1
|
Horn S, Schmid M, Berest I, Piattini F, Zhang J, de Bock K, Devuyst O, Nlandu Khodo S, Kisielow J, Kopf M. IL-1 protects from fatal systemic candidiasis in mice by inhibiting oxidative phosphorylation and hypoxia. Nat Commun 2025; 16:2626. [PMID: 40097388 PMCID: PMC11914259 DOI: 10.1038/s41467-025-57797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Invasive C. albicans infections result in high mortality rates. While IL-1 is important to combat C. albicans infections, the underlying mechanisms remain unclear. Using global and conditional Il1r1 knockouts in mice, here we show that IL-1R signaling in non-hematopoietic cells in the kidney and brain is crucial for a protective response. In the kidney, endothelial IL-1R contributes to fungal clearance independent of neutrophil recruitment, while IL-1R in hematopoietic cells is dispensable. IL-1R signaling indirectly recruits neutrophils and monocytes in the brain by regulating chemokines and adhesion molecules. Single-nucleus-RNA-sequencing data implicates excessive metabolic activity and oxidative phosphorylation across all cell types in the kidney of Il1r1-deficient mice within a few hours upon infection, with associated, localized hypoxia at infection foci. Lastly, we find that hypoxia promotes fungal growth and pathogenicity. In summary, our results show that IL-1R-signaling in non-hematopoietic cells is required to prevent fatal candidiasis by inhibiting a metabolic shift, including excessive oxidative phosphorylation and hypoxia.
Collapse
Affiliation(s)
- Sofia Horn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mareike Schmid
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivan Berest
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Federica Piattini
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Gu Q, Wang L, King TZ, Chen H, Zhang L, Ni J, Mao H. Seeing through "brain fog": neuroimaging assessment and imaging biomarkers for cancer-related cognitive impairments. Cancer Imaging 2024; 24:158. [PMID: 39558401 PMCID: PMC11572057 DOI: 10.1186/s40644-024-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Advances in cancer diagnosis and treatment have substantially improved patient outcomes and survival in recent years. However, up to 75% of cancer patients and survivors, including those with non-central nervous system (non-CNS) cancers, suffer from "brain fog" or impairments in cognitive functions such as attention, memory, learning, and decision-making. While we recognize the impact of cancer-related cognitive impairment (CRCI), we have not fully investigated and understood the causes, mechanisms and interplays of various involving factors. Consequently, there are unmet needs in clinical oncology in assessing the risk of CRCI and managing patients and survivors with this condition in order to make informed treatment decisions and ensure the quality of life for cancer survivors. The state-of-the-art neuroimaging technologies, particularly clinical imaging modalities like magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used to study neuroscience questions, including CRCI. However, in-depth applications of these functional and molecular imaging methods in CRCI and their clinical implementation for CRCI management are largely limited. This scoping review provides the current understanding of contributing neurological factors to CRCI and applications of the state-of-the-art multi-modal neuroimaging methods in investigating the functional and structural alterations related to CRCI. Findings from these studies and potential imaging-biomarkers of CRCI that can be used to improve the assessment and characterization of CRCI as well as to predict the risk of CRCI are also highlighted. Emerging issues and perspectives on future development and applications of neuroimaging tools to better understand CRCI and incorporate neuroimaging-based approaches to treatment decisions and patient management are discussed.
Collapse
Affiliation(s)
- Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
- Department of Radiology, Shenzhen Hyzen Hospital, Shenzhen, 518109, Guangdong, People's Republic of China
| | - Tricia Z King
- School of Nursing, Emory University, Atlanta, Georgia, 30322, USA
| | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People's Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jianming Ni
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, 214042, People's Republic of China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
3
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
4
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
5
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Liu Y, Cai X, Fang R, Peng S, Luo W, Du X. Future directions in ventilator-induced lung injury associated cognitive impairment: a new sight. Front Physiol 2023; 14:1308252. [PMID: 38164198 PMCID: PMC10757930 DOI: 10.3389/fphys.2023.1308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanical ventilation is a widely used short-term life support technique, but an accompanying adverse consequence can be pulmonary damage which is called ventilator-induced lung injury (VILI). Mechanical ventilation can potentially affect the central nervous system and lead to long-term cognitive impairment. In recent years, many studies revealed that VILI, as a common lung injury, may be involved in the central pathogenesis of cognitive impairment by inducing hypoxia, inflammation, and changes in neural pathways. In addition, VILI has received attention in affecting the treatment of cognitive impairment and provides new insights into individualized therapy. The combination of lung protective ventilation and drug therapy can overcome the inevitable problems of poor prognosis from a new perspective. In this review, we summarized VILI and non-VILI factors as risk factors for cognitive impairment and concluded the latest mechanisms. Moreover, we retrospectively explored the role of improving VILI in cognitive impairment treatment. This work contributes to a better understanding of the pathogenesis of VILI-induced cognitive impairment and may provide future direction for the treatment and prognosis of cognitive impairment.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Ruiying Fang
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Wevers NR, De Vries HE. Microfluidic models of the neurovascular unit: a translational view. Fluids Barriers CNS 2023; 20:86. [PMID: 38008744 PMCID: PMC10680291 DOI: 10.1186/s12987-023-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
The vasculature of the brain consists of specialized endothelial cells that form a blood-brain barrier (BBB). This barrier, in conjunction with supporting cell types, forms the neurovascular unit (NVU). The NVU restricts the passage of certain substances from the bloodstream while selectively permitting essential nutrients and molecules to enter the brain. This protective role is crucial for optimal brain function, but presents a significant obstacle in treating neurological conditions, necessitating chemical modifications or advanced drug delivery methods for most drugs to cross the NVU. A deeper understanding of NVU in health and disease will aid in the identification of new therapeutic targets and drug delivery strategies for improved treatment of neurological disorders.To achieve this goal, we need models that reflect the human BBB and NVU in health and disease. Although animal models of the brain's vasculature have proven valuable, they are often of limited translational relevance due to interspecies differences or inability to faithfully mimic human disease conditions. For this reason, human in vitro models are essential to improve our understanding of the brain's vasculature under healthy and diseased conditions. This review delves into the advancements in in vitro modeling of the BBB and NVU, with a particular focus on microfluidic models. After providing a historical overview of the field, we shift our focus to recent developments, offering insights into the latest achievements and their associated constraints. We briefly examine the importance of chip materials and methods to facilitate fluid flow, emphasizing their critical roles in achieving the necessary throughput for the integration of microfluidic models into routine experimentation. Subsequently, we highlight the recent strides made in enhancing the biological complexity of microfluidic NVU models and propose recommendations for elevating the biological relevance of future iterations.Importantly, the NVU is an intricate structure and it is improbable that any model will fully encompass all its aspects. Fit-for-purpose models offer a valuable compromise between physiological relevance and ease-of-use and hold the future of NVU modeling: as simple as possible, as complex as needed.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, De Limes 7, Oegstgeest, 2342 DH, The Netherlands.
