1
|
Qi M, Chen TT, Li L, Gao PP, Li N, Zhang SH, Wei W, Sun WY. Insight into the regulatory mechanism of β-arrestin2 and its emerging role in diseases. Br J Pharmacol 2024; 181:3019-3038. [PMID: 38961617 DOI: 10.1111/bph.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
β-arrestin2, a member of the arrestin family, mediates the desensitization and internalization of most G protein-coupled receptors (GPCRs) and functions as a scaffold protein in signalling pathways. Previous studies have demonstrated that β-arrestin2 expression is dysregulated in malignant tumours, fibrotic diseases, cardiovascular diseases and metabolic diseases, suggesting its pathological roles. Transcription and post-transcriptional modifications can affect the expression of β-arrestin2. Furthermore, post-translational modifications, such as phosphorylation, ubiquitination, SUMOylation and S-nitrosylation affect the cellular localization of β-arrestin2 and its interaction with downstream signalling molecules, which further regulate the activity of β-arrestin2. This review summarizes the structure and function of β-arrestin2 and reveals the mechanisms involved in the regulation of β-arrestin2 at multiple levels. Additionally, recent studies on the role of β-arrestin2 in some major diseases and its therapeutic prospects have been discussed to provide a reference for the development of drugs targeting β-arrestin2.
Collapse
Affiliation(s)
- Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
2
|
Qin J, Nong L, Zhu Q, Huang Z, Wu F, Li S. A Retrospective Analysis of Central and Peripheral Metabolic Characteristics in Patients with Cryptococcal Meningitis. Neurol Ther 2024; 13:763-784. [PMID: 38643256 PMCID: PMC11136911 DOI: 10.1007/s40120-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024] Open
Abstract
INTRODUCTION Most current treatment strategies and investigations on cryptococcal meningitis (CM) focus primarily on the central nervous system (CNS), often overlooking the complex interplay between the CNS and the peripheral system. This study aims to explore the characteristics of central and peripheral metabolism in patients with CM. METHODS Patients diagnosed with CM as per the hospital records of the Fourth People's Hospital of Nanning were retrospectively analyzed. Patients were divided into two groups, non-structural damage of the brain (NSDB) and structural damage of the brain (SDB), according to the presence of brain lesions as detected with imaging. Based on the presence of enlarged cerebral ventricles, the cases in the SDB group were classified into non-ventriculomegaly (NVM) and ventriculomegaly (VM). Various parameters of cerebrospinal fluid (CSF) and peripheral blood (PB) were analyzed. RESULTS A significant correlation was detected between CSF and PB parameters. The levels of CSF-adenosine dehydrogenase (ADA), CSF-protein, CSF-glucose, and CSF-chloride ions were significantly correlated with the levels of PB-aminotransferase, PB-bilirubin, PB-creatinine (Cr), PB-urea nitrogen, PB-electrolyte, PB-protein, and PB-lipid. Compared with NSDB, the levels of CSF-glucose were significantly decreased in the SDB group, while the levels of CSF-lactate dehydrogenase (LDH) and CSF-protein were significantly increased in the SDB group. In the SDB group, the levels of PB-potassium, PB-hemoglobin(Hb), and PB-albumin were significantly decreased in the patients with VM, while the level of PB-urea nitrogen was significantly increased in these patients. CONCLUSION Metabolic and structural alterations in the brain may be associated with peripheral metabolic changes.
Collapse
Affiliation(s)
- Jianglong Qin
- The Fourth People's Hospital of Nanning, 1 Chang-Gang-Two-Li Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Lanwei Nong
- The Fourth People's Hospital of Nanning, 1 Chang-Gang-Two-Li Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Qingdong Zhu
- The Fourth People's Hospital of Nanning, 1 Chang-Gang-Two-Li Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Zhizhong Huang
- The Fourth People's Hospital of Nanning, 1 Chang-Gang-Two-Li Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Fengyao Wu
- The Fourth People's Hospital of Nanning, 1 Chang-Gang-Two-Li Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Sijun Li
- The Fourth People's Hospital of Nanning, 1 Chang-Gang-Two-Li Road, Nanning, Guangxi, 530023, People's Republic of China.
