1
|
Demaree IS, Kumar S, Tennessen K, Hoang QQ, White FA, Obukhov AG. Effects of TRPC1's Lysines on Heteromeric TRPC5-TRPC1 Channel Function. Cells 2024; 13:2019. [PMID: 39682767 PMCID: PMC11640535 DOI: 10.3390/cells13232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown. METHODS We used electrophysiological techniques to examine the roles of subunit stoichiometry and positively charged luminal residues of TRPC1 on TRPC5/TRPC1 function. We also performed molecular dynamics simulations. RESULTS We found that increasing the relative amount of TRPC1 in TRPC5/TRPC1 heteromers reduced histamine-induced cation influx through the heteromeric channels. Consistently, histamine-induced cation influx was small in cells co-expressing TRPC5-TRPC1 concatemers and TRPC1, and large in cells co-expressing TRPC5-TRPC1 concatemers and TRPC5. Molecular dynamics simulations revealed that the TRPC1 protein has two positively charged lysine residues that are facing the heteromeric channel pore lumen. Substitution of these lysines with asparagines decreased TRPC1's inhibitory effect on TRPC5/TRPC1 function, indicating that these lysines may regulate cation influx through TRPC5/TRPC1 heteromers. Additionally, we established that extracellular Mg2+ inhibits cation influx through TRPC5/TRPC1, contributing to channel regulation. CONCLUSIONS We revealed that the inhibitory effect of TRPC1 on heteromeric TRPC5/TRPC1 function likely involves luminal lysines of TRPC1.
Collapse
Affiliation(s)
- Isaac S. Demaree
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.S.D.); (S.K.)
| | - Sanjay Kumar
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.S.D.); (S.K.)
- Department of Life Science, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya 824236, India
| | - Kayla Tennessen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.T.); (Q.Q.H.)
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.T.); (Q.Q.H.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Fletcher A. White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.S.D.); (S.K.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
2
|
Wang M, Zhang X, Guo J, Yang S, Yang F, Chen X. TRPC6 Deletion Enhances eNOS Expression and Reduces LPS-Induced Acute Lung Injury. Int J Mol Sci 2023; 24:16756. [PMID: 38069081 PMCID: PMC10706254 DOI: 10.3390/ijms242316756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Acute lung injury (ALI) is characterized by endothelial barrier disruption and associated inflammatory responses, and transient receptor potential cation channel 6 (TRPC6)-mediated Ca2+ influx is critical for endothelial hyperpermeability. In this study, we investigated the role of TRPC6 in LPS-induced ALI, analyzed gene expression in WT and TRPC6-/- lungs using RNA sequencing, and explored the effects of TRPC6 in the LPS-induced hyperpermeability in human umbilical vein endothelial cells (HUVECs) to elucidate the underlying mechanisms. Intratracheal instillation of LPS caused edema in the mouse lungs. Deletion of TRPC6 reduced LPS-induced lung edema and decreased cell infiltration. RNA sequencing analysis suggested that downregulated cell adhesion molecules in TRPC6-/- lungs may be responsible for their resistance to LPS-induced injury. In addition, downregulation of TRPC6 significantly alleviated the LPS-induced decrease in eNOS expression in lung tissue as well as in HUVECs. Moreover, inhibition of TRPC6 with the channel antagonist larixyl led to a decrease in LPS-induced hyperpermeability and ROS production in HUVECs, which could be reversed by blocking eNOS. Our findings suggest that inhibition of TRPC6 ameliorates LPS-induced ALI, which may be achieved by acting on the cell adhesion molecule signaling pathway and participating in the regulation of eNOS levels in endothelial cells.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (M.W.)
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China; (X.Z.)
| | - Xingfang Zhang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China; (X.Z.)
| | - Juan Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (M.W.)
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (M.W.)
| | - Fang Yang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China; (X.Z.)