| | - Helga E De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
9
|
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S335-S354. [PMID: 36683511 PMCID: PMC10473143 DOI: 10.3233/jad-221064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer's disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingying Shen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
10
|
Muacevic A, Adler JR. Effects of Suberoylanilide Hydroxamic Acid (SAHA) on the Inflammatory Response in Lipopolysaccharide-Induced N9 Microglial Cells. Cureus 2022; 14:e32428. [PMID: 36644097 PMCID: PMC9832526 DOI: 10.7759/cureus.32428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Epigenetics has shown promising results for understanding the different behaviors of microglia under the context of neuroinflammation. However, to our knowledge, the results of this complex mechanism with novel pharmacological agents such as histone deacetylase inhibitors (HDACis) are still missing. In this study, we aimed to investigate the effects of suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, on the lipopolysaccharide (LPS)-induced neuroinflammation model in the N9 microglial cells. METHODS Microglial cells were treated with SAHA (0.25, 0.5, 1.0, 1.25, 1.5 µM) and LPS (100 ng/mL) for 24 hours. Then, levels of the pro/anti-inflammatory cytokines interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), and IL-10 were determined by the enzyme-linked immunosorbent assay. The total cellular HDAC activity was determined by colorimetric analysis. Additionally, the expression levels of nuclear factor kappa-B (NF-κB) were quantified via western blotting. RESULTS SAHA (1.0 and 1.25 µM) attenuated the LPS-induced inflammatory response of microglial cells via decreasing NF-κB expression and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) in the N9 microglial cells. Moreover, SAHA treatment improved IL-10 levels and prevented the LPS-induced increase in the HDAC activity in the microglial cells. CONCLUSION Our results suggest SAHA attenuates the LPS-induced inflammatory response in the N9 microglial cells, and regulation of histone acetylation with HDACis might be a rational approach for the treatment of neuroinflammation.
Collapse
|
11
|
Young AP, Denovan-Wright EM. The microglial endocannabinoid system is similarly regulated by lipopolysaccharide and interferon gamma. J Neuroimmunol 2022; 372:577971. [PMID: 36150252 DOI: 10.1016/j.jneuroim.2022.577971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 12/31/2022]
Abstract
Perturbation of the endocannabinoid system can have profound effects on immune function and synaptic plasticity. Microglia are one of few cell types with a self-contained endocannabinoid system and are positioned at the interface between the immune system and the central nervous system. Past work has produced conflicting results with respect to the effects of pro-inflammatory conditions on the microglial endocannabinoid system. Thus, we systematically investigated the relationship between the concentration of two distinct pro-inflammatory stimuli, lipopolysaccharide and interferon gamma, on the abundance of components of the endocannabinoid system within microglia. Here we show that lipopolysaccharide and interferon gamma influence messenger RNA abundances of the microglial endocannabinoid system in a concentration-dependent manner. Furthermore, we demonstrate that the efficacy of different synthetic cannabinoid treatments with respect to inhibition of microglia nitric oxide release is dependent on the concentration and type of pro-inflammatory stimuli presented to the microglia. This indicates that different pro-inflammatory stimuli influence the capacity of microglia to synthesize, degrade, and respond to cannabinoids which has implications for the development of cannabinoid-based treatments for neuroinflammation.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
12
|
Mincheva G, Gimenez‐Garzo C, Izquierdo‐Altarejos P, Martinez‐Garcia M, Doverskog M, Blackburn TP, Hällgren A, Bäckström T, Llansola M, Felipo V. Golexanolone, a GABA A receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci Ther 2022; 28:1861-1874. [PMID: 35880480 PMCID: PMC9532914 DOI: 10.1111/cns.13926] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. Golexanolone reduces GABAA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms. METHODS Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways, and cognitive and motor function were analyzed. RESULTS Hyperammonemic rats show increased TNFα and reduced IL-10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short-term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short-term memory. This was associated with reversal of the hyperammonemia-enhanced activation in cerebellum of the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. CONCLUSION Reducing GABAA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | - Carla Gimenez‐Garzo
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | | | - Mar Martinez‐Garcia
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | | | | | | | - Torbjörn Bäckström
- Umecrine Cognition ABSolnaSweden
- Umeå Neurosteroid Research CenterClinical Sciences at Umeå UniversityUmeåSweden
| | - Marta Llansola
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | - Vicente Felipo
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
13
|
Young AP, Denovan-Wright EM. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav Immun 2022; 105:29-43. [PMID: 35764268 DOI: 10.1016/j.bbi.2022.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
14
|
Mahmoudi A, Heydari S, Markina YV, Barreto GE, Sahebkar A. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study. Biomed Pharmacother 2022; 153:113304. [PMID: 35724514 DOI: 10.1016/j.biopha.2022.113304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disorder with debilitating physical and psychological complications. Previous studies have indicated that genetic factors have a critical role in modulating the secondary phase of injury in TBI. Statins have interesting pleiotropic properties such as antiapoptotic, antioxidative, and anti-inflammatory effects, which make them a suitable class of drugs for repurposing in TBI. In this study, we aimed to explore how statins modulate proteins and pathways involved in TBI using system pharmacology. We first explored the target associations with statins in two databases to discover critical clustering groups, candidate hub and critical hub genes in the network of TBI, and the possible connections of statins with TBI-related genes. Our results showed 1763 genes associated with TBI. Subsequently, the analysis of centralities in the PPI network displayed 55 candidate hub genes and 15 hub genes. Besides, MCODE analysis based on threshold score:10 determined four modular clusters. Intersection analysis of genes related to TBI and statins demonstrated 204 shared proteins, which suggested that statins influence 31 candidate hub and 9 hub genes. Moreover, statins had the highest interaction with MCODE1. The biological processes of the 31 shared proteins are related to gene expression, inflammation, antioxidant activity, and cell proliferation. Biological enriched pathways showed Programmed Cell Death proteins, AGE-RAGE signaling pathway, C-type lectin receptor signalling pathway, and MAPK signaling pathway as top clusters. In conclusion, statins could target several critical post-TBI genes mainly involved in inflammation and apoptosis, supporting the previous research results as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, the Russian Federation
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
15
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
16
|
Leone P, Mincheva G, Balzano T, Malaguarnera M, Felipo V, Llansola M. Rifaximin Improves Spatial Learning and Memory Impairment in Rats with Liver Damage-Associated Neuroinflammation. Biomedicines 2022; 10:1263. [PMID: 35740285 PMCID: PMC9219896 DOI: 10.3390/biomedicines10061263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Patients with non-alcoholic fatty liver disease (NAFLD) may show mild cognitive impairment. Neuroinflammation in the hippocampus mediates cognitive impairment in rat models of minimal hepatic encephalopathy (MHE). Treatment with rifaximin reverses cognitive impairment in a large proportion of cirrhotic patients with MHE. However, the underlying mechanisms remain unclear. The aims of this work were to assess if rats with mild liver damage, as a model of NAFLD, show neuroinflammation in the hippocampus and impaired cognitive function, if treatment with rifaximin reverses it, and to study the underlying mechanisms. Mild liver damage was induced with carbon-tetrachloride. Infiltration of immune cells, glial activation, and cytokine expression, as well as glutamate receptors expression in the hippocampus and cognitive function were assessed. We assessed the effects of daily treatment with rifaximin on the alterations showed by these rats. Rats with mild liver damage showed hippocampal neuroinflammation, reduced membrane expression of glutamate N-methyl-D-aspartate (NMDA) receptor subunits, and impaired spatial memory. Increased C-C Motif Chemokine Ligand 2 (CCL2), infiltration of monocytes, microglia activation, and increased tumor necrosis factor α (TNFα) were reversed by rifaximin, that normalized NMDA receptor expression and improved spatial memory. Thus, rifaximin reduces neuroinflammation and improves cognitive function in rats with mild liver damage, being a promising therapy for patients with NAFLD showing mild cognitive impairment.
