1
|
Caratis F, Karaszewski B, Klejbor I, Furihata T, Rutkowska A. Differential expression and modulation of EBI2 and 7α,25-OHC synthesizing (CH25H, CYP7B1) and degrading (HSD3B7) enzymes in mouse and human brain vascular cells. PLoS One 2025; 20:e0318822. [PMID: 39999050 PMCID: PMC11856462 DOI: 10.1371/journal.pone.0318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The endogenous ligand for the EBI2 receptor, oxysterol 7α,25OHC, crucial for immune responses, is finely regulated by CH25H, CYP7B1 and HSD3B7 enzymes. Lymphoid stromal cells and follicular dendritic cells within T cell follicles maintain a gradient of 7α,25OHC, with stromal cells increasing and dendritic cells decreasing its concentration. This gradient is pivotal for proper B cell positioning in lymphoid tissue. In the animal model of multiple sclerosis, the experimental autoimmune encephalomyelitis, the levels of 7α,25OHC rapidly increase in the central nervous system driving the migration of EBI2 expressing immune cells through the blood-brain barrier (BBB). To explore if blood vessel cells in the brain express these enzymes, we examined normal mouse brain microvessels and studied changes in their expression during inflammation. Ebi2 was abundantly expressed in endothelial cells, pericytes/smooth muscle cells, and astrocytic endfeet. Ch25h, Cyp7b1, and Hsd3b7 were variably detected in each cell type, suggesting their active involvement in oxysterol 7α,25OHC synthesis and gradient maintenance under normal conditions. Significant species-specific differences emerged in EBI2 and the enzyme levels between mouse and human BBB-forming cells. Under acute inflammatory conditions, Ebi2 and synthesizing enzyme modulation occurred in the brain, with the magnitude and direction of change based on the enzyme. Lastly, in an in vitro astrocyte migration model, CYP7B1 inhibitor clotrimazole, as well as EBI2 antagonist, NIBR189, inhibited lipopolysaccharide-induced cell migration indicating the involvement of EBI2 and its ligand in brain cell migration under inflammatory conditions.
Collapse
Affiliation(s)
- Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Center, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Konieczna-Wolska K, Caratis F, Opiełka M, Biernacki K, Urbanowicz K, Klimaszewska J, Pobiarzyn P, Krajewski O, Demkowicz S, Smoleński RT, Karaszewski B, Seuwen K, Rutkowska A. Accelerated remyelination and immune modulation by the EBI2 agonist 7α,25-dihydroxycholesterol analogue in the cuprizone model. Biomed Pharmacother 2024; 181:117653. [PMID: 39489122 DOI: 10.1016/j.biopha.2024.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Research indicates a role for EBI2 receptor in remyelination, demonstrating that its deficiency or antagonism inhibits this process. However, activation of EBI2 with its endogenous ligand, oxysterol 7α,25-dihydroxycholesterol (7α,25OHC), does not enhance remyelination beyond the levels observed in spontaneously remyelinating tissue. We hypothesized that the short half-life of the natural ligand might explain this lack of beneficial effects and tested a synthetic analogue, CF3-7α,25OHC, in the cuprizone model. The data showed that extending the bioavailability of 7α,25OHC is sufficient to accelerate remyelination in vivo. Moreover, the analogue, in contrast to the endogenous ligand, upregulated brain expression of Ebi2 and the synthesis of 15 lipids in the mouse corpus callosum. Mechanistically, the increased concentration of oxysterol likely disrupted its gradient in demyelinated areas of the brain, leading to the dispersion of infiltrating EBI2-expressing immune cells rather than their accumulation in demyelinated regions. Remarkably, the analogue CF3-7α,25OHC markedly decreased the lymphocyte and monocyte counts mimicking the key mechanism of action of some of the most effective disease-modifying therapies for multiple sclerosis. Furthermore, the Cd4+ transcripts in the cerebellum and CD4+ cell number in the corpus callosum were reduced compared to vehicle-treated mice. These findings suggest a mechanism by which EBI2/7α,25OHC signalling modulates the immune response and accelerates remyelination in vivo.