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (M.W.)
| |
Collapse
|
3
|
Smith JA, Nguyen T, Davis BC, Lahiri DK, Hato T, Obukhov AG, White FA. Propranolol treatment during repetitive mild traumatic brain injuries induces transcriptomic changes in the bone marrow of mice. Front Neurosci 2023; 17:1219941. [PMID: 37817806 PMCID: PMC10561692 DOI: 10.3389/fnins.2023.1219941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/25/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction There are 1.5 million new mild traumatic brain injuries (mTBI) annually in the US, with many of the injured experiencing long-term consequences lasting months after the injury. Although the post injury mechanisms are not well understood, current knowledge indicates peripheral immune system activation as a causal link between mTBI and long-term side effects. Through a variety of mechanisms, peripheral innate immune cells are recruited to the CNS after TBI to repair and heal the injured tissue; however, the recruitment and activation of these cells leads to further inflammation. Emerging evidence suggests sympathetic nervous system (SNS) activity plays a substantial role in the recruitment of immune cells post injury. Methods We sought to identify the peripheral innate immune response after repeated TBIs in addition to repurposing the nonselective beta blocker propranolol as a novel mTBI therapy to limit SNS activity and mTBI pathophysiology in the mouse. Mice underwent repetitive mTBI or sham injury followed by i.p. saline or propranolol. Isolated mRNA derived from femur bone marrow of mice was assayed for changes in gene expression at one day, one week, and four weeks using Nanostring nCounter® stem cell characterization panel. Results Differential gene expression analysis for bone marrow uncovered significant changes in many genes following drug alone, mTBI alone and drug combined with mTBI. Discussion Our data displays changes in mRNA at various timepoints, most pronounced in the mTBI propranolol group, suggesting a single dose propranolol injection as a viable future mTBI therapy in the acute setting.
Collapse
Affiliation(s)
- Jared A. Smith
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brittany C. Davis
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Takashi Hato
- Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Alexander G. Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fletcher A. White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Napoli L, Semple S, McKune AJ. Training and Competition Loads in Women's Rugby Sevens Athletes: Are There Implications for Cardiovascular Health? Int J Sports Physiol Perform 2023; 18:894-900. [PMID: 37491014 DOI: 10.1123/ijspp.2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023]
Abstract
National- and international-level rugby sevens athletes are exposed to high training and competition loads over the course of a competitive season. Research on load monitoring and body-system responses is widespread; however, the primary focus has been on optimizing performance rather than investigating or improving cardiovascular health. There is a degree of cardiovascular remodeling, as well as local and systemic inflammation, in response to excessive exercise. These responses are moderated by many factors including previous exercise exposure, current exercise intensity and duration, age, race, and gender, as well as sport-specific physiology. For these reasons, high-performing female rugby sevens athletes may have a unique cardiovascular risk profile different from males and other rugby codes. This review aimed to characterize the training and competition loads, as well as the anthropometric and physiological profiles, of female rugby sevens athletes; discuss the potential impacts these may have on the cardiovascular system; and provide recommendations on future research regarding the relationship between rugby sevens training and competition loads and cardiovascular health. Movement demands, competition formatting, and training routines could all contribute to adverse cardiovascular adaptations. Anthropometric data and physiological characteristics may also increase the risk of cardiovascular disease. Future research needs to adopt measures of cardiovascular health to obtain a greater understanding of cardiovascular profiles and risk factors in female rugby sevens athletes.