Collapse
Affiliation(s)
- Paola Leone
- Mar Lab Department of Neuroscience, NYU Grossman School of Medicine Science Building, New York, NY 10016, USA;
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (G.M.); (M.L.)
| | - Tiziano Balzano
- Centro Integral de Neurociencias, A.C. HM Hospital Universitario Puerta del Sur CINAC, 28938 Madrid, Spain;
| | - Michele Malaguarnera
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain;
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (G.M.); (M.L.)
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (G.M.); (M.L.)
| |
Collapse
|
17
|
Pierre WC, Londono I, Quiniou C, Chemtob S, Lodygensky GA. Modulatory effect of IL‐1 inhibition following lipopolysaccharide‐induced neuroinflammation in neonatal microglia and astrocytes. Int J Dev Neurosci 2022; 82:243-260. [DOI: 10.1002/jdn.10179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wyston C. Pierre
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Irène Londono
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Christiane Quiniou
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Sylvain Chemtob
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
- Department of Pharmacology and Therapeutics McGill University Montréal Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| |
Collapse
|
18
|
Nemeth DP, Liu X, McKim DB, DiSabato DJ, Oliver B, Herd A, Katta A, Negray CE, Floyd J, McGovern S, Pruden PS, Zhutang F, Smirnova M, Godbout JP, Sheridan J, Quan N. Dynamic Interleukin-1 Receptor Type 1 Signaling Mediates Microglia-Vasculature Interactions Following Repeated Systemic LPS. J Inflamm Res 2022; 15:1575-1590. [PMID: 35282272 PMCID: PMC8906862 DOI: 10.2147/jir.s350114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Lipopolysaccharide (LPS) preconditioning involves repeated, systemic, and sub-threshold doses of LPS, which induces a neuroprotective state within the CNS, thus preventing neuronal death and functional losses. Recently, proinflammatory cytokine, Interleukin-1 (IL-1), and its primary signaling partner, interleukin-1 receptor type 1 (IL-1R1), have been associated with neuroprotection in the CNS. However, it is still unknown how IL-1/IL-1R1 signaling impacts the processes associated with neuroprotection. Methods Using our IL-1R1 restore genetic mouse model, mouse lines were generated to restrict IL-1R1 expression either to endothelia (Tie2-Cre-Il1r1r/r) or microglia (Cx3Cr1-Cre-Il1r1 r/r), in addition to either global ablation (Il1r1 r/r) or global restoration of IL-1R1 (Il1r1 GR/GR). The LPS preconditioning paradigm consisted of four daily i.p. injections of LPS at 1 mg/kg (4d LPS). 24 hrs following the final i.p. LPS injection, tissue was collected for qPCR analysis, immunohistochemistry, or FAC sorting. Results Following 4d LPS, we found multiple phenotypes that are dependent on IL-1R1 signaling such as microglia morphology alterations, increased microglial M2-like gene expression, and clustering of microglia onto the brain vasculature. We determined that 4d LPS induces microglial morphological changes, clustering at the vasculature, and gene expression changes are dependent on endothelial IL-1R1, but not microglial IL-1R1. A novel observation was the induction of microglial IL-1R1 (mIL-1R1) following 4d LPS. The induced mIL-1R1 permits a unique response to central IL-1β: the mIL-1R1 dependent induction of IL-1R1 antagonist (IL-1RA) and IL-1β gene expression. Analysis of RNA sequencing datasets revealed that mIL-1R1 is also induced in neurodegenerative diseases. Discussion Here, we have identified cell type-specific IL-1R1 mediated mechanisms, which may contribute to the neuroprotection observed in LPS preconditioning. These findings identify key cellular and molecular contributors in LPS-induced neuroprotection.
Collapse
Affiliation(s)
- Daniel P Nemeth
- College of Dentistry, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA,Correspondence: Daniel P Nemeth; Ning Quan, 5353 Parkside Drive, Jupiter, FL, 33458, USA, Email ;
| | - Xiaoyu Liu
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Daniel B McKim
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Anu Herd
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Asish Katta
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Christina E Negray
- College of Dentistry, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - James Floyd
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Samantha McGovern
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Paige S Pruden
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Feiyang Zhutang
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Maria Smirnova
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John Sheridan
- College of Dentistry, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Ning Quan
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
19
|
Fields JA, Swinton MK, Montilla-Perez P, Ricciardelli E, Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2, Suppresses the Activation of Proinflammatory Genes Induced by Interleukin 1 Beta in Human Astrocytes. Cannabis Cannabinoid Res 2022; 7:78-92. [PMID: 33998879 PMCID: PMC8864424 DOI: 10.1089/can.2020.0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1β) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1β-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | - Mary K. Swinton
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | | | - Eugenia Ricciardelli
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California, USA.,*Address correspondence to: Francesca Telese, PhD, Department of Medicine, University of California San Diego, La Jolla, CA 93093, USA,
| |
Collapse
|
20
|
The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int J Mol Sci 2022; 23:ijms23031731. [PMID: 35163653 PMCID: PMC8915186 DOI: 10.3390/ijms23031731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
The interleukin-1 receptor type 1 (IL-1R1) holds pivotal roles in the immune system, as it is positioned at the “epicenter” of the inflammatory signaling networks. Increased levels of the cytokine IL-1 are a recognized feature of the immune response in the central nervous system (CNS) during injury and disease, i.e., neuroinflammation. Despite IL-1/IL-1R1 signaling within the CNS having been the subject of several studies, the roles of IL-1R1 in the CNS cellular milieu still cause controversy. Without much doubt, however, the persistent activation of the IL-1/IL-1R1 signaling pathway is intimately linked with the pathogenesis of a plethora of CNS disease states, ranging from Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), all the way to schizophrenia and prion diseases. Importantly, a growing body of evidence is showing that blocking IL-1R1 signaling via pharmacological or genetic means in different experimental models of said CNS diseases leads to reduced neuroinflammation and delayed disease progression. The aim of this paper is to review the recent progress in the study of the biological roles of IL-1R1, as well as to highlight key aspects that render IL-1R1 a promising target for the development of novel disease-modifying treatments for multiple CNS indications.
