient receptor potential cation channel subfamily V1 protein synthesis by the phosphoinositide 3-kinase/Akt pathway in colonic hypersensitivity. Exp Neurol 2017; 295:104-115. [PMID: 28587873 DOI: 10.1016/j.expneurol.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/22/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as the capsaicin receptor or vanilloid receptor 1 (VR1), is expressed in nociceptive neurons in the dorsal root ganglia (DRG) and participates in the transmission of pain. The present study investigated the underlying molecular mechanisms by which TRPV1 was regulated by nerve growth factor (NGF) signaling pathways in colonic hypersensitivity in response to colitis. We found that during colitis TRPV1 protein levels were significantly increased in specifically labeled colonic afferent neurons in both L1 and S1 DRGs. TRPV1 protein up-regulation in DRG was also enhanced by NGF treatment. We then found that TRPV1 protein up-regulation in DRG was regulated by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway both in vivo and in vitro. Suppression of endogenous PI3K/Akt activity during colitis or NGF treatment with a specific PI3K inhibitor LY294002 reduced TRPV1 protein production in DRG neurons, and also reduced colitis-evoked TRPV1-mediated visceral hypersensitivity tested by hyper-responsiveness to colorectal distention (CRD) and von Frey filament stimulation of abdomen. Further studies showed that TRPV1 mRNA levels in the DRG were not regulated by either colitis or NGF. We then found that an up-regulation of the protein synthesis pathway was involved by which both colitis and NGF caused a PI3K-dependent increase in the phosphorylation level of eukaryotic translation initiation factor 4E-binding protein (4E-BP)1. These results suggest a novel mechanism in colonic hypersensitivity which involves PI3K/Akt-mediated TRPV1 protein, not mRNA, up-regulation in primary afferent neurons, likely through activation of the protein synthesis pathways.
Collapse
Affiliation(s)
- Shanwei Shen
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hamad W Al-Thumairy
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Fiza Hashmi
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Li-Ya Qiao
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
38
|
Liu FG, Hu WF, Wang JL, Wang P, Gong Y, Tong LJ, Jiang B, Zhang W, Qin YB, Chen Z, Yang RR, Huang C. Z-Guggulsterone Produces Antidepressant-Like Effects in Mice through Activation of the BDNF Signaling Pathway. Int J Neuropsychopharmacol 2017; 20:485-497. [PMID: 28339691 PMCID: PMC5458345 DOI: 10.1093/ijnp/pyx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/17/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Z-guggulsterone, an active compound extracted from the gum resin of the tree Commiphora mukul, has been shown to improve animal memory deficits via activating the brain-derived neurotrophic factor signaling pathway. Here, we investigated the antidepressant-like effect of Z-guggulsterone in a chronic unpredictable stress mouse model of depression. METHODS The effects of Z-guggulsterone were assessed in mice with the tail suspension test and forced swimming test. Z-guggulsterone was also investigated in the chronic unpredictable stress model of depression with fluoxetine as the positive control. Changes in hippocampal neurogenesis as well as the brain-derived neurotrophic factor signaling pathway after chronic unpredictable stress/Z-guggulsterone treatment were investigated. The tryptophan hydroxylase inhibitor and the tyrosine kinase B inhibitor were also used to explore the antidepressant-like mechanisms of Z-guggulsterone. RESULTS Z-guggulsterone (10, 30 mg/kg) administration protected the mice against the chronic unpredictable stress-induced increases in the immobile time in the tail suspension test and forced swimming test and also reversed the reduction in sucrose intake in sucrose preference experiment. Z-guggulsterone (10, 30 mg/kg) administration prevented the reductions in brain-derived neurotrophic factor protein expression levels as well as the phosphorylation levels of cAMP response element binding protein, extracellular signal-regulated kinase 1/2, and protein kinase B in the hippocampus and cortex induced by chronic unpredictable stress. Z-guggulsterone (10, 30 mg/kg) treatment also improved hippocampal neurogenesis in chronic unpredictable stress-treated mice. Blockade of the brain-derived neurotrophic factor signal, but not the monoaminergic system, attenuated the antidepressant-like effects of Z-guggulsterone. CONCLUSIONS Z-guggulsterone exhibits antidepressant activity via activation of the brain-derived neurotrophic factor signaling pathway and upregulation of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Feng-Guo Liu
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Wen-Feng Hu
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Ji-Li Wang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Peng Wang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Yu Gong
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Li-Juan Tong
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Bo Jiang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Wei Zhang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Yi-Bin Qin
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Zhuo Chen
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Rong-Rong Yang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Chao Huang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| |
Collapse
|
39
|
Batista EML, Doria JG, Ferreira-Vieira TH, Alves-Silva J, Ferguson SSG, Moreira FA, Ribeiro FM. Orchestrated activation of mGluR5 and CB1 promotes neuroprotection. Mol Brain 2016; 9:80. [PMID: 27543109 PMCID: PMC4992217 DOI: 10.1186/s13041-016-0259-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/06/2016] [Indexed: 01/05/2023] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) and the cannabinoid receptor 1 (CB1) exhibit a functional interaction, as CB1 regulates pre-synaptic glutamate release and mGluR5 activation increases endocannabinoid synthesis at the post-synaptic site. Since both mGluR5 and CB1 promote neuroprotection, we delineated experiments to investigate a possible link between CB1 and mGluR5 activation in the induction of neuroprotection using primary cultured corticostriatal neurons. We find that either the pharmacological blockade or the genetic ablation of either mGluR5 or CB1 can abrogate both CB1- and mGluR5-mediated neuroprotection against glutamate insult. Interestingly, decreased glutamate release and diminished intracellular Ca2+ do not appear to play a role in CB1 and mGluR5-mediated neuroprotection. Rather, these two receptors work cooperatively to trigger the activation of cell signaling pathways to promote neuronal survival, which involves MEK/ERK1/2 and PI3K/AKT activation. Interestingly, although mGluR5 activation protects postsynaptic terminals and CB1 the presynaptic site, intact signaling of both receptors is required to effectively promote neuronal survival. In conclusion, mGluR5 and CB1 act in concert to activate neuroprotective cell signaling pathways and promote neuronal survival.