Collapse
Affiliation(s)
- Luca Napoli
- University of Canberra Research Institute for Sport and Exercise, Bruce, ACT,Australia
| | - Stuart Semple
- University of Canberra Research Institute for Sport and Exercise, Bruce, ACT,Australia
| | - Andrew J McKune
- University of Canberra Research Institute for Sport and Exercise, Bruce, ACT,Australia
- School of Health Sciences, Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban,South Africa
| |
Collapse
|
5
|
Nguyen T, Nguyen N, Cochran AG, Smith JA, Al-Juboori M, Brumett A, Saxena S, Talley S, Campbell EM, Obukhov AG, White FA. Repeated closed-head mild traumatic brain injury-induced inflammation is associated with nociceptive sensitization. J Neuroinflammation 2023; 20:196. [PMID: 37635235 PMCID: PMC10464478 DOI: 10.1186/s12974-023-02871-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Individuals who have experienced mild traumatic brain injuries (mTBIs) suffer from several comorbidities, including chronic pain. Despite extensive studies investigating the underlying mechanisms of mTBI-associated chronic pain, the role of inflammation in long-term pain after mTBIs is not fully elucidated. Given the shifting dynamics of inflammation, it is important to understand the spatial-longitudinal changes in inflammatory processes following mTBIs and their effects on TBI-related pain. METHODS We utilized a recently developed transgenic caspase-1 luciferase reporter mouse model to monitor caspase-1 activation through a thinned skull window in the in vivo setting following three closed-head mTBI events. Organotypic coronal brain slice cultures and acutely dissociated dorsal root ganglion (DRG) cells provided tissue-relevant context of inflammation signal. Mechanical allodynia was assessed by mechanical withdrawal threshold to von Frey and thermal hyperalgesia withdrawal latency to radiant heat. Mouse grimace scale (MGS) was used to detect spontaneous or non-evoked pain. In some experiments, mice were prophylactically treated with MCC950, a potent small molecule inhibitor of NLRP3 inflammasome assembly to inhibit injury-induced inflammatory signaling. Bioluminescence spatiotemporal dynamics were quantified in the head and hind paws, and caspase-1 activation was confirmed by immunoblot. Immunofluorescence staining was used to monitor the progression of astrogliosis and microglial activation in ex vivo brain tissue following repetitive closed-head mTBIs. RESULTS Mice with repetitive closed-head mTBIs exhibited significant increases of the bioluminescence signals within the brain and paws in vivo for at least one week after each injury. Consistently, immunoblotting and immunofluorescence experiments confirmed that mTBIs led to caspase-1 activation, astrogliosis, and microgliosis. Persistent changes in MGS and hind paw withdrawal thresholds, indicative of pain states, were observed post-injury in the same mTBI animals in vivo. We also observed enhanced inflammatory responses in ex vivo brain slice preparations and DRG for at least 3 days following mTBIs. In vivo treatment with MCC950 significantly reduced caspase-1 activation-associated bioluminescent signals in vivo and decreased stimulus-evoked and non-stimulus evoked nociception. CONCLUSIONS Our findings suggest that the inflammatory states in the brain and peripheral nervous system following repeated mTBIs are coincidental with the development of nociceptive sensitization, and that these events can be significantly reduced by inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Natalie Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashlyn G Cochran
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared A Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammed Al-Juboori
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew Brumett
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Saahil Saxena
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Alexander G Obukhov
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cellular Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Smith JA, Nguyen T, Karnik S, Davis BC, Al-Juboori MH, Kacena MA, Obukhov AG, White FA. Repeated mild traumatic brain injury in mice elicits long term innate immune cell alterations in blood, spleen, and brain. J Neuroimmunol 2023; 380:578106. [PMID: 37245410 PMCID: PMC10330602 DOI: 10.1016/j.jneuroim.2023.578106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Mild traumatic brain injury is an insidious event whereby the initial injury leads to ongoing secondary neuro- and systemic inflammation through various cellular pathways lasting days to months after injury. Here, we investigated the impact of repeated mild traumatic brain injury (rmTBI) and the resultant systemic immune response in male C57B6 mice using flow cytometric methodology on white blood cells (WBCs) derived from the blood and spleen. Isolated mRNA derived from spleens and brains of rmTBI mice was assayed for changes in gene expression at one day, one week, and one month following the injury paradigm. We observed increases in Ly6C+, Ly6C-, and total monocyte percentages in both blood and spleen at one month after rmTBI. Differential gene expression analysis for the brain and spleen tissues uncovered significant changes in many genes, including csf1r, itgam, cd99, jak1,cd3ε, tnfaip6, and nfil3. Additional analysis revealed alterations in several immune signaling pathways over the course of one month in the brain and spleen of rmTBI mice. Together, these results indicate that rmTBI produces pronounced gene expression changes in the brain and spleen. Furthermore, our data suggest that monocyte populations may reprogram towards the proinflammatory phenotype over extended periods of time after rmTBI.