Collapse
|
21
|
Neurovascular Unit Alterations in the Growth-Restricted Newborn Are Improved Following Ibuprofen Treatment. Mol Neurobiol 2021; 59:1018-1040. [PMID: 34825315 DOI: 10.1007/s12035-021-02654-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
The developing brain is particularly vulnerable to foetal growth restriction (FGR) and abnormal neurodevelopment is common in the FGR infant ranging from behavioural and learning disorders to cerebral palsy. No treatment exists to protect the FGR newborn brain. Recent evidence suggests inflammation may play a key role in the mechanism responsible for the progression of brain impairment in the FGR newborn, including disruption to the neurovascular unit (NVU). We explored whether ibuprofen, an anti-inflammatory drug, could reduce NVU disruption and brain impairment in the FGR newborn. Using a preclinical FGR piglet model, ibuprofen was orally administered for 3 days from birth. FGR brains demonstrated a proinflammatory state, with changes to glial morphology (astrocytes and microglia), and blood-brain barrier disruption, assessed by IgG and albumin leakage into the brain parenchyma and a decrease in blood vessel density. Loss of interaction between astrocytic end-feet and blood vessels was evident where plasma protein leakage was present, suggestive of structural deficits to the NVU. T-cell infiltration was also evident in the parenchyma of FGR piglet brains. Ibuprofen treatment reduced the pro-inflammatory response in FGR piglets, reducing the number of activated microglia and enhancing astrocyte interaction with blood vessels. Ibuprofen also attenuated plasma protein leakage, regained astrocytic end-feet interaction around vessels, and decreased T-cell infiltration into the FGR brain. These findings suggest postnatal administration of ibuprofen modulates the inflammatory state, allowing for stronger interaction between vasculature and astrocytic end-feet to restore NVU integrity. Modulation of the NVU improves the FGR brain microenvironment and may be key to neuroprotection.
Collapse
|
22
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
23
|
Isali I, McClellan P, Shankar E, Gupta S, Jain M, Anderson JM, Hijaz A, Akkus O. Genipin guides and sustains the polarization of macrophages to the pro-regenerative M2 subtype via activation of the pSTAT6-PPAR-gamma pathway. Acta Biomater 2021; 131:198-210. [PMID: 34224892 DOI: 10.1016/j.actbio.2021.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
M2 macrophages are associated with deposition of interstitial collagen and other extracellular matrix proteins during the course wound healing and also inflammatory response to biomaterials. Developing advanced biomaterials to promote the M2 subtype may be an effective way to improve tissue reinforcement surgery outcomes. In this study, the effect of genipin, a naturally derived crosslinking agent, on M0 → M2-polarization was investigated. Genipin was introduced either indirectly by seeding cells on aligned collagen biotextiles that are crosslinked by the agent or in soluble form by direct addition to the culture medium. Cellular elongation effects on macrophage polarization induced by the collagen biotextile were also investigated as a potential inducer of macrophage polarization. M0 and M2 macrophages demonstrated significant elongation on the surface of aligned collagen threads, while cells of the M1 subtype-maintained a round phenotype. M0 → M2 polarization, as reflected by arginase and Ym-1 production, was observed on collagen threads only when the threads were crosslinked by genipin, implicating genipin as a more potent inducer of the regenerative phenotype compared to cytoskeletal elongation. The addition of genipin to the culture medium directly also drove the emergence of pro-regenerative phenotype as measured by the markers (arginase and Ym-1) and through the activation of the pSTAT6-PPAR-gamma pathway. This study indicates that genipin-crosslinked collagen biotextiles can be used as a delivery platform to promote regenerative response after biomaterial implantation. STATEMENT OF SIGNIFICANCE: The immune response is one of the key determinants of tissue repair and regeneration rate, and outcome. The M2 macrophage subtype is known to resolve the inflammatory response and support tissue repair by producing pro-regenerative factors. Therefore, a biomaterial that promotes M2 sub-type can be a viable strategy to enhance tissue regeneration. In this study, we investigated genipin-crosslinked electrochemically aligned collagen biotextiles for their capacity to induce pro-regenerative polarization of M0 macrophages. The results demonstrated that genipin, rather than matrix-induced cellular elongation, was responsible for M0 → M2 polarization in the absence of other bioinductive factors and maintaining the M2 polarized status of macrophages. Furthermore, we identified that genipin polarizes the M2 macrophage phenotype via activation of the pSTAT6-PPAR-gamma pathway.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eswar Shankar
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mukesh Jain
- Harrington Discovery Institute and the Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, and the Case Cardiovascular Research Institute, Case Western Reserve University, USA
| | - James M Anderson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Coyle S, Khan MN, Chemaly M, Callaghan B, Doyle C, Willoughby CE, Atkinson SD, Gregory-Ksander M, McGilligan V. Targeting the NLRP3 Inflammasome in Glaucoma. Biomolecules 2021; 11:biom11081239. [PMID: 34439904 PMCID: PMC8393362 DOI: 10.3390/biom11081239] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterised by the degeneration of retinal ganglion cells, resulting in damage to the optic nerve head (ONH) and loss of vision in one or both eyes. Increased intraocular pressure (IOP) is one of the major aetiological risk factors in glaucoma, and is currently the only modifiable risk factor. However, 30–40% of glaucoma patients do not present with elevated IOP and still proceed to lose vision. The pathophysiology of glaucoma is therefore not completely understood, and there is a need for the development of IOP-independent neuroprotective therapies to preserve vision. Neuroinflammation has been shown to play a key role in glaucoma and, specifically, the NLRP3 inflammasome, a key driver of inflammation, has recently been implicated. The NLRP3 inflammasome is expressed in the eye and its activation is reported in pre-clinical studies of glaucoma. Activation of the NLRP3 inflammasome results in IL-1β processing. This pro inflammatory cytokine is elevated in the blood of glaucoma patients and is believed to drive neurotoxic inflammation, resulting in axon degeneration and the death of retinal ganglion cells (RGCs). This review discusses glaucoma as an inflammatory disease and evaluates targeting the NLRP3 inflammasome as a therapeutic strategy. A hypothetical mechanism for the action of the NLRP3 inflammasome in glaucoma is presented.