| |
Collapse
|
3
|
Kang K, Shi K, Liu J, Li N, Wu J, Zhao X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14544. [PMID: 38372446 PMCID: PMC10875714 DOI: 10.1111/cns.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024] Open
Abstract
AIMS Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jiexin Liu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Na Li
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jianwei Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Gayger-Dias V, Vizuete AFK, Rodrigues L, Wartchow KM, Bobermin L, Leite MC, Quincozes-Santos A, Kleindienst A, Gonçalves CA. How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med (Maywood) 2023; 248:2109-2119. [PMID: 38058025 PMCID: PMC10800124 DOI: 10.1177/15353702231214260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.
Collapse
Affiliation(s)
- Vitor Gayger-Dias
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Adriana FK Vizuete
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Letícia Rodrigues
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Krista Minéia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
| | - Larissa Bobermin
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Marina Concli Leite
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - André Quincozes-Santos
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany
| | - Carlos-Alberto Gonçalves
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| |
Collapse
|
5
|
Ziqing Z, Yunpeng L, Yiqi L, Yang W. Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathol 2023; 33:e13151. [PMID: 36755470 PMCID: PMC10041168 DOI: 10.1111/bpa.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Ischemic stroke (IS) is a major cause of disability and death in adults, and the immune response plays an indispensable role in its pathological process. After the onset of IS, an inflammatory storm, with the infiltration and mobilization of the mononuclear phagocyte system (MPS), is triggered in the brain. Microglia are rapidly activated in situ, followed by waves of circulating monocytes into the ischemic area. Activated microglia and monocytes/macrophages are mainly distributed in the peri-infarct area. These cells have similar morphology and functions, such as secreting cytokines and phagocytosis. Previously, the presence of the MPS was considered a marker of an exacerbated inflammatory response that contributes to brain damage. However, recent studies have suggested a rather complicated role of the MPS in IS. Here, we reviewed articles focusing on various functions of the MPS among different phases of IS, including recruitment, polarization, phagocytosis, angiogenesis, and interaction with other types of cells. Moreover, due to the characteristics of the MPS, we also noted clinical research addressing alterations in the MPS as potential biomarkers for IS patients for the purposes of predicting prognosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Ziqing
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yunpeng
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yiqi
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Wang Yang
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Premorbid Use of Beta-Blockers or Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7733857. [PMID: 36778208 PMCID: PMC9908343 DOI: 10.1155/2023/7733857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the impact of the preexisting use of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) on the cellular immune response in peripheral blood and the clinical outcomes of patients with acute ischemic stroke. We retrospectively collected clinical data from a cohort of 69 patients with premorbid beta-blockers and 56 patients with premorbid ACEIs/ARBs. Additionally, we selected a cohort of 107 patients with acute ischemic stroke to be the control of the same age and sex. We analyzed cellular immune parameters in peripheral blood 1 day after the appearance of symptoms, including the frequencies of circulating white blood cell subpopulations, the neutrophil-to-lymphocyte ratio (NLR), and the lymphocyte-to-monocyte ratio (LMR). We found that the count of lymphocytes and the lymphocyte-to-monocyte ratio were significantly higher in the peripheral blood of patients treated with beta-blockers before stroke than in matched controls. However, the premorbid use of ACEIs/ARBs did not considerably impact the circulating immune parameters listed above in patients with acute ischemic stroke. Furthermore, we found that premorbid use of beta-blockers or ACEIs/ARBs did not significantly change functional outcomes in patients 3 months after the onset of stroke. These results suggest that premorbid use of beta-blockers, but not ACEIs/ARBs, reversed lymphopenia associated with acute ischemic stroke. As cellular immune changes in peripheral blood could be an independent predictor of stroke prognosis, more large-scale studies are warranted to further verify the impact of premorbid use of beta-blockers or ACEIs/ARBs on the prognosis of patients with ischemic stroke. Our research is beneficial to understanding the mechanism of the systemic immune response induced by stroke and has the potential for a therapeutic strategy in stroke interventions and treatment.
