1
|
Priyadarshini S, Goyal K, R R, Gupta S, Roy A, Biswas R, Patra S, Chauhan P, Wadhwa K, Singh G, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Sinha JK, Bansal P, Rani B, Walia C, Sivaprasad GV, Ojha S, Nelson VK, Jha NK. Polypharmacology and Neuroprotective Effects of Gingerol in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-024-04484-y. [PMID: 39982688 DOI: 10.1007/s12035-024-04484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/22/2024] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that results in brain shrinkage and the death of brain cells. The search for new treatment agents with many targets is now crucial due to the insufficient effectiveness, and adverse effects, including pharmacokinetic issues of traditional AD medications. Although phytochemicals have anti-disease characteristics and thus are widely used and accepted by people, researchers have also determined some of their most beneficial functions. Sesquiterpenes, volatile oils, and aromatic ketones (gingerols) are abundant in ginger. The most pharmacologically active components of ginger are considered to be gingerols. These gingerols are the compounds that impart spicy characteristics to the plant. Besides, gingerols readily undergo dehydration and produce another class of compounds, shogaols. These gingerols, shogaols, and other compounds, like zingerone, are mainly responsible for their distinctive aroma and pharmacological effects. This review aims to delineate the therapeutic potentials of gingerol in different AD models by assessing available literature reporting its effect on various cellular and molecular pathways. Although ginger is well recognized as a non-toxic nutraceutical, existing clinical research lacks robust evidence to support its efficacy in treating NDs, including AD. Clinical studies did not provide sufficient data that supports its use in treating various NDs including AD. Therefore, further research is essential to establish the safety and effectiveness of ginger and its constituents, ultimately paving the way for its development as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Sakthi Priyadarshini
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Keshav Goyal
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Uttar Pradesh, Mathura, India
| | - Aatreyi Roy
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Ritabrata Biswas
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Marg, New Delhi, 110021, India
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | | | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Vinod Kumar Nelson
- Department of Natural Products and Drug Discovery, Centre for global health research, Saveetha medical college and Hospital, Saveetha institute of medical and technical sciences, Chennai, Tamil Nadu, India.
| | - Niraj Kumar Jha
- Department of Biotechnology & Bioengineering, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
S G, S M F, G K R. Zerumbone-mediated post-ischemic neuroprotection: Reduction of ferroptosis through TFR1 downregulation in vitro. Mol Biol Rep 2025; 52:201. [PMID: 39904939 DOI: 10.1007/s11033-025-10301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Emerging studies have identified ferroptosis as a promising therapeutic target, the inhibition of which is hypothesized to mitigate brain injury and subsequent neuronal death following stroke. Zerumbone, a phytochemical sesquiterpene isolated from Zingiber zerumbet Smith, exhibit diverse therapeutic properties across a range of neurological disorders. This study aimed to elucidate the postischemic neuroprotective effects and regulatory impact of zerumbone on ferroptosis-mediated cell death following oxygen‒glucose deprivation/reperfusion (OGD/R) injury. We employed an in vitro OGD/R SH-SY5Y cell model of stroke to evaluate the postischemic neuroprotective effects of zerumbone, a lead molecule identified through literature studies. Moreover, assays were performed to assess how zerumbone affects lipid peroxide levels, intracellular reactive oxygen species (ROS), and mitochondrial membrane integrity. Furthermore, molecular docking simulations were carried out to determine the targets, and western blotting was performed to examine TFR1 protein expression. Zerumbone (0.5 µM) treatment at 1-hour postischemia increased cell viability (72.11 ± 0.98) and mitigated OGD/R-induced ischemic injury. Zerumbone significantly decreased intracellular ROS levels and lipid peroxide production while increasing mitochondrial membrane integrity, suggesting that zerumbone ameliorated OGD/R-induced ischemic injury by inhibiting ferroptosis in vitro. This finding was corroborated by our western blot analysis, which revealed that the antiferroptotic role of zerumbone was distinctly mediated through the downregulation of transferrin receptor 1 (TFR1) protein expression. This communication, for the first time, highlights the feasibility of zerumbone as a promising adjunctive neuroprotective agent against ferroptosis cell death in the context of cerebral stroke. This study lays the groundwork for subsequent in-depth investigations to fully elucidate its therapeutic potential in ischemic stroke treatment.