Collapse
Affiliation(s)
- Sophie Coyle
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Mohammed Naeem Khan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden;
| | - Breedge Callaghan
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Chelsey Doyle
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Colin E. Willoughby
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Sarah D. Atkinson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Meredith Gregory-Ksander
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA;
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
- Correspondence:
| |
Collapse
|
25
|
Olson B, Diba P, Korzun T, Marks DL. Neural Mechanisms of Cancer Cachexia. Cancers (Basel) 2021; 13:cancers13163990. [PMID: 34439145 PMCID: PMC8391721 DOI: 10.3390/cancers13163990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer cachexia is a devastating wasting syndrome that occurs in many illnesses, with signs and symptoms including anorexia, weight loss, cognitive impairment and fatigue. The brain is capable of exerting overarching homeostatic control of whole-body metabolism and is increasingly being recognized as an important mediator of cancer cachexia. Given the increased recognition and discovery of neural mechanisms of cancer cachexia, we sought to provide an in-depth review and update of mechanisms by which the brain initiates and propagates cancer cachexia programs. Furthermore, recent work has identified new molecular mediators of cachexia that exert their effects through their direct interaction with the brain. Therefore, this review will summarize neural mechanisms of cachexia and discuss recently identified neural mediators of cancer cachexia. Abstract Nearly half of cancer patients suffer from cachexia, a metabolic syndrome characterized by progressive atrophy of fat and lean body mass. This state of excess catabolism decreases quality of life, ability to tolerate treatment and eventual survival, yet no effective therapies exist. Although the central nervous system (CNS) orchestrates several manifestations of cachexia, the precise mechanisms of neural dysfunction during cachexia are still being unveiled. Herein, we summarize the cellular and molecular mechanisms of CNS dysfunction during cancer cachexia with a focus on inflammatory, autonomic and neuroendocrine processes and end with a discussion of recently identified CNS mediators of cachexia, including GDF15, LCN2 and INSL3.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Tetiana Korzun
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
26
|
Tyagi A, Mirita C, Shah I, Reddy PH, Pugazhenthi S. Effects of Lipotoxicity in Brain Microvascular Endothelial Cells During Sirt3 Deficiency-Potential Role in Comorbid Alzheimer's Disease. Front Aging Neurosci 2021; 13:716616. [PMID: 34393764 PMCID: PMC8355826 DOI: 10.3389/fnagi.2021.716616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Silence information regulator 3 (SIRT3) is an NAD+ dependent deacetylase enzyme that enhances the function of key mitochondrial proteins. We have earlier demonstrated that deletion of Sirt3 gene leads to downregulation of metabolic enzymes, mitochondrial dysfunction and neuroinflammation in the brain, the major causes of Alzheimer’s disease (AD). We also reported recently that Sirt3 gene deletion in Alzheimer’s transgenic mice leads to exacerbation of neuroinflammation, amyloid plaque deposition and microglial activation. AD often coexists with other brain lesions caused by comorbidities which can exert their deleterious effects through the neurovascular unit. This unit consists of brain microvascular endothelial cells (BMECs), end feet of astrocytes, and pericytes. BMECs are uniquely different from other vascular endothelial cells because they are glued together by tight-junction proteins. BMECs are in constant contact with circulating factors as they line the luminal side. Therefore, we hypothesized that vascular endothelial injury caused by comorbidities plays a significant role in neuroinflammation. Herein, we investigated the effects of lipotoxicity in BMECs and how Sirt3 deficiency facilitate the deleterious effects of lipotoxicity on them using in vivo and in vitro models. We observed decreases in the levels of SIRT3 and tight junction proteins in the brain samples of western diet-fed APP/PS1 mice. Similar observations were obtained with Alzheimer’s post-mortem samples. Exposure of BEND3 cells, mouse brain-derived Endothelial cells3, to a combination of high glucose and palmitic acid resulted in significant (P < 0.01-P < 0.001) decreases in the levels of SIRT3, claudin-5 and ZO-1. Induction of inflammatory mediators, including Cox-2, CXCL1, RANTES, and GADD45β was also observed in these treated cells. Interestingly, the induction was more with Sirt3-silenced BEND3 cells, suggesting that Sirt3 deficiency exacerbates inflammatory response. Palmitic acid was more potent in inducing the inflammatory mediators. Significant cytotoxicity and changes in microglial morphology were observed when cocultures of Sirt3-silenced BEND3 and Sirt3-silenced BV2 cells were exposed to palmitic acid. Transendothelial electrical resistance measurement with these cocultures suggested decreased barrier integrity. The findings of this study suggest that hyperlipidemia in comorbidities can compromise blood brain barrier integrity by inducing inflammatory mediators and decreasing tight junction proteins in the vascular endothelial cells of the AD brain, leading to activation of microglia.
Collapse
Affiliation(s)
- Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carol Mirita
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Iman Shah
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - P Hemachandra Reddy
- Internal Medicine Department and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Garcia-Bonilla L, Sciortino R, Shahanoor Z, Racchumi G, Janakiraman M, Montaner J, Zhou P, Anrather J, Iadecola C. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav Immun 2021; 95:489-501. [PMID: 33872708 PMCID: PMC8187325 DOI: 10.1016/j.bbi.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1β (IL-1β) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1β, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1β. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1β. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1β-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1β was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1β production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1β. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ziasmin Shahanoor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mathangi Janakiraman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Montaner
- Neurovascular Lab, Vall d́Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
28
|
Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1. Front Immunol 2021; 12:688254. [PMID: 34093593 PMCID: PMC8176952 DOI: 10.3389/fimmu.2021.688254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - James B. Watson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
29
|
Iannucci J, Rao HV, Grammas P. High Glucose and Hypoxia-Mediated Damage to Human Brain Microvessel Endothelial Cells Induces an Altered, Pro-Inflammatory Phenotype in BV-2 Microglia In Vitro. Cell Mol Neurobiol 2020; 42:985-996. [PMID: 33136275 PMCID: PMC8942976 DOI: 10.1007/s10571-020-00987-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
Diabetes is strongly linked to the development of Alzheimer’s disease (AD), though the mechanisms for this enhanced risk are unclear. Because vascular inflammation is a consistent feature of both diabetes and AD, the cerebral microcirculation could be a key target for the effects of diabetes in the brain. The goal of this study is to explore whether brain endothelial cells, injured by diabetes-related insults, glucose and hypoxia, can affect inflammatory and activation processes in microglia in vitro. Human brain microvascular endothelial cells (HBMVECs) were either treated with 5 mM glucose (control), 30 mM glucose (high glucose), exposed to hypoxia, or exposed to hypoxia plus high glucose. HBMVEC-conditioned medium was then used to treat BV-2 microglia. Alterations in microglia phenotype were assessed through measurement of nitric oxide (NO), cytokine production, microglial activation state markers, and microglial phagocytosis. HBMVECs were injured by exposure to glucose and/or hypoxia, as assessed by release of LDH, interleukin (IL)-1β, and reactive oxygen species (ROS). HBMVECs injured by glucose and hypoxia induced increases in microglial production of NO, tumor necrosis factor-α (TNFα) and matrix metalloproteinase (MMP)-9. Injured HBMVECs significantly increased microglial expression of CD11c and CLEC7A, and decreased expression of the homeostatic marker P2RY12. Finally, bead uptake by BV-2 cells, an index of phagocytic ability, was elevated by conditioned media from injured HBMVECs. The demonstration that injury to brain endothelial cells by diabetic-associated insults, glucose and hypoxia, promotes microglial inflammation supports the idea that the cerebral microcirculation is a critical locus for the deleterious effects of diabetes in the AD brain.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States. .,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Haripriya Vittal Rao
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Wake Forest Baptist Medical Center, Winston-Salem, Wake Forest, NC, 27101, USA
| | - Paula Grammas
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
30
|
Hankittichai P, Lou HJ, Wikan N, Smith DR, Potikanond S, Nimlamool W. Oxyresveratrol Inhibits IL-1β-Induced Inflammation via Suppressing AKT and ERK1/2 Activation in Human Microglia, HMC3. Int J Mol Sci 2020; 21:ijms21176054. [PMID: 32842681 PMCID: PMC7504001 DOI: 10.3390/ijms21176054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Oxyresveratrol (OXY), a major phytochemical component derived from several plants, has been proved to have several pharmacological properties. However, the role of OXY in regulating neuroinflammation is still unclear. Here, we focused mainly on the anti-neuroinflammatory effects at the cellular level of OXY in the interleukin-1 beta (IL-1β)-stimulated HMC3 human microglial cell line. We demonstrated that OXY strongly decreased the release of IL-6 and MCP-1 from HMC3 cells stimulated with IL-1β. Nevertheless, IL-1β could not induce the secretion of TNF-α and CXCL10 in this specific cell line, and that OXY did not have any effects on reducing the basal level of these cytokines in the sample culture supernatants. The densitometry analysis of immunoreactive bands from Western blot clearly indicated that IL-1β does not trigger the nuclear factor-kappa B (NF-κB) signaling. We discovered that OXY exerted its anti-inflammatory role in IL-1β-induced HMC3 cells by suppressing IL-1β-induced activation of the PI3K/AKT/p70S6K pathway. Explicitly, the presence of OXY for only 4 h could strongly inhibit AKT phosphorylation. In addition, OXY had moderate effects on inhibiting the activation of ERK1/2. Results from immunofluorescence study further confirmed that OXY inhibited the phosphorylation of AKT and ERK1/2 MAPK upon IL-1β stimulation in individual cells. These findings suggest that the possible anti-inflammatory mechanisms of OXY in IL-1β-induced HMC3 cells are mainly through its ability to suppress the PI3K/AKT/p70S6K and ERK1/2 MAPK signal transduction cascades. In conclusion, our study provided accumulated data that OXY is able to suppress IL-1β stimulation signaling in human microglial cells, and we believe that OXY could be a probable pharmacologic agent for altering microglial function in the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (S.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand; (N.W.); (D.R.S.)