Collapse
Affiliation(s)
- Edleusa M L Batista
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Juliana G Doria
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Talita H Ferreira-Vieira
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Juliana Alves-Silva
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - Fabricio A Moreira
- Departamento de Farmacologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
40
|
Hashmi F, Liu M, Shen S, Qiao LY. EXPRESS: Phospholipase C gamma mediates endogenous brain-derived neurotrophic factor - regulated calcitonin gene-related peptide expression in colitis - induced visceral pain. Mol Pain 2016; 12:12/0/1744806916657088. [PMID: 27306412 PMCID: PMC4955977 DOI: 10.1177/1744806916657088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Visceral hypersensitivity is a complex pathophysiological paradigm with unclear mechanisms. Primary afferent neuronal plasticity marked by alterations in neuroactive compounds such as calcitonin gene-related peptide is suggested to underlie the heightened sensory responses. Signal transduction that leads to calcitonin gene-related peptide expression thereby sensory neuroplasticity during colitis remains to be elucidated. RESULTS In a rat model with colitis induced by 2,4,6-trinitrobenzene sulfonic acid, we found that endogenously elevated brain-derived neurotrophic factor elicited an up-regulation of calcitonin gene-related peptide in the lumbar L1 dorsal root ganglia. At seven days of colitis, neutralization of brain-derived neurotrophic factor with a specific brain-derived neurotrophic factor antibody reversed calcitonin gene-related peptide up-regulation in the dorsal root ganglia. Colitis-induced calcitonin gene-related peptide transcription was also inhibited by brain-derived neurotrophic factor antibody treatment. Signal transduction studies with dorsal root ganglia explants showed that brain-derived neurotrophic factor-induced calcitonin generelated peptide expression was mediated by the phospholipase C gamma, but not the phosphatidylinositol 3-kinase/Akt or the mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway. Application of PLC inhibitor U73122 in vivo confirmed that colitis-induced and brain-derived neurotrophic factor-mediated calcitonin gene-related peptide up-regulation in the dorsal root ganglia was regulated by the phospholipase C gamma pathway. In contrast, suppression of the phosphatidylinositol 3-kinase activity in vivo had no effect on colitis-induced calcitonin gene-related peptide expression. During colitis, calcitonin gene-related peptide also co-expressed with phospholipase C gamma but not with p-Akt. Calcitonin gene-related peptide up-regulation during colitis correlated to the activation of cAMP-responsive element binding protein in the same neurons. Consistently, colitis-induced cAMP-responsive element binding protein activation in the dorsal root ganglia was attenuated by brain-derived neurotrophic factor antibody treatment. CONCLUSION These results suggest that colitis-induced and brain-derived neurotrophic factor-mediated calcitonin generelated peptide expression in sensory activation is regulated by a unique pathway involving brain-derived neurotrophic factorphospholipase C gamma-cAMP-responsive element binding protein axis.
Collapse
Affiliation(s)
- Fiza Hashmi
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Miao Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Li-Ya Qiao, Department of Physiology and Biophysics, PO Box 980551, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298–0551, USA.
| |
Collapse
|
41
|
Activation of type 5 metabotropic glutamate receptor promotes the proliferation of rat retinal progenitor cell via activation of the PI-3-K and MAPK signaling pathways. Neuroscience 2016; 322:138-51. [DOI: 10.1016/j.neuroscience.2016.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
|
42
|
Chen LS, Yang YS, Chen K, Chen XY, Xie WR, Wang H. Dexamethasone treatment upregulates glutamyl prolyl tRNA synthetase expression in liver tissue of rats with severe acute pancreatitis-associated liver injury. Shijie Huaren Xiaohua Zazhi 2015; 23:5133-5140. [DOI: 10.11569/wcjd.v23.i32.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of dexamethasone (DEX) on the expression of glutamyl prolyl tRNA synthetase (EPRS) in liver tissue of rats with severe acute pancreatitis (SAP)-associated liver injury.
METHODS: Ninety-six SD rats were randomly divided into an SAP model group, a sham operation (SO) group, and a DEX treatment group. Sodium taurocholate was used to induce SAP in rats of the model group and DEX group. Dexamethasone was given by intramuscular injection at 0.5 mg/100 g in the DEX group. Rats in each group were killed at different points (2, 6, 12, and 24 h) after treatment for further analysis. HE staining was used to observe liver damage. Serum amylase (AMS) content was measured by iodine colorimetric method. ELISA was used to detect the expression of liver nuclear factor κB (NF-κB) and interferon-γ (IFN-γ). The expression of EPRS was detected by immunohistochemical staining.
RESULTS: The SAP group suffered more severe inflammatory exudation than the SO group as revealed by liver HE staining. The DEX group had a decreased pathological score compared with the SAP group (P = 0.025). Serum AMS was significantly lower in the DEX group than in the SAP group (P = 0.0013). NF-κB expression at 6 h was significantly lower (P = 0.047), but IFN-γ expression at 6 h was significantly higher in the DEX group than in the SAP group (P = 0.038). The DEX group had significantly increased EPRS expression at 6 h as shown by immunohistochemistry (P < 0.01).
CONCLUSION: Hepatic EPRS expression is increased at 6 h after dexamethasone treatment in SAP rats.
Collapse
|