Collapse
|
7
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
8
|
Westendorp WF, Dames C, Nederkoorn PJ, Meisel A. Immunodepression, Infections, and Functional Outcome in Ischemic Stroke. Stroke 2022; 53:1438-1448. [PMID: 35341322 DOI: 10.1161/strokeaha.122.038867] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke remains one of the main causes of mortality and morbidity worldwide. Immediately after stroke, a neuroinflammatory process starts in the brain, triggering a systemic immunodepression mainly through excessive activation of the autonomous nervous system. Manifestations of immunodepression include lymphopenia but also dysfunctional innate and adaptive immune cells. The resulting impaired antibacterial defenses render patients with stroke susceptible to infections. In addition, other risk factors like stroke severity, dysphagia, impaired consciousness, mechanical ventilation, catheterization, and older age predispose stroke patients for infections. Most common infections are pneumonia and urinary tract infection, both occur in ≈10% of the patients. Especially pneumonia increases unfavorable outcome and mortality in patients with stroke; systemic effects like hypotension, fever, delay in rehabilitation are thought to play a crucial role. Experimental and clinical data suggest that systemic infections enhance autoreactive immune responses against brain antigens and thus negatively affect outcome but convincing evidence is lacking. Prevention of poststroke infections by preventive antibiotic therapy did not improve functional outcome after stroke. Immunomodulatory approaches counteracting immunodepression to prevent stroke-associated pneumonia need to account for neuroinflammation in the ischemic brain and avoid further tissue damage. Experimental studies discovered interesting targets, but these have not yet been investigated in patients with stroke. A better understanding of the pathobiology may help to develop optimized approaches of preventive antibiotic therapy or immunomodulation to effectively prevent stroke-associated pneumonia while improving long-term outcome after stroke. In this review, we aim to characterize epidemiology, risk factors, cause, diagnosis, clinical presentation, and potential treatment of poststroke immunosuppression and associated infections.
Collapse
Affiliation(s)
- Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Claudia Dames
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| |
Collapse
|
9
|
Xu Y, Ge Y, Zhou M, Zhang Z. Clenbuterol, a Selective β2-Adrenergic Receptor Agonist, Inhibits or Limits Post-Stroke Pneumonia, but Increases Infarct Volume in MCAO Mice. J Inflamm Res 2022; 15:295-309. [PMID: 35058704 PMCID: PMC8765548 DOI: 10.2147/jir.s344521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Younian Xu
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yangyang Ge
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Miaomiao Zhou
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Miaomiao Zhou Anesthesiology Department, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, People’s Republic of ChinaTel/Fax +86 027-67812903 Email
| | - Zongze Zhang
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Huang Y, Guo Y, Huang L, Fang Y, Li D, Liu R, Lu Q, Ren R, Tang L, Lian L, Hu Y, Tang J, Chen G, Zhang JH. Kisspeptin-54 attenuates oxidative stress and neuronal apoptosis in early brain injury after subarachnoid hemorrhage in rats via GPR54/ARRB2/AKT/GSK3β signaling pathway. Free Radic Biol Med 2021; 171:99-111. [PMID: 33989759 PMCID: PMC8388553 DOI: 10.1016/j.freeradbiomed.2021.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress-induced neuron apoptosis plays a crucial role in the early brain injury (EBI) after subarachnoid hemorrhage (SAH). Kisspeptin has been reported as antioxidant to reduce oxidative stress-induced neuronal cell death through G protein-coupled receptor 54 (GPR54). The goal of this study was to determine the neuroprotection of the Kisspeptin/GRP54 signaling pathway against EBI after SAH. Two hundred and ninety-two Sprague Dawley male rats were used and SAH was induced by the endovascular perforation. Exogenous Kisspeptin 54 (KP54) was delivered intranasally. Small interfering ribonucleic acid (siRNA) for endogenous KISS1, a selective GPR54 antagonist kisspeptin 234, or β-arrestin 2 siRNA for ARRB2 (a functional adaptor of GPR54) were administered intracerebroventricularly. Post-SAH evaluations included neurobehavioral tests, SAH grade, Western blot, immunofluorescence, Fluoro-Jade C, TUNEL, and Nissl staining. The results showed that endogenous KISS1 knockdown aggravated but exogenous KP54 (1.0 nmol/kg) treatment attenuated neurological deficits, brain oxidative stress, and neuronal apoptosis at 24 h after SAH. The benefits of KP54 persisted to 28 days after SAH, which significantly improved cognitive function in SAH rats. The GPR54 blockade or the ARRB2 knockout offset the neuroprotective effects of KP54 in SAH rats. In conclusion, our results suggested that administration of KP54 attenuated oxidative stress, neuronal apoptosis and neurobehavioral impairments through GPR54/ARRB2/AKT/GSK3β signaling pathway after SAH in rat. Thus, KP54 may provide an effective treatment strategy for SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang, 315010, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yong Guo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Cerebrovascular Center, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dujuan Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lihui Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Lifei Lian
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
11
|
Delaitre C, Boisbrun M, Lecat S, Dupuis F. Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes. Int J Mol Sci 2021; 22:ijms22136738. [PMID: 34201646 PMCID: PMC8269339 DOI: 10.3390/ijms22136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.