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand; (N.W.); (D.R.S.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (S.P.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (S.P.)
- Correspondence: ; Tel./Fax: +66-53-934597
| |
Collapse
|
31
|
Xie L, Zhao H, Wang Y, Chen Z. Exosomal shuttled miR-424-5p from ischemic preconditioned microglia mediates cerebral endothelial cell injury through negatively regulation of FGF2/STAT3 pathway. Exp Neurol 2020; 333:113411. [PMID: 32707150 DOI: 10.1016/j.expneurol.2020.113411] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Exosomes secreted by microglia have been found to play a role in neurovascular unit injury under the ischemic/hypoxic state. However, the modulatory effect of exosomes shuttled miRNAs produced by microglia in endothelial cells remains undefined. Here, an oxygen-glucose deprivation (OGD) model was constructed both in microglia and brain microvascular endothelial cells (BMEC). The exosomes secreted by microglia were isolated, and the exosomal miRNA profile was detected. Next, gain- and loss- functions of miR-424-5p, one of the most differentially expressed miRNAs in microglia derived exosomes, were conducted in BMEC. The results demonstrated that exosomes from OGD-activated microglia aggravated OGD induced BMEC viability and integrity damage as well as the loss of vascular formation. While the damaging effects were markedly attenuated by inhibiting miR-424-5p. In addition, miR-424-5p overexpression significantly aggravated OGD induced BMEC damage and permeability. Mechanistically, bioinformatics analysis indicated that miR-424-5p targeted the FGF2 mediated STAT3 signaling pathway, which was verified via dual luciferase activity assay and RIP experiment. Furthermore, in vivo experiments in the middle cerebral artery occlusion (MCAO) model mice were conducted. The results revealed that inhibition of miR-424-5p markedly reduced neurological dysfunctions and endothelial cell injury induced by MCAO. The above results confirmed that exosomes from OGD activated microglia induced significant cell damage and permeability of BMEC, in which the upregulated miR-424-5p in the exosomes functioned by regulating FGF2/STAT3 pathway.
Collapse
Affiliation(s)
- Lijuan Xie
- Department of Vascular, The Third Hospital of Jilin University, Jilin University, Changchun, 130033 Jilin, China
| | - Hang Zhao
- Department of Neurosurgery, The Third Hospital of Jilin University, Jilin University, Changchun, 130033 Jilin, China
| | - Yingying Wang
- Department of Neurology,The Third Hospital of Jilin University, Changchun, 130033 Jilin, China
| | - Zhuo Chen
- Department of Neurosurgery, The Third Hospital of Jilin University, Jilin University, Changchun, 130033 Jilin, China.
| |
Collapse
|
32
|
Wang P, Wang W, Hu Y, Li Y. Prolonged Soluble Epoxide Hydrolase Reactivity in Brain Endothelial Cells Is Associated with Long Cognitive Deficits in Sepsis. Mol Neurobiol 2020; 57:2846-2855. [PMID: 32378122 DOI: 10.1007/s12035-020-01925-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is known to cause long-term cognitive deficits which are related to sustained microglial activation, but the mechanisms are unclear. Recently, studies have shown soluble epoxide hydrolase (sEH) affects the chronic cognitive function or participates in long-term neuropsychiatric illness. We hypothesized that sEH may be involved in the long-term cognitive deficits of SAE. Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) and were administered vehicle or sEH inhibitor TPPU. CLP induced prolonged endothelial sEH reactivity and sustained activation of microglia in close vicinity to blood vessels at 14 days. We also observed that persistent loss of endothelial BBB function at 14 days following CLP. However, TPPU-treated septic mice exhibited improved BBB function and declined neuro-inflammation. We confirmed these beneficial effects in vitro, which indicated TPPU resulted in a significant improvement in IL-1β-induced loss of BBB integrity on hCMEC/D3 cell monolayers. Animals were also given a behavior test at 14 days after CLP. Mice showed normal basal locomotor activity in the open field compared with sham-operated animals, but performed fewer entries to the center zone, indicating increased anxiety-like behavior as avoidance of the center. TPPU-treated CLP mice showed normal crossing into the center zone during an open-field test and improved recovery of the ability to learn the novel object recognition (NOR) task compared with saline-treated CLP animals. Our data indicated that prolonged sEH reactivity in brain endothelial cells is associated with long cognitive deficits in sepsis. sEHIs such as TPPU can improve the endothelial barrier function and decrease CLP-induced long-term encephalopathy, at least in part, through anti-inflammatory effects.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenyue Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yueyu Hu
- Department of Neurology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Characterization of the SIM-A9 cell line as a model of activated microglia in the context of neuropathic pain. PLoS One 2020; 15:e0231597. [PMID: 32287325 PMCID: PMC7156095 DOI: 10.1371/journal.pone.0231597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Resident microglia of the central nervous system are being increasingly recognized as key players in diseases such as neuropathic pain. Biochemical and behavioral studies in neuropathic pain rodent models have documented compelling evidence of the critical role of ATP mediated-P2X4R-brain-derived neurotrophic factor (BDNF) signaling pathway in the initiation and maintenance of pain hypersensitivity, a feature driving neuropathic pain-related behavior. The goal of this study was to develop and characterize an in vitro cell line model of activated microglia that can be subsequently utilized for screening neuropathic pain therapeutics. In the present study, we characterized the SIM-A9 microglia cell line for key molecules in the P2X4R-BDNF signaling axis using a combination of biochemical techniques and developed an ATP-activated SIM-A9 microglia model. We present three novel findings: first, SIM-A9 cells expressed P2X4R and BDNF proteins, second, ATP, but not LPS, was cytocompatible with SIM-A9 cells and third, exposure of cells to optimized ATP concentrations for defined periods increased intracellular expression of Iba1 and BDNF proteins. Increased Iba1 levels confirmed microglia activation and increased BDNF expression confirmed ATP-mediated stimulation of the P2X4R signaling pathway. We propose that this ATP-activated SIM-A9 cell line model system can be utilized for screening both small- as well as macro-molecular neuropathic pain therapeutics targeting BDNF and/or P2X4R knockdown.