Collapse
Affiliation(s)
- Jared A Smith
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Medical Scientist Training Program Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tyler Nguyen
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonali Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brittany C Davis
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mohammed H Al-Juboori
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fletcher A White
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Kong L, Sun R, Zhou H, Shi Q, Liu Y, Han M, Li W, Qun S, Li W. Trpc6 knockout improves behavioral dysfunction and reduces Aβ production by inhibiting CN-NFAT1 signaling in T2DM mice. Exp Neurol 2023; 363:114350. [PMID: 36791875 DOI: 10.1016/j.expneurol.2023.114350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
As the prevalence of diabetes and health awareness increase, type 2 diabetes mellitus -associated cognitive dysfunction is receiving increasing attention. However, the pathogenesis is not entirely understood. Transient receptor potential cation channel 6 (TRPC6) is highly correlated with intracellular Ca2+ concentrations, and neuronal calcium overload is an important cause of cognitive dysfunction. In the present study, we investigated the effect and mechanism of Trpc6 knockout in high-fat diet and streptozotocin-induced T2DM mice. The body weight and fasting blood glucose were recorded during the experiment. Behavioral dysfunction was detected using the open field test (OFT), elevated plus maze (EPM), hole-board test (HBT), Morris water maze (MWM) test and contextual fear conditioning (CFC) test. Nissl and H&E staining were used to examine neuronal damage. Western blot, quantitative real-time polymerase chain reaction (q-PCR), and immunofluorescence were performed to detect amyloid beta protein (Aβ) deposition and related indicators of neurological impairments in the cerebral cortex and hippocampus. The results indicated that Trpc6 knockout inhibited body weight loss and fasting blood glucose increase, improved spontaneous activity, learning and memory dysfunction, and alleviated neuroinflammation and neuronal damage in T2DM mice. The further results demonstrated that Trpc6 knockout decreased Aβ generation and deposition, and reduced the expressions of inflammasome-related proteins in T2DM mice. In addition, Trpc6 knockout inhibited intracellular calcium overload in diabetic mice and primary cultured hippocampal neurons, which in turn suppressed CN and NFAT1 expression. These data suggest that Trpc6 knockout may inhibit the CN-NFAT1 signaling pathway by decreasing intracellular calcium overload in the brain of T2DM mice, which consequently reduce Aβ deposition and neuroinflammation, and ultimately delay the development of T2DM-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Ran Sun
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Huimsin Zhou
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Min Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Sen Qun
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
She YJ, Xu HP, Gao Y, Wang Q, Zheng J, Ruan X. Calpain-TRPC6 signaling pathway contributes to propofol-induced developmental neurotoxicity in rats. Neurotoxicology 2023; 95:56-65. [PMID: 36640868 DOI: 10.1016/j.neuro.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Growing animal studies suggest a risk of neuronal damage following early childhood exposure to anesthesia and sedation drugs including propofol. Inhibition of transient receptor potential canonical 6 (TRPC6) degradation has been shown to protect neurons from neuronal damage induced by multiple brain injury models. Our aim was to investigate whether calpain-TRPC6 pathway is a target in propofol-induced neurotoxicity. Postnatal day (PND) 7 rats were exposed to five bolus injections of 25 mg/kg propofol or 10 % intralipid at hourly intervals. Neuronal injury was assessed by the expression pattern of TUNEL staining and cleaved-caspase-3. The Morris water maze test was used to evaluate learning and memory functions in later life. Pretreatments consisting of intracerebroventricular injections of a TRPC6 agonist, TRPC6 inhibitor, or calpain inhibitor were used to confirm the potential role of the calpain-TRPC6 pathway in propofol-induced neurotoxicity. Prolonged exposure to propofol induced neuronal injury, downregulation of TRPC6, and enhancement of calpain activity in the cerebral cortex up to 24 h after anesthesia. It also induced long-term behavioral disorders, manifesting as longer escape latency at PND40 and PND41 and as fewer platform-crossing times and less time spent in the target quadrant at PND42. These propofol-induced effects were attenuated by treatment with the TRPC6 agonist and exaggerated by the TRPC6 inhibitor. Pretreatment with the calpain inhibitor alleviated the propofol-induced TRPC6 downregulation and neuronal injury in the cerebral cortex. In conclusion, our data suggest that a calpain-TRPC6 signaling pathway contributes to propofol-induced acute cortical neuron injury and long-term behavioral disorders in rats.