Collapse
Affiliation(s)
- Céline Delaitre
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | | | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | - François Dupuis
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: ; Tel.: +33-372747272
| |
Collapse
|
12
|
Faura J, Bustamante A, Miró-Mur F, Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation 2021; 18:127. [PMID: 34092245 PMCID: PMC8183083 DOI: 10.1186/s12974-021-02177-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke produces a powerful inflammatory cascade in the brain, but also a suppression of the peripheral immune system, which is also called stroke-induced immunosuppression (SIIS). The main processes that lead to SIIS are a shift from a lymphocyte phenotype T-helper (Th) 1 to a Th2 phenotype, a decrease of the lymphocyte counts and NK cells in the blood and spleen, and an impairment of the defense mechanisms of neutrophils and monocytes. The direct clinical consequence of SIIS in stroke patients is an increased susceptibility to stroke-associated infections, which is enhanced by clinical factors like dysphagia. Among these infections, stroke-associated pneumonia (SAP) is the one that accounts for the highest impact on stroke outcome, so research is focused on its early diagnosis and prevention. Biomarkers indicating modifications in SIIS pathways could have an important role in the early prediction of SAP, but currently, there are no individual biomarkers or panels of biomarkers that are accurate enough to be translated to clinical practice. Similarly, there is still no efficient therapy to prevent the onset of SAP, and clinical trials testing prophylactic antibiotic treatment and β-blockers have failed. However, local immunomodulation could open up a new research opportunity to find a preventive therapy for SAP. Recent studies have focused on the pulmonary immune changes that could be caused by stroke similarly to other acquired brain injuries. Some of the traits observed in animal models of stroke include lung edema and inflammation, as well as inflammation of the bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Júlia Faura
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Stroke Unit, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain.
| | - Francesc Miró-Mur
- Systemic Autoimmune Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Research Program, Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen de la Macarena, Seville, Spain
| |
Collapse
|
13
|
Deng QW, Huang S, Li S, Zhai Q, Zhang Q, Wang ZJ, Chen WX, Sun H, Lu M, Zhou J. Inflammatory Factors as Potential Markers of Early Neurological Deterioration in Acute Ischemic Stroke Patients Receiving Endovascular Therapy - The AISRNA Study. J Inflamm Res 2021; 14:4399-4407. [PMID: 34511974 PMCID: PMC8421252 DOI: 10.2147/jir.s317147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to explore several peripheral blood-based markers related to the inflammatory response in a total of 210 patients with acute ischemic stroke (AIS) caused by large artery occlusion in the anterior circulation who received endovascular therapy (EVT) from an observational study of clinical significance of circulating non-coding RNA in acute ischemic stroke (AISRNA). METHODS We collected baseline characteristics of 210 AIS patients participating in an observational acute stroke cohort: the AISRNA study. The following inflammatory factors were measured in these participants: interleukin-2 [IL-2], IL-4, IL-6, IL-10, tumor necrosis factor-α [TNF-α], and interferon-γ [IFN-γ]. The National Institute of Health Stroke Scale score increase of ≥4 within 24 hours after EVT defined as early neurological deterioration (END). RESULTS Compared with patients without END, patients with END had a higher incidence of atrial fibrillation (P=0.012), and also had higher levels of IL-6 and IL-10 (P<0.01). Furthermore, we found that the area under the curves (AUCs) of IL-6 and IL-10 for predicting END were 0.768 (0.697-0.829), and 0.647 (0.570-0.719), respectively. Adjusting for age, sex, and atrial fibrillation, the odds ratios (ORs; 95% confidence interval) for incident END for IL-6 and IL-10 were 1.98 (1.05-6.69) and 1.18 (1.04-1.33), respectively. Additionally, we found significant changes over time in the expression levels of IL-4, IL-6, and IL-10 in patients with END compared with patients without END (P<0.05). CONCLUSION IL-6 and IL-10 levels at admission may be potential markers of END after EVT, and the time course of IL-4, IL-6, and IL-10 is correlated with stroke progression. Further larger studies are needed to confirm the current findings. TRIAL REGISTRATION ClinicalTrials.gov NCT04175691. Registered November 21, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04175691.