Collapse
Affiliation(s)
- Klaudia Konieczna-Wolska
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Gdańsk, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Joanna Klimaszewska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Pobiarzyn
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Oliwier Krajewski
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Adult Neurology, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
3
|
Caratis F, Opiełka M, Hausmann M, Velasco-Estevez M, Rojek B, de Vallière C, Seuwen K, Rogler G, Karaszewski B, Rutkowska A. The proton-sensing receptors TDAG8 and GPR4 are differentially expressed in human and mouse oligodendrocytes: Exploring their role in neuroinflammation and multiple sclerosis. PLoS One 2024; 19:e0283060. [PMID: 38527054 PMCID: PMC10962805 DOI: 10.1371/journal.pone.0283060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Acidosis is one of the hallmarks of demyelinating central nervous system (CNS) lesions in multiple sclerosis (MS). The response to acidic pH is primarily mediated by a family of G protein-coupled proton-sensing receptors: OGR1, GPR4 and TDAG8. These receptors are inactive at alkaline pH, reaching maximal activation at acidic pH. Genome-wide association studies have identified a locus within the TDAG8 gene associated with several autoimmune diseases, including MS. Accordingly, we here found that expression of TDAG8, as opposed to GPR4 or OGR1, is upregulated in MS plaques. This led us to investigate the expression of TDAG8 in oligodendrocytes using mouse and human in vitro and in vivo models. We observed significant upregulation of TDAG8 in human MO3.13 oligodendrocytes during maturation and in response to acidic conditions. However, its deficiency did not impact normal myelination in the mouse CNS, and its expression remained unaltered under demyelinating conditions in mouse organotypic cerebellar slices. Notably, our data revealed no expression of TDAG8 in primary mouse oligodendrocyte progenitor cells (OPCs), in contrast to its expression in primary human OPCs. Our investigations have revealed substantial species differences in the expression of proton-sensing receptors in oligodendrocytes, highlighting the limitations of the employed experimental models in fully elucidating the role of TDAG8 in myelination and oligodendrocyte biology. Consequently, the study does not furnish robust evidence for the role of TDAG8 in such processes. Nonetheless, our findings tentatively point towards a potential association between TDAG8 and myelination processes in humans, hinting at a potential link between TDAG8 and the pathophysiology of MS and warrants further research.
Collapse
Affiliation(s)
- Fionä Caratis
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Velasco-Estevez
- H12O-CNIO Hematological Malignancies Group, Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Bartłomiej Rojek
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
5
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
6
|
Wang Y, Sadike D, Huang B, Li P, Wu Q, Jiang N, Fang Y, Song G, Xu L, Wang W, Xie M. Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination. J Neuroinflammation 2023; 20:41. [PMID: 36803990 PMCID: PMC9938996 DOI: 10.1186/s12974-023-02721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/05/2023] [Indexed: 02/20/2023] Open
Abstract
Demyelination occurs in multiple central nervous system (CNS) disorders and is tightly associated with neuroinflammation. Pyroptosis is a form of pro-inflammatory and lytic cell death which has been observed in CNS diseases recently. Regulatory T cells (Tregs) have exhibited immunoregulatory and protective effects in CNS diseases. However, the roles of Tregs in pyroptosis and their involvement in LPC-induced demyelination have not been explicated. In our study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) or PBS were subjected to two-site lysophosphatidylcholine (LPC) injection. Immunofluorescence, western blot, Luxol fast blue (LFB) staining, quantitative real-time PCR (qRT-PCR) and neurobehavior assessments were performed to evaluate the severity of demyelination, neuroinflammation and pyroptosis. Pyroptosis inhibitor was further used to investigate the role of pyroptosis in LPC-induced demyelination. RNA-sequencing was applied to explore the potential regulatory mechanism underlying the involvement of Tregs in LPC-induced demyelination and pyroptosis. Our results showed that depletion of Tregs aggravated microgliosis, inflammatory responses, immune cells infiltration and led to exacerbated myelin injury as well as cognitive defects in LPC-induced demyelination. Microglial pyroptosis was observed after LPC-induced demyelination, which was aggravated by Tregs depletion. Inhibition of pyroptosis by VX765 reversed myelin injury and cognitive function exacerbated by Tregs depletion. RNA-sequencing showed TLR4/myeloid differentiation marker 88 (MyD88) as the central molecules in Tregs-pyroptosis pathway, and refraining TLR4/MyD88/NF-κB pathway alleviated the aggravated pyroptosis induced by Tregs depletion. In conclusion, our findings for the first time indicate that Tregs alleviate myelin loss and improve cognitive function by inhibiting pyroptosis in microglia via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination.