Collapse
Affiliation(s)
- Ying-Jun She
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Hai-Ping Xu
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Yin Gao
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Qiong Wang
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Jun Zheng
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangcai Ruan
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
9
|
Huerta de la Cruz S, Santiago-Castañeda CL, Rodríguez-Palma EJ, Medina-Terol GJ, López-Preza FI, Rocha L, Sánchez-López A, Freeman K, Centurión D. Targeting hydrogen sulfide and nitric oxide to repair cardiovascular injury after trauma. Nitric Oxide 2022; 129:82-101. [PMID: 36280191 PMCID: PMC10644383 DOI: 10.1016/j.niox.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The systemic cardiovascular effects of major trauma, especially neurotrauma, contribute to death and permanent disability in trauma patients and treatments are needed to improve outcomes. In some trauma patients, dysfunction of the autonomic nervous system produces a state of adrenergic overstimulation, causing either a sustained elevation in catecholamines (sympathetic storm) or oscillating bursts of paroxysmal sympathetic hyperactivity. Trauma can also activate innate immune responses that release cytokines and damage-associated molecular patterns into the circulation. This combination of altered autonomic nervous system function and widespread systemic inflammation produces secondary cardiovascular injury, including hypertension, damage to cardiac tissue, vascular endothelial dysfunction, coagulopathy and multiorgan failure. The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) are small gaseous molecules with potent effects on vascular tone regulation. Exogenous NO (inhaled) has potential therapeutic benefit in cardio-cerebrovascular diseases, but limited data suggests potential efficacy in traumatic brain injury (TBI). H2S is a modulator of NO signaling and autonomic nervous system function that has also been used as a drug for cardio-cerebrovascular diseases. The inhaled gases NO and H2S are potential treatments to restore cardio-cerebrovascular function in the post-trauma period.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico; Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico.
| | | | | | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| | | | - Kalev Freeman
- Department of Emergency Medicine, University of Vermont, Burlington, VT, USA.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| |
Collapse
|
10
|
López-Preza FI, Huerta de la Cruz S, Santiago-Castañeda C, Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, Rocha L, Centurión D. Hydrogen sulfide prevents the vascular dysfunction induced by severe traumatic brain injury in rats by reducing reactive oxygen species and modulating eNOS and H 2S-synthesizing enzyme expression. Life Sci 2022; 312:121218. [PMID: 36427545 DOI: 10.1016/j.lfs.2022.121218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
AIM To assess the effects of subchronic administration with NaHS, an exogenous H2S donor, on TBI-induced hypertension and vascular impairments. MAIN METHODS Animals underweministration does not prevent the body weight loss but slightly imnt a lateral fluid percussion injury, and the hemodynamic variables were measured in vivo by plethysmograph method. The vascular function in vitro, the ROS levels by the DCFH-DA method and the expression of H2S-synthesizing enzymes and eNOS by Western blot were measured in isolated thoracic aortas at day 7 post-TBI. The effect of L-NAME on NaHS-induced effects in vascular function was evaluated. Brain water content was determined 7 days after trauma induction. Body weight was recorded throughout the experimental protocol, whereas the sensorimotor function was evaluated using the neuroscore test at days -1 (basal), 2, and 7 after the TBI induction. KEY FINDINGS TBI animals showed: 1) an increase in hemodynamic variables and ROS levels in aortas; 2) vascular dysfunction; 3) sensorimotor dysfunction; and 4) a decrease in body weight, the expression of H2S-synthesizing enzymes, and eNOS phosphorylation. Interestingly, NaHS subchronic administration (3.1 mg/kg; i.p.; every 24 h for six days) prevented the development of hypertension, vascular dysfunction, and oxidative stress. L-NAME abolished NaHS-induced effects. Furthermore, NaHS treatment restored H2S-synthesizing enzymes and eNOS phosphorylation with no effect on body weight, sensorimotor impairments, or brain water content. SIGNIFICANCE Taken together, these results demonstrate that H2S prevents TBI-induced hypertension by restoring vascular function and modulating ROS levels, H2S-synthesizing enzymes expression, and eNOS phosphorylation.