Collapse
Affiliation(s)
- Qi-Wen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Shi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Shuo Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Qian Zhai
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Qing Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Zhen-Jie Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Wen-Xia Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Min Lu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
- Correspondence: Junshan Zhou; Min Lu Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, People’s Republic of China Email ;
| |
Collapse
|
14
|
Atif F, Yousuf S, Espinosa-Garcia C, Harris WAC, Stein DG. Post-ischemic stroke systemic inflammation: Immunomodulation by progesterone and vitamin D hormone. Neuropharmacology 2020; 181:108327. [PMID: 32950558 DOI: 10.1016/j.neuropharm.2020.108327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Post-stroke systemic inflammation, due to the injury itself and exacerbated by in-hospital infections, can increase morbidity and mortality in stroke patients. In this study, we examined the immunomodulatory effects of progesterone (P4) alone and in combination with vitamin D hormone (VDH) on acute phase post-stroke peripheral immune dysfunction and functional/behavioral deficits. Adult rats underwent transient middle cerebral artery occlusion/reperfusion (tMCAO) and delayed systemic inflammation was induced by injections of lipopolysaccharide (LPS) beginning 24 h post-stroke. Animals were tested for behavioral outcomes and immune function at day 4 post-stroke. We also measured infarction volume and markers of neuronal inflammation (GFAP, IL-6) and apoptosis (cleaved caspase-3) in brain post-stroke. We observed the worst stroke outcomes in the stroke + systemic inflammation group compared to the stroke-alone group. Flow cytometric analysis of different subsets of immune cells in blood, spleen and thymus revealed peripheral immune dysfunction which was restored by both P4 and VDH monotherapy. P4 monotherapy reduced infarction volume, behavioral/functional deficits, peripheral immune dysfunction, neuronal inflammation, and apoptosis induced by post-stroke systemic inflammation. Combination treatment with P4+VDH improved outcomes better than monotherapy. Our findings can be taken to suggest that the current standard of care for stroke and post-stroke infection can be substantially improved by P4 and VDH combination therapy.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, USA
| | | | - Wayne A C Harris
- Emory Integrated Computing Core, School of Medicine, Emory University, Atlanta, GA, 30322,, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, USA
| |
Collapse
|
15
|
β-arrestin 2 as an activator of cGAS-STING signaling and target of viral immune evasion. Nat Commun 2020; 11:6000. [PMID: 33243993 PMCID: PMC7691508 DOI: 10.1038/s41467-020-19849-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Virus infection may induce excessive interferon (IFN) responses that can lead to host tissue injury or even death. β-arrestin 2 regulates multiple cellular events through the G protein-coupled receptor (GPCR) signaling pathways. Here we demonstrate that β-arrestin 2 also promotes virus-induced production of IFN-β and clearance of viruses in macrophages. β-arrestin 2 interacts with cyclic GMP-AMP synthase (cGAS) and increases the binding of dsDNA to cGAS to enhance cyclic GMP-AMP (cGAMP) production and the downstream stimulator of interferon genes (STING) and innate immune responses. Mechanistically, deacetylation of β-arrestin 2 at Lys171 facilitates the activation of the cGAS–STING signaling and the production of IFN-β. In vitro, viral infection induces the degradation of β-arrestin 2 to facilitate immune evasion, while a β-blocker, carvedilol, rescues β-arrestin 2 expression to maintain the antiviral immune response. Our results thus identify a viral immune-evasion pathway via the degradation of β-arrestin 2, and also hint that carvedilol, approved for treating heart failure, can potentially be repurposed as an antiviral drug candidate. Excessive interferon (IFN) responses often follow viral infection to induce pathology or even death. Here the authors show that a signaling adaptor, β-arrestin 2, enhances the cGAS/STING innate immunity signaling pathway to promote IFN-β production, but may be degraded in infected cells to serve as a target of viral immune evasion.