Collapse
|
34
|
Liu X, Jiao K, Jia CC, Li GX, Yuan Q, Xu JK, Hou Y, Wang B. BAP31 regulates IRAK1-dependent neuroinflammation in microglia. J Neuroinflammation 2019; 16:281. [PMID: 31883536 PMCID: PMC6935200 DOI: 10.1186/s12974-019-1661-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia, the mononuclear immune cells of the central nervous system (CNS), are essential for the maintenance of CNS homeostasis. BAP31, a resident and ubiquitously expressed protein of the endoplasmic reticulum, serves as a sorting factor for its client proteins, mediating the subsequent export, retention, and degradation or survival. Recently, BAP31 has been defined as a regulatory molecule in the CNS, but the function of BAP31 in microglia has yet to be determined. In the present study, we investigated whether BAP31 is involved in the inflammatory response of microglia. METHODS This study used the BV2 cell line and BAP31 conditional knockdown mice generated via the Cre/LoxP system. A BAP31 knockdown experiment was performed to elucidate the role of BAP31 in the endogenous inflammatory cytokine production by microglial BV2 cells. A mouse model of lipopolysaccharide (LPS)-induced cognitive impairment was established to evaluate the neuroprotective effect of BAP31 against neuroinflammation-induced memory deficits. Behavioral alterations were assessed with the open field test (OFT), Y maze, and Morris water maze. The activation of microglia in the hippocampus of mice was observed by immunohistochemistry. Western blot, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and reverse transcription quantitative real-time polymerase chain reaction (RT-PCR) were used to clarify the mechanisms. RESULTS BAP31 deficiency upregulates LPS-induced proinflammatory cytokines in BV2 cells and mice by upregulating the protein level of IRAK1, which in turn increases the translocation and transcriptional activity of NF-κB p65 and c-Jun, and moreover, knockdown of IRAK1 or use of an IRAK1 inhibitor reverses these functions. In the cognitive impairment animal model, the BAP31 knockdown mice displayed increased severity in memory deficiency accompanied by an increased expression of proinflammatory factors in the hippocampus. CONCLUSIONS These findings indicate that BAP31 may modulate inflammatory cytokines and cognitive impairment induced by neuroinflammation through IRAK1, which demonstrates that BAP31 plays an essential role in microglial inflammation and prevention of memory deficits caused by neuroinflammation.
Collapse
Affiliation(s)
- Xia Liu
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Kun Jiao
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Cong-Cong Jia
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Guo-Xun Li
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Qing Yuan
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Ji-Kai Xu
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Yue Hou
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China.
| | - Bing Wang
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China.
| |
Collapse
|
35
|
Zhu L, Liu X, Nemeth DP, DiSabato DJ, Witcher KG, Mckim DB, Oliver B, Le X, Gorantla G, Berdysz O, Li J, Ramani AD, Chen Z, Wu D, Godbout JP, Quan N. Interleukin-1 causes CNS inflammatory cytokine expression via endothelia-microglia bi-cellular signaling. Brain Behav Immun 2019; 81:292-304. [PMID: 31228609 PMCID: PMC6754782 DOI: 10.1016/j.bbi.2019.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/26/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
As a major producer of the inflammatory cytokine interleukin-1 (IL-1), peripheral macrophages can augment IL-1 expression via type 1 IL-1 receptor (IL-1R1) mediated autocrine self-amplification. In the CNS, microglial cells are the major producers of inflammatory cytokines, but express negligible levels of IL-1R1. In the present study, we showed CNS IL-1 induced microglial proinflammatory cytokine expression was mediated by endothelial, not microglial, IL-1R1. This paracrine mechanism was further dissected in vitro. IL-1 was unable to stimulate inflammatory cytokine expression directly from the microglial cell line BV-2, but it stimulated the brain endothelial cell line bEnd.3 to produce a factor(s) in the culture supernatant, which was capable of inducing inflammatory cytokine expression in BV-2. We termed this factor IL-1-induced microglial activation factors (IMAF). BV-2 cytokine expression was inducible by extracellular ATP, but IL-1 did not stimulate the release of ATP from bEnd.3 cells. Filtration of IMAF by size-exclusion membranes showed IMAF activity resided in molecules larger than 50 kd and incubation of IMAF at 95 °C for 5 min did not alter its activity. Microglial inhibitor minocycline was unable to block IMAF activity, even though it blocked LPS induced cytokine expression in BV-2 cells. Adding NF-κB inhibitor to the bEnd.3 cells abolished IL-1 induced cytokine expression in this bi-cellular system, but adding NF-κB inhibitor after IMAF is already produced failed to abrogate IMAF induced cytokine expression in BV-2 cells. RNA sequencing of IL-1 stimulated endothelial cells revealed increased expression of genes involved in the production and processing of hyaluronic acid (HA), suggesting HA as a candidate of IMAF. Inhibition of hyaluronidase by ascorbyl palmitate (AP) abolished IMAF-induced cytokine expression in BV-2 cells. AP administration in vivo also inhibited ICV IL-1-induced IL-1 expression in the hippocampus and hypothalamus. In vitro, either TLR2 or TLR4 inhibitors blocked IMAF induced BV-2 cytokine expression. In vivo, however, IL-1 induced cytokine expression persisted in either TLR2 or TLR4 knockouts. These results demonstrate IL-1 induced inflammatory cytokine expression in the CNS requires a bi-cellular system and HA could be a candidate for IMAF.