Collapse
Affiliation(s)
- Félix I López-Preza
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Cindy Santiago-Castañeda
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| |
Collapse
|
11
|
Lv W, Wang Z, Wu H, Zhang W, Xu J, Chen X. mTBI-Induced Systemic Vascular Dysfunction in a Mouse mTBI Model. Brain Sci 2022; 12:brainsci12020232. [PMID: 35203995 PMCID: PMC8870486 DOI: 10.3390/brainsci12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Mild traumatic brain injury (mTBI) without skull fracturing is the most common occurrence of all TBIs and is considered as a serious public health concern. Animal models of mTBI are essential to investigation of TBI and its effects. In the current study, we developed and characterized a reproducible mouse model of mild TBI, meanwhile, the effects of this mTBI model, as well as repetitive mTBIs (rmTBIs), on the endothelial function of mouse aortas were also studied. In variety of closed-head models of mTBI, impact velocity, weight, and dwell time are the main parameters that affect the severities of injury. Here, we used a device, converting parameters of velocity, tip weight, and dwell time into impact force, to develop a mouse model of close-head mTBI. Mice were subjected to a mild TBI induced by the impact forces of 500, 600, 700, and 800 kdyn, respectively. Later, brain injuries were assessed histologically and molecularly. Systemic and brain inflammation were measured by plasma cytokine assay and glial fibrillary acidic protein (GFAP) staining. The composite neurobehavioral test revealed significant acute functional deficits in mice after mTBI, corresponding to the degree of injury. Mice brain undergoing mTBI had significant elevated GFAP staining. Plasma cytokines interleukin-1β (IL-1β) and superoxide dismutase (SOD) were significantly increased within 2 h after mTBI. Taken together, these data suggest that the mTBI mouse model introduce within our study exhibits good repeatability and comparable pathological characters. Moreover, we used this mTBI mouse model to determine the effect of single or rmTBIs on systemic vasoconstriction and relaxation. The isometric-tension results indicate that rmTBIs induce a pronounced and long-lasting endothelial dysfunction in mouse aorta.
Collapse
Affiliation(s)
- Weizhen Lv
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (W.L.); (Z.W.); (W.Z.)
| | - Zhuang Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (W.L.); (Z.W.); (W.Z.)
| | - Hanxue Wu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.W.); (J.X.)
| | - Weiheng Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (W.L.); (Z.W.); (W.Z.)
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (H.W.); (J.X.)
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (W.L.); (Z.W.); (W.Z.)
- Correspondence: ; Tel.: +86-029-8846-0875
| |
Collapse
|
12
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Ciocarlan A. (+)-Larixol and Larixyl Acetate: Syntheses, Phytochemical Studies and Biological Activity Assessments. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
(+)-Larixol is a well-known labdane-type diterpenoid widely used in organic synthesis. The present review covers the (+)-larixol based chemical transformations, the results of phytochemical analysis of new (+)-larixol containing species, as well as recent data on biological activity of (+)-larixol and practical applications where it is mentioned.
Collapse
|
14
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
15
|
Liu L, Chen M, Lin K, Xiang X, Yang J, Zheng Y, Xiong X, Zhu S. TRPC6 Attenuates Cortical Astrocytic Apoptosis and Inflammation in Cerebral Ischemic/Reperfusion Injury. Front Cell Dev Biol 2021; 8:594283. [PMID: 33604333 PMCID: PMC7884618 DOI: 10.3389/fcell.2020.594283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channel is an important non-selective cation channel with a variety of physiological roles in the central nervous system. Evidence has shown that TRPC6 is involved in the process of experimental stroke; however, the underlying mechanisms remain unclear. In the present study, the role of astrocytic TRPC6 was investigated in an oxygen-glucose deprivation cell model and middle cerebral artery occlusion (MCAO) mouse model of stroke. HYP9 (a selective TRPC6 agonist) and SKF96365 (SKF; a TRPC antagonist) were used to clarify the exact functions of TRPC6 in astrocytes after ischemic stroke. TRPC6 was significantly downregulated during ischemia/reperfusion (IR) injury in cultured astrocytes and in cortices of MCAO mice. Application of HYP9 in vivo alleviated the brain infarct lesion, astrocytes population, apoptosis, and interleukin-6 (IL-6) and IL-1β release in mouse cortices after ischemia. HYP9 dose-dependently inhibited the downregulation of TRPC6 and reduced astrocytic apoptosis, cytotoxicity and inflammatory responses in IR insult, whereas SKF aggravated the damage in vitro. In addition, modulation of TRPC6 channel diminished IR-induced Ca2+ entry in astrocytes. Furthermore, decreased Ca2+ entry due to TRPC6 contributed to reducing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) nuclear translocation and phosphorylation. Overexpression of astrocytic TRPC6 also attenuated apoptosis, cytotoxicity, inflammatory responses, and NF-κB phosphorylation in modeled ischemia in astrocytes. The results of the present study indicate that the TRPC6 channel can act as a potential target to reduce both inflammatory responses and apoptosis in astrocytes during IR injury, subsequently attenuating ischemic brain damage. In addition, we provide a novel view of stroke therapy by targeting the astrocytic TRPC6 channel.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Prikhodko V, Chernyuk D, Sysoev Y, Zernov N, Okovityi S, Popugaeva E. Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer's Disease and Brain Ischemia. Cells 2020; 9:cells9112351. [PMID: 33114455 PMCID: PMC7692306 DOI: 10.3390/cells9112351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.