Collapse
|
16
|
Li S, Lu G, Wang D, He JL, Zuo L, Wang H, Gu ZT, Zhou JS, Yan FL, Deng QW. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol 2020; 27:1625-1637. [PMID: 32337817 DOI: 10.1111/ene.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the early stage of acute ischaemic stroke (AIS). The purpose of this study was to investigate the expression patterns of miRNAs in peripheral blood mononuclear cells (PBMCs) from AIS patients and further explore related molecular mechanisms in stroke-induced immunodeficiency syndrome (SIDS). METHODS The miRNA expression patterns of PBMCs were detected by miRNA microarray and validated by quantitative real-time polymerase chain reaction (qRT-PCR) in AIS patients and healthy controls. Bioinformatics methods and luciferase reporter assays were used to detect the downstream target genes. Following stimulation with lipopolysaccharide and interleukin-4, the expression of miR-4443, tumor necrosis factor receptor associated factor 4 (TRAF4) and the nuclear factor kappa B (NF-κB) pathway were evaluated. Furthermore, transfection with miR-4443 mimic or inhibitor in the monocytes was carried out to gain insight into the mechanisms in SIDS. RESULTS Interleukin-10 in AIS patients was significantly higher than that of healthy controls. The miRNA microarray analysis and qRTPCR validation showed that only miR-4443 was upregulated expressed in PBMCs from AIS patients, especially in monocytes. miR-4443 was shown to directly interact with the 3' untranslated regions of TRAF4, resulting in suppression of TRAF4 protein expression. Furthermore, the expression of miR-4443 and TRAF4 was regulated by stimulation with lipopolysaccharide or interleukin-4. Additionally, overexpression of miR-4443 suppressed the TRAF4/Iκα/NF-κB signaling pathway to activate the expression of anti-inflammatory cytokines in monocytes. CONCLUSIONS The increased expression of miR-4443 induced monocyte dysfunction by targeting TRAF4, which may function as a crucial mediator in SIDS.