Collapse
Affiliation(s)
- Yao Wang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Dilinuer Sadike
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Bo Huang
- grid.412793.a0000 0004 1799 5032Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Ping Li
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Qiao Wu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Na Jiang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Yongkang Fang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Guini Song
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Li Xu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Braden K, Campolo M, Li Y, Chen Z, Doyle TM, Giancotti LA, Esposito E, Zhang J, Cuzzocrea S, Arnatt CK, Salvemini D. Activation of GPR183 by 7 α,25-Dihydroxycholesterol Induces Behavioral Hypersensitivity through Mitogen-Activated Protein Kinase and Nuclear Factor- κB. J Pharmacol Exp Ther 2022; 383:172-181. [PMID: 36116795 PMCID: PMC9553113 DOI: 10.1124/jpet.122.001283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging evidence implicates the G-protein coupled receptor (GPCR) GPR183 in the development of neuropathic pain. Further investigation of the signaling pathways downstream of GPR183 is needed to support the development of GPR183 antagonists as analgesics. In rodents, intrathecal injection of its ligand, 7α,25-dihydroxycholesterol (7α,25-OHC), causes time-dependent development of mechano-and cold- allodynia (behavioral hypersensitivity). These effects are blocked by the selective small molecule GPR183 antagonist, SAE-14. However, the molecular mechanisms engaged downstream of GPR183 in the spinal cord are not known. Here, we show that 7α,25-OHC-induced behavioral hypersensitivity is Gα i dependent, but not β-arrestin 2-dependent. Non-biased transcriptomic analyses of dorsal-horn spinal cord (DH-SC) tissues harvested at the time of peak hypersensitivity implicate potential contributions of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). In support, we found that the development of 7α,25-OHC/GPR183-induced mechano-allodynia was associated with significant activation of MAPKs (extracellular signal-regulated kinase [ERK], p38) and redox-sensitive transcription factors (NF-κB) and increased formation of inflammatory and neuroexcitatory cytokines. SAE-14 blocked these effects and behavioral hypersensitivity. Our findings provide novel mechanistic insight into how GPR183 signaling in the spinal cord produces hypersensitivity through MAPK and NF-κB activation. SIGNIFICANCE STATEMENT: Using a multi-disciplinary approach, we have characterized the molecular mechanisms underpinning 7α,25-OHC/GPR183-induced hypersensitivity in mice. Intrathecal injections of the GPR183 agonist 7α,25-OHC induce behavioral hypersensitivity, and these effects are blocked by the selective GPR183 antagonist SAE-14. We found that 7α,25-OHC-induced allodynia is dependent on MAPK and NF-κB signaling pathways and results in an increase in pro-inflammatory cytokine expression. This study provides a first insight into how GPR183 signaling in the spinal cord is pronociceptive.
Collapse
Affiliation(s)
- Kathryn Braden
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Michela Campolo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Ying Li
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Emanuela Esposito
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Salvatore Cuzzocrea
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Christopher Kent Arnatt
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A., D.S.); Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Saint Louis, Missouri (K.B., Y.L., Z.C., T.M.D., L.A.G., J.Z., C.K.A.,D.S.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (M.C., E.E., S.C.); and Department of Chemistry, Saint Louis University, Saint Louis, Missouri (C.K.A.)