Collapse
Affiliation(s)
- Gokul S
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, India
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Rajanikant G K
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, India.
| |
Collapse
|
3
|
Zhuang GD, Deng SM, Chen MD, Deng CF, Gu WT, Wang SM, Tang D. Huang-Lian-Jie-Du Decoction alleviates diabetic encephalopathy by regulating inflammation and pyroptosis via suppression of AGEs/RAGE/NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118787. [PMID: 39244173 DOI: 10.1016/j.jep.2024.118787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive dysfunction associated with diabetes, known as diabetic encephalopathy (DE), is a grave neurodegenerative condition triggered by diabetes, and persistent inflammation plays a vital role in its development. The renowned traditional Chinese medicine Huang-Lian-Jie-Du Decoction (HLJDD) is clinically proven to manage diabetes mellitus and Alzheimer's disease and is famous for its heat-clearing and detoxifying effects. However, the underlying mechanisms through which HLJDD affects DE remain to be elucidated. AIM OF THE STUDY To explore the beneficial effects of HLJDD on improving cognitive dysfunction in DE mice. STUDY DESIGN AND METHODS A diabetic mouse was established through a high-fat diet and subsequent administration of streptozotocin over five consecutive days. After the animals were confirmed to have diabetes, they were treated with HLJDD. After oral administration of HLJDD or metformin for 14 weeks, behavioral tests were used to assess their cognitive capacity. Biochemical analyses were then performed to detect levels of glucose metabolism, followed by histological analyses to assess pathological damage. Furthermore, AGEs/RAGE/NF-κB axis related proteins were detected by Western blot or immunofluorescence techniques. An advanced UPLC-Q-Orbitrap HRMS/MS analytical technique utilizing a chemical derivatization strategy was employed for comprehensive metabolic profiling of carbonyl compounds in the plasma of DE mice. RESULTS Pharmacological assessment revealed that HLJDD effectively mitigated cognitive dysfunction, normalized glucose metabolic imbalances, and repaired neuronal damage in DE mice. It reduced neuroinflammation by attenuating carbonyl stress, deactivating astrocytes and microglia, and preserving dopaminergic neurons. Additionally, metabolomics analysis revealed 18 carbonyl compounds with marked disparities between DE and control mice, with 12 metabolites approaching normal levels post-HLJDD intervention. Further investigations showed that HLJDD regulated inflammation and pyroptosis through suppressing AGEs/RAGE/NF-κB pathways. CONCLUSION Our study indicated that HLJDD could ameliorate carbonyl stress via the regulation of carbonyl compound metabolism profiling, and inhibiting the AGEs/RAGE/NF-κB pathway, thereby alleviating inflammation and pyroptosis to exert beneficial effects on DE.
Collapse
Affiliation(s)
- Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meng-Di Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zhang J, Zhang Y, Liu L, Zhang M, Zhang X, Deng J, Zhao F, Lin Q, Zheng X, Fu B, Zhao Y, Wang X. Chemerin-9 is neuroprotective in APP/PS1 transgenic mice by inhibiting NLRP3 inflammasome and promoting microglial clearance of Aβ. J Neuroinflammation 2025; 22:5. [PMID: 39780188 PMCID: PMC11716275 DOI: 10.1186/s12974-024-03325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder worldwide, and microglia are thought to play a central role in neuroinflammatory events occurring in AD. Chemerin, an adipokine, has been implicated in inflammatory diseases and central nervous system disorders, yet its precise function on microglial response in AD remains unknown. METHODS The APP/PS1 mice were treated with different dosages of chemerin-9 (30 and 60 µg/kg), a bioactive nonapeptide derived from chemerin, every other day for 8 weeks consecutively. The primary mouse microglia were stimulated by amyloid beta 42 (Aβ42) oligomers followed by treatment with chemerin-9 in vitro. ChemR23 inhibitor α-NETA was further used to investigate whether the effects of chemerin-9 were ChemR23-dependent. RESULTS We found that the expression of chemerin and ChemR23 was increased in AD. Intriguingly, treatment with chemerin-9 significantly ameliorated Aβ deposition and cognitive impairment of the APP/PS1 mice, with decreased microglial proinflammatory activity and increased phagocytic activity. Similarly, chemerin-9-treated primary microglia showed increased phagocytic ability and decreased NLRP3 inflammasome activation. However, the ChemR23 inhibitor α-NETA abolished the neuroprotective microglial response of chemerin-9. CONCLUSIONS Collectively, our data demonstrate that chemerin-9 ameliorates cognitive deficits in APP/PS1 transgenic mice by boosting a neuroprotective microglial phenotype.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Lan Liu
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Mengyuan Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Fei Zhao
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xue Zheng
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Bing Fu
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China.