Collapse
Affiliation(s)
- Veronika Prikhodko
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Yurii Sysoev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Sergey Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Correspondence:
| |
Collapse
|
17
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
18
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Wang J, Zhao M, Jia P, Liu FF, Chen K, Meng FY, Hong JH, Zhang T, Jin XH, Shi J. The analgesic action of larixyl acetate, a potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J Neuroinflammation 2020; 17:118. [PMID: 32299452 PMCID: PMC7164269 DOI: 10.1186/s12974-020-01767-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023] Open
Abstract
Background Neuropathic pain is a debilitating status that is insusceptible to the existing analgesics. It is important to explore the underlying pathophysiological changes and search for new pharmacological approaches. Transient receptor potential canonical 6 (TRPC6) is a mechanosensitive channel that is expressed by dorsal root ganglia and glial cells. It has been demonstrated that this channel in dorsal root ganglia plays essential roles in the formation of mechanical hyperalgesia in neuropathic pain. Recent pharmacological screening suggests that larixyl acetate (LA), a main constituent of larch resin, is able to selectively inhibit TRPC6 function. But whether LA is effective in treating neuropathic pain remains unknown. We investigated the efficacy of LA in rat neuropathic pain model, examined its effects on central neuroinflammation, and explored the possible molecular mechanisms by targeting the spinal dorsal horn. Methods Spared nerve injury (SNI) was conducted in Sprague-Dawley rats. Mechanical hypersensitivity and cold allodynia before and after single and multiple i.t. applications of LA at the dose of 3, 10, and 30 μM were evaluated by von Frey filament and acetone tests, respectively. Western blot, immunohistochemical, and immunocytochemical stainings were employed to examine the level and expression feature of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), TRPC6, and phosphorylated p38 kinase. The changes of cytokine concentrations, including that of TNF-α, IL-1β, IL-6, and IL-10, were also assessed by multiplex analysis. TRPC6 antisense strategy was finally adopted to investigate the action mechanisms of LA. Results Single application of LA on day 5 post injury caused dose-dependent inhibition of mechanical allodynia with the ED50 value of 13.43 μM. Multiple applications of LA at 30 μM not only enhanced the analgesic efficacy but also elongated the effective duration without obvious influences on animal locomotor activities. Single and multiple administrations of LA at 30 μM played similar but weaker inhibitory effects on cold allodynia. In addition to behavioral improvements, multiple applications of LA for 6 days dose-dependently inhibited the upregulation of Iba-1, TNF-α, IL-1β, and IL-6, whereas had no obvious effects on the levels of GFAP and IL-10. Combined Western blot and immunostaining assays revealed that the expression of TRPC6 was significantly increased in both spinal dorsal horn after nerve injury and the cultured microglia challenged by LPS, which was however suppressed by the addition of LA at 30 μM or 10 μM, respectively. Further knockdown of TRPC6 with antisense oligodeoxynucleotide produced prominent analgesic effects in rats with SNI, accompanied by the reduced phosphorylation level of p38 in the microglia. Conclusions These data demonstrate that i.t. applied LA exhibits analgesic and anti-inflammatory action in neuropathic pain. The action of LA involves the suppression of TRPC6 and p38 signaling in the microglia. LA may be thus a promising pharmacological candidate for the treatment of intractable chronic pain.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Zhao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Jia
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fang-Fang Liu
- Department of Neurobiology, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Chen
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei-Yang Meng
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang-Hao Hong
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Hang Jin
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China. .,Department of Basic Medical Morphology, Medical College, Xijing University, Xi' an, 710123, China.
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
20
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|