Collapse
Affiliation(s)
- Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R.China
| | - Xiaoyu Liu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Daniel P. Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Damon J. DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G. Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B. Mckim
- Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xi Le
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R.China, Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, Hubei 430075, P.R.China
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jiaoni Li
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Aishwarya D. Ramani
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R.China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R.China, Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, Hubei 430075, P.R.China
| | - Jonathan P. Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
36
|
Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S, Quan N, Fischer AJ. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation 2019; 16:118. [PMID: 31170999 PMCID: PMC6555727 DOI: 10.1186/s12974-019-1505-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1β), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage. Methods Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1β prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes. Results NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1β-signaling in different types of retinal neurons and glia. Expression of the IL1β receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csf1r antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1β stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1β failed to provide neuroprotection in the IL-1R1-null retina, but IL1β-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes. Conclusions We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1β, IL-1R1, and interactions of microglia and other macroglia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1505-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Leo Volkov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA.
| |
Collapse
|
37
|
Pretreatment Cancer-Related Cognitive Impairment-Mechanisms and Outlook. Cancers (Basel) 2019; 11:cancers11050687. [PMID: 31100985 PMCID: PMC6562730 DOI: 10.3390/cancers11050687] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Cognitive changes are common in patients with active cancer and during its remission. This has largely been blamed on therapy-related toxicities and diagnosis-related stress, with little attention paid to the biological impact of cancer itself. A plethora of clinical studies demonstrates that cancer patients experience cognitive impairment during and after treatment. However, recent studies show that a significant portion of patients with non-central nervous system (CNS) tumors experience cognitive decline prior to treatment, suggesting a role for tumor-derived factors in modulating cognition and behavior. Cancer-related cognitive impairment (CRCI) negatively impacts a patient’s quality of life, reduces occupational and social functioning, and increases morbidity and mortality. Furthermore, patients with cancer cachexia frequently experience a stark neurocognitive decline, suggesting peripheral tumors exert an enduring toll on the brain during this chronic paraneoplastic syndrome. However, the scarcity of research on cognitive impairment in non-CNS cancers makes it difficult to isolate psychosocial, genetic, behavioral, and pathophysiological factors in CRCI. Furthermore, clinical models of CRCI are frequently confounded by complicated drug regimens that inherently affect neurocognitive processes. The severity of CRCI varies considerably amongst patients and highlights its multifactorial nature. Untangling the biological aspects of CRCI from genetic, psychosocial, and behavioral factors is non-trivial, yet vital in understanding the pathogenesis of CRCI and discovering means for therapeutic intervention. Recent evidence demonstrating the ability of peripheral tumors to alter CNS pathways in murine models is compelling, and it allows researchers to isolate the underlying biological mechanisms from the confounding psychosocial stressors found in the clinic. This review summarizes the state of the science of CRCI independent of treatment and focuses on biological mechanisms in which peripheral cancers modulate the CNS.
Collapse
|
38
|
Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B, Witcher KG, Wang Y, Negray CE, Vegesna RS, Sheridan JF, Godbout JP, Robson MJ, Blakely RD, Popovich PG, Bilbo SD, Quan N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity 2019; 50:317-333.e6. [PMID: 30683620 DOI: 10.1016/j.immuni.2018.12.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel P Nemeth
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Yufen Wang
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christina E Negray
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rekha S Vegesna
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Jo DH, Yun JH, Cho CS, Kim JH, Kim JH, Cho CH. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2018; 67:321-331. [PMID: 30444022 DOI: 10.1002/glia.23542] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Inner and outer blood-retinal barriers (BRBs), mainly composed of retinal endothelial cells and retinal pigment epithelial (RPE) cells, respectively, maintain the integrity of the retinal tissues. In this study, we aimed to investigate the mechanisms of the outer BRB disruption regarding the interaction between RPE and microglia. In mice with high-fat diet-induced obesity and streptozotocin-induced hyperglycemia, microglia accumulated on the RPE layer, as in those after intravitreal injection of interleukin (IL)-6, which is elevated in ocular fluids of patients with diabetic retinopathy. Although IL-6 did not directly affect the levels of zonula occludens (ZO)-1 and occludin in RPE cells, IL-6 increased VEGFA mRNA in RPE cells to recruit microglial cells. In microglial cells, IL-6 upregulated the mRNA levels of MCP1, MIP1A, and MIP1B, to amplify the recruitment of microglial cells. In this manner, IL-6 modulated RPE and microglial cells to attract microglial cells on RPE cells. Furthermore, IL-6-treated microglial cells produced and secreted tumor necrosis factor (TNF)-α, which activated NF-κB and decreased the levels of ZO-1 in RPE cells. As STAT3 inhibition reversed the effects of IL-6-treated microglial cells on the RPE monolayer in vitro, it reduced the recruitment of microglial cells and the production of TNF-α in RPE tissues in streptozotocin-treated mice. Taken together, IL-6-treated RPE and microglial cells amplified the recruitment of microglial cells and IL-6-treated microglial cells produced TNF-α to disrupt the outer BRB in diabetic retinopathy.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hyuk Yun
- Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
41
|
Thurgur H, Pinteaux E. Microglia in the Neurovascular Unit: Blood-Brain Barrier-microglia Interactions After Central Nervous System Disorders. Neuroscience 2018; 405:55-67. [PMID: 31007172 DOI: 10.1016/j.neuroscience.2018.06.046] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, microglial cells have been regarded as the main executor of inflammation after acute and chronic central nervous system (CNS) disorders, responding rapidly to exogenous stimuli during acute trauma or infections, or signals released by cells undergoing cell death during conditions such as stroke, Alzheimer's disease (AD) and Parkinson's disease (PD). Barriers of the nervous system, and in particular the blood-brain barrier (BBB), play a key role in the normal physiological and cognitive functions of the brain. Being at the interface between the central and peripheral compartment, the BBB is regarded as a sensor of homeostasis, and any disruption within the brain or the systemic compartment triggers BBB dysfunction and neuroinflammation, both contributing to the pathogenesis of cerebrovascular disease. This involves a dynamic response mediated by all components of the neurovascular unit (NVU), and ongoing research suggests that BBB-microglia interaction is critical to dictate the microglial response to NVU injury. The present review aims to give an up-to-date account of the emerging critical role of BBB-microglia interactions during neuroinflammation, and how these could be targeted for the therapeutic treatment of major central inflammatory disease.
Collapse
Affiliation(s)
- Hannah Thurgur
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, United Kingdom.
| |
Collapse
|
42
|
Swanton T, Cook J, Beswick JA, Freeman S, Lawrence CB, Brough D. Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery? SLAS DISCOVERY 2018; 23:991-1017. [PMID: 29969573 DOI: 10.1177/2472555218786210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is becoming increasingly recognized as a critical factor in the pathology of both acute and chronic neurological conditions. Inflammasomes such as the one formed by NACHT, LRR, and PYD domains containing protein 3 (NLRP3) are key regulators of inflammation due to their ability to induce the processing and secretion of interleukin 1β (IL-1β). IL-1β has previously been identified as a potential therapeutic target in a variety of conditions due to its ability to promote neuronal damage under conditions of injury. Thus, inflammasome inhibition has the potential to curtail inflammatory signaling, which could prove beneficial in certain diseases. In this review, we discuss the evidence for inflammasome contributions to the pathology of neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, epilepsy, and acute degeneration following brain trauma or stroke. In addition, we review the current landscape of drug development targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tessa Swanton
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Cook
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A Beswick
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 2018; 70:278-314. [PMID: 29496890 PMCID: PMC5833009 DOI: 10.1124/pr.117.014647] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood-brain barrier (BBB), blood-cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Banks
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|