| |
Collapse
|
8
|
Barington L, Christensen LVV, Pedersen KK, Niss Arfelt K, Roumain M, Jensen KHR, Kjær VMS, Daugvilaite V, Kearney JF, Christensen JP, Hjortø GM, Muccioli GG, Holst PJ, Rosenkilde MM. GPR183 Is Dispensable for B1 Cell Accumulation and Function, but Affects B2 Cell Abundance, in the Omentum and Peritoneal Cavity. Cells 2022; 11:cells11030494. [PMID: 35159303 PMCID: PMC8834096 DOI: 10.3390/cells11030494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
B1 cells constitute a specialized subset of B cells, best characterized in mice, which is abundant in body cavities, including the peritoneal cavity. Through natural and antigen-induced antibody production, B1 cells participate in the early defense against bacteria. The G protein-coupled receptor 183 (GPR183), also known as Epstein-Barr virus-induced gene 2 (EBI2), is an oxysterol-activated chemotactic receptor that regulates migration of B cells. We investigated the role of GPR183 in B1 cells in the peritoneal cavity and omentum. B1 cells expressed GPR183 at the mRNA level and migrated towards the GPR183 ligand 7α,25-dihydroxycholesterol (7α,25-OHC). GPR183 knock-out (KO) mice had smaller omenta, but with normal numbers of B1 cells, whereas they had fewer B2 cells in the omentum and peritoneal cavity than wildtype (WT) mice. GPR183 was not responsible for B1 cell accumulation in the omentum in response to i.p. lipopolysaccharide (LPS)-injection, in spite of a massive increase in 7α,25-OHC levels. Lack of GPR183 also did not affect B1a- or B1b cell-specific antibody responses after vaccination. In conclusion, we found that GPR183 is non-essential for the accumulation and function of B1 cells in the omentum and peritoneal cavity, but that it influences the abundance of B2 cells in these compartments.
Collapse
Affiliation(s)
- Line Barington
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Liv von Voss Christensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Kristian Kåber Pedersen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Kristine Niss Arfelt
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Kristian Høj Reveles Jensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Viktoria Madeline Skovgaard Kjær
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Viktorija Daugvilaite
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - John F. Kearney
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jan Pravsgaard Christensen
- Infectious Immunology Group, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Peter Johannes Holst
- Experimental Vaccinology Group, Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
- InProTher ApS, 2200 Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.B.); (L.v.V.C.); (K.K.P.); (K.N.A.); (K.H.R.J.); (V.M.S.K.); (V.D.); (G.M.H.)
- Correspondence:
| |
Collapse
|
9
|
Gorter RP, Dijksman NS, Baron W, Colognato H. Investigating demyelination, efficient remyelination and remyelination failure in organotypic cerebellar slice cultures: Workflow and practical tips. Methods Cell Biol 2022; 168:103-123. [DOI: 10.1016/bs.mcb.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:2020078118. [PMID: 34099564 DOI: 10.1073/pnas.2020078118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.
Collapse
|
11
|
Velasco-Estevez M, Koch N, Klejbor I, Laurent S, Dev KK, Szutowicz A, Sailer AW, Rutkowska A. EBI2 Is Temporarily Upregulated in MO3.13 Oligodendrocytes during Maturation and Regulates Remyelination in the Organotypic Cerebellar Slice Model. Int J Mol Sci 2021; 22:ijms22094342. [PMID: 33919387 PMCID: PMC8122433 DOI: 10.3390/ijms22094342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.
Collapse
Affiliation(s)
- Maria Velasco-Estevez
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Nina Koch
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Ilona Klejbor
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Stephane Laurent
- Chemical Biology and Therapeutics/Disease Area X/Liver, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland; (S.L.); (A.W.S.)
| | - Kumlesh K. Dev
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland;
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Andreas W. Sailer
- Chemical Biology and Therapeutics/Disease Area X/Liver, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland; (S.L.); (A.W.S.)