Collapse
Affiliation(s)
- S Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - G Lu
- Department of Neurology, Dezhou People's Hospital, Dezhou, China
| | - D Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - J L He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - L Zuo
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - H Wang
- Department of Respiratory, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Z T Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - J S Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - F L Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Q W Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Li J, Zhao Y, Shi J, Ren Z, Chen F, Tang W. Histone deacetylase 6 interference protects mice against experimental stroke-induced brain injury via activating Nrf2/HO-1 pathway. Anim Cells Syst (Seoul) 2019; 23:192-199. [PMID: 31231583 PMCID: PMC6566595 DOI: 10.1080/19768354.2019.1601132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/21/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cerebral stroke is a fatal disease with increasing incidence. The study was to investigate the role and mechanism of Histone deacetylase 6 (HDAC6) on experimental stroke-induced brain injury. The recombinant shRNA-HDAC6 or scramble shRNA lentivirus was transfected to ICR mice. Then, the ischemia/reperfusion injury (I/RI) mice were constructed using middle cerebral artery occlusion (MCAO) method. Brain TTC staining was used to determine infarct areas. Serum levels of oxidative stress-related factors were detected by enzyme linked immunosorbnent assay (ELISA). Realtime-qPCR (RT-qPCR) and Western blot were used to respectively detect mRNA and protein levels. HDAC6 was up-regulated in brain I/RI mice (MCAO group), and down-regulated again in MCAO mice transfected with shRNA-HDAC6 (MCAO + shRNA group). The infarct area of the MCAO mice was increased, neurological scores were higher, and serum protein levels of 3-NT, 4-HNE and 8-OHdG were higher. HDAC6 interference attenuated above effects. Though protein levels of Nrf2 and HO-1 in cytoplasm increased slightly in MCAO group, they increased significantly by HDAC6 interference. The protein levels of Nrf2 in cytoblast decreased significantly in MCAO group, and increased markedly by HDAC6 interference. HDAC6 interference protected mice against experimental stroke-induced brain injury via Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Yanping Zhao
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Junfeng Shi
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Zhanyun Ren
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Feng Chen
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Wuzhuang Tang
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| |
Collapse
|
18
|
Lechtenberg KJ, Meyer ST, Doyle JB, Peterson TC, Buckwalter MS. Augmented β2-adrenergic signaling dampens the neuroinflammatory response following ischemic stroke and increases stroke size. J Neuroinflammation 2019; 16:112. [PMID: 31138227 PMCID: PMC6540436 DOI: 10.1186/s12974-019-1506-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background Ischemic stroke provokes a neuroinflammatory response and simultaneously promotes release of epinephrine and norepinephrine by the sympathetic nervous system. This increased sympathetic outflow can act on β2-adrenergic receptors expressed by immune cells such as brain-resident microglia and monocyte-derived macrophages (MDMs), but the effect on post-stroke neuroinflammation is unknown. Thus, we investigated how changes in β2-adrenergic signaling after stroke onset influence the microglia/MDM stroke response, and the specific importance of microglia/MDM β2-adrenergic receptors to post-stroke neuroinflammation. Methods To investigate the effects of β2-adrenergic receptor manipulation on post-stroke neuroinflammation, we administered the β2-adrenergic receptor agonist clenbuterol to mice 3 h after the onset of photothrombotic stroke. We immunostained to quantify microglia/MDM numbers and proliferation and to assess morphology and activation 3 days later. We assessed stroke outcomes by measuring infarct volume and functional motor recovery and analyzed gene expression levels of neuroinflammatory molecules. Finally, we evaluated changes in cytokine expression and microglia/MDM response in brains of mice with selective knockout of the β2-adrenergic receptor from microglia and monocyte-lineage cells. Results We report that clenbuterol treatment after stroke onset causes enlarged microglia/MDMs and impairs their proliferation, resulting in reduced numbers of these cells in the peri-infarct cortex by 1.7-fold at 3 days after stroke. These changes in microglia/MDMs were associated with increased infarct volume in clenbuterol-treated animals. In mice that had the β2-adrenergic receptor specifically knocked out of microglia/MDMs, there was no change in morphology or numbers of these cells after stroke. However, knockdown of β2-adrenergic receptors in microglia and MDMs resulted in increased expression of TNFα and IL-10 in peri-infarct tissue, while stimulation of β2-adrenergic receptors with clenbuterol had the opposite effect, suppressing TNFα and IL-10 expression. Conclusions We identified β2-adrenergic receptor signaling as an important regulator of the neuroimmune response after ischemic stroke. Increased β2-adrenergic signaling after stroke onset generally suppressed the microglia/MDM response, reducing upregulation of both pro- and anti-inflammatory cytokines, and increasing stroke size. In contrast, diminished β2-adrenergic signaling in microglia/MDMs augmented both pro- and anti-inflammatory cytokine expression after stroke. The β2-adrenergic receptor may therefore present a therapeutic target for improving the post-stroke neuroinflammatory and repair process.
Collapse
Affiliation(s)
- Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Scott T Meyer
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Janelle B Doyle
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Todd C Peterson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA. .,Department of Neurosurgery, Stanford School of Medicine, Palo Alto, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019; 10:100. [PMID: 30718498 PMCID: PMC6361911 DOI: 10.1038/s41419-019-1375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke.
Collapse
|