| | - Aleksandra Rutkowska
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence:
| |
Collapse
|
12
|
Braden K, Giancotti LA, Chen Z, DeLeon C, Latzo N, Boehn T, D'Cunha N, Thompson BM, Doyle TM, McDonald JG, Walker JK, Kolar GR, Arnatt CK, Salvemini D. GPR183-Oxysterol Axis in Spinal Cord Contributes to Neuropathic Pain. J Pharmacol Exp Ther 2020; 375:367-375. [PMID: 32913007 PMCID: PMC7592849 DOI: 10.1124/jpet.120.000105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that Gpr183 (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC). The role of GPR183 in the central nervous system is not well characterized, and its role in pain is unknown. The profile of commercially available probes for GPR183 limits their use as pharmacological tools to dissect the roles of this receptor in pathophysiological settings. Using in silico modeling, we have screened a library of 5 million compounds to identify several novel small-molecule antagonists of GPR183 with nanomolar potency. These compounds are able to antagonize 7α,25-OHC-induced calcium mobilization in vitro with IC50 values below 50 nM. In vivo intrathecal injections of these antagonists during peak pain after CCI surgery reversed allodynia in male and female mice. Acute intrathecal injection of the GPR183 ligand 7α,25-OHC in naïve mice induced dose-dependent allodynia. Importantly, this effect was blocked using our novel GPR183 antagonists, suggesting spinal GPR183 activation as pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify this receptor as a potential target for therapeutic intervention. SIGNIFICANCE STATEMENT: We have identified several novel GPR183 antagonists with nanomolar potency. Using these antagonists, we have demonstrated that GPR183 signaling in the spinal cord is pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify it as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Kathryn Braden
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Luigino Antonio Giancotti
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Zhoumou Chen
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Chelsea DeLeon
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | - Nick Latzo
- INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huerga-Gómez A, Aguado T, Sánchez-de la Torre A, Bernal-Chico A, Matute C, Mato S, Guzmán M, Galve-Roperh I, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia 2020; 69:532-545. [PMID: 32956517 PMCID: PMC7821226 DOI: 10.1002/glia.23911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Δ9‐Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so‐called endocannabinoids. Specifically, the endocannabinoid 2‐arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC‐induced‐myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC‐mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.
Collapse
Affiliation(s)
- Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ana Bernal-Chico
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia, Multiple Sclerosis and Other Demyelinating Diseases Unit, Barakaldo, Spain
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| |
Collapse
|
14
|
Tian Z, Chu T, Shields LBE, Zhu Q, Zhang YP, Kong M, Barnes GN, Wang Y, Shields CB, Cai J. Platelet-Activating Factor Deteriorates Lysophosphatidylcholine-Induced Demyelination Via Its Receptor-Dependent and -Independent Effects. Mol Neurobiol 2020; 57:4069-4081. [PMID: 32661728 DOI: 10.1007/s12035-020-02003-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/26/2020] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that platelet-activating factor (PAF) increases the inflammatory response in demyelinating diseases such as multiple sclerosis. However, PAF receptor (PAFR) antagonists do not show therapeutic efficacy for MS, and its underlying mechanisms remain poorly understood. In the present study, we investigated the effects of PAF on an ex vivo demyelination cerebellar model following lysophosphatidylcholine (LPC, 0.5 mg/mL) application using wild-type and PAFR conventional knockout (PAFR-KO) mice. Demyelination was induced in cerebellar slices that were cultured with LPC for 18 h. Exogenous PAF (1 μM) acting on cerebellar slices alone did not cause demyelination but increased the severity of LPC-induced demyelination in both wild-type and PAFR-KO mice. LPC inhibited the expression of PAF-AH, MBP, TNF-α, and TGF-β1 but facilitated the expression of IL-1β and IL-6 in wild-type preparations. Of note, exogenous PAF stimulated microglial activation in both wild-type and PAFR-KO mice. The subsequent inflammatory cytokines TNFα, IL-1β, and IL-6 as well as the anti-inflammatory cytokine TGF-β1 demonstrated a diverse transcriptional profile with or without LPC treatment. PAF promoted TNF-α expression and suppressed TGF-β1 expression indiscriminately in wild-type and knockout slices; however, transcription of IL-1β and IL-6 was not significantly affected in both slices. The syntheses of IL-1β and IL-6 were significantly increased in LPC-induced demyelination preparations without PAF but showed a redundancy in PAF-treated wild-type and knockout slices. These data suggest that PAF can play a detrimental role in LPC-induced demyelination probably due to a redundant response of PAFR-dependent and PAFR-independent effects on inflammatory cytokines.
Collapse
Affiliation(s)
- Zhisen Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tianci Chu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health & Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA.,Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA. .,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
15
|
Malaguti M, Cardenia V, Rodriguez-Estrada MT, Hrelia S. Nutraceuticals and physical activity: Their role on oxysterols-mediated neurodegeneration. J Steroid Biochem Mol Biol 2019; 193:105430. [PMID: 31325497 DOI: 10.1016/j.jsbmb.2019.105430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
Over the past few years, the contribution of oxysterols to the onset and development of some of the major neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) has been scientifically asserted, being mainly related to altered brain cholesterol homeostasis. To counteract oxysterol induced inflammation at neuronal level, one possible intervention approach is the administration of some nutrients and/or plant secondary metabolites. On the other hand, the pleiotropic beneficial effects of physical activity seem to play an important role on prevention and counteraction of neurodegenerative diseases, through the modulation of oxysterol homeostasis and the prevention of demyelination. The present review provides a picture of the promising role of nutraceuticals and physical activity on oxysterol-mediated neurodegeneration, pointing out also the different in vitro and in vivo aspects that need to be further investigated for a better understanding of the association of these three counterparts and their overall effect on people at increased risk for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini, 47921, Italy.
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | | | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini, 47921, Italy
| |
Collapse
|
16
|
Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regen Res 2019; 14:373-386. [PMID: 30539801 PMCID: PMC6334604 DOI: 10.4103/1673-5374.245462] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system characterized by inflammation, demyelination, and neuronal damage. Environmental and genetic factors are associated with the risk of developing MS, but the exact cause still remains unidentified. Epstein-Barr virus (EBV), vitamin D, and smoking are among the most well-established environmental risk factors in MS. Infectious mononucleosis, which is caused by delayed primary EBV infection, increases the risk of developing MS. EBV may also contribute to MS pathogenesis indirectly by activating silent human endogenous retrovirus-W. The emerging B-cell depleting therapies, particularly anti-CD20 agents such as rituximab, ocrelizumab, as well as the fully human ofatumumab, have shown promising clinical and magnetic resonance imaging benefit. One potential effect of these therapies is the depletion of memory B-cells, the primary reservoir site where EBV latency occurs. In addition, EBV potentially interacts with both genetic and other environmental factors to increase susceptibility and disease severity of MS. This review examines the role of EBV in MS pathophysiology and summarizes the recent clinical and radiological findings, with a focus on B-cells and in vivo imaging. Addressing the potential link between EBV and MS allows the better understanding of MS pathogenesis and helps to identify additional disease biomarkers that may be responsive to B-cell depleting intervention.
Collapse
Affiliation(s)
- Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
17
|
Barington L, Wanke F, Niss Arfelt K, Holst PJ, Kurschus FC, Rosenkilde MM. EBI2 in splenic and local immune responses and in autoimmunity. J Leukoc Biol 2018; 104:313-322. [DOI: 10.1002/jlb.2vmr1217-510r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- L. Barington
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - F. Wanke
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - K. Niss Arfelt
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - P. J. Holst
- Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - F. C. Kurschus
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - M. M. Rosenkilde
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
18
|
Kurschus FC, Wanke F. EBI2 - Sensor for dihydroxycholesterol gradients in neuroinflammation. Biochimie 2018; 153:52-55. [PMID: 29689289 DOI: 10.1016/j.biochi.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Dihydroxycholesterols such as 7α,25-dihydroxysterols (7α,25-OHC) and 7α,27-OHC are generated from cholesterol by the enzymes CH25H, CYP7B1 and CYP27A1 in steady state but also in the context of inflammation. The G-protein coupled receptor (GPCR) Epstein-Barr virus-induced gene 2 (EBI2), also known as GPR183, senses these oxysterols and induces chemotactic migration of immune cells towards higher concentrations of these ligands. We recently showed that these ligands are upregulated in the CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis and that EBI2 enhanced early infiltration of encephalitogenic T cells into the CNS. In this short-review we discuss the role of dihydroxysterol-sensing by immune cells in neuroinflammation.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|