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China.
| |
Collapse
|
5
|
Cui W, Wang Y, Tang X, Liu S, Duan Y, Gu T, Mao J, Li W, Bao J, Wei Z. CRM 197-scaffolded vaccines designed by epitope grafting ameliorate cognitive decline in an Alzheimer's disease model. Int J Biol Macromol 2024; 281:136477. [PMID: 39401639 DOI: 10.1016/j.ijbiomac.2024.136477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Amyloid-beta (Aβ) plaque accumulation and tau neurofibrillary tangles (NFTs) formation in the brain are major neuropathological hallmarks of AD. Immunotherapies targeting Aβ and/or tau are deemed the most promising approaches for AD. Administrations with monoclonal antibodies against Aβ have yielded substantial breakthroughs clinically. Most vaccines tested clinically so far failed to prove efficacious in large part due to inappropriate design of vaccine antigens. In this study, a structure-guided approach was employed to design novel antigens targeting Aβ and/or tau by grafting multiple copies of Aβ and/or tau B-cell epitope peptide onto CRM197, which is the most widely used carrier protein in polysaccharide conjugate vaccines. The immunogenicity of the vaccines was evaluated in BALB/c mice and the efficacy was tested in a transgenic mouse model of human amyloidopathy. The antigens were highly immunogenic early vaccination substantially ameliorated cognitive decline in APP/PS1 mice and significantly reduced insoluble Aβ42/40 in the brains. These results demonstrate that the engineered antigens have protective effects on AD mice, offering a promising translatable strategy for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Yurong Duan
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Tiantian Gu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Junyuan Mao
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Wenjie Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Jinli Bao
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Zhun Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China; Keynova Biotech Co., Ltd., Weifang 261071, China.
| |
Collapse
|
6
|
Long J, Chen J, Huang H, Liang J, Pang L, Yang K, Wei H, Liao Q, Gu J, Zeng X, Huang D, Qiu X. The associations between gut microbiota and fecal metabolites with intelligence quotient in preschoolers. BMC Microbiol 2024; 24:431. [PMID: 39455934 PMCID: PMC11515365 DOI: 10.1186/s12866-024-03579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The awareness of the association between the gut microbiota and human intelligence levels is increasing, but the findings are inconsistent. Furthermore, few research have explored the potential role of gut microbial metabolites in this association. This study aimed to investigate the associations of the gut microbiota and fecal metabolome with intelligence quotient (IQ) in preschoolers. METHODS The 16 S rRNA sequencing and widely targeted metabolomics were applied to analyze the gut microbiota and fecal metabolites of 150 children aged 3-6 years. The Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) was used to assess the cognitive competence. RESULTS The observed species index, gut microbiome health index, and microbial dysbiosis index presented significant differences between children with full-scale IQ (FSIQ) below the borderline (G1) and those with average or above-average (all P < 0.05). The abundance of Acinetobacter, Blautia, Faecalibacterium, Prevotella_9, Subdoligranulum, Collinsella, Dialister, Holdemanella, and Methanobrevibacter was significantly associated with preschooler's WPPSI-IV scores (P < 0.05). In all, 87 differential metabolites were identified, mainly including amino acid and its metabolites, fatty acyl, and benzene and substituted derivatives. The differential fecal metabolites carnitine C20:1-OH, 4-hydroxydebrisoquine, pantothenol, creatine, N,N-bis(2-hydroxyethyl) dodecanamide, FFA(20:5), zerumbone, (R)-(-)-2-phenylpropionic acid, M-toluene acetic acid, trans-cinnamaldehyde, isonicotinic acid, val-arg, traumatin, and 3-methyl-4-hydroxybenzaldehyde were significantly associated with the preschooler's WPPSI-IV scores (P < 0.05). The combination of Acinetobacter, Isonicotinic acid, and 3-methyl-4-hydroxybenzaldehydenine may demonstrate increased discriminatory power for preschoolers in G1. CONCLUSION This study reveals a potential association between gut microbiome and metabolites with IQ in preschoolers, providing new directions for future research and practical applications. However, due to limitations such as the small sample size, unclear causality, and the complexity of metabolites, more validation studies are still needed to further elucidate the mechanisms and stability of these associations.
Collapse
Affiliation(s)
- Jinghua Long
- Department of Prevention and Healthcare, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiehua Chen
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huanni Wei
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junwang Gu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
7
|
Yang C, Zhao M, Chen Y, Song J, Wang D, Zou M, Liu J, Wen W, Xu S. Dietary bitter ginger-derived zerumbone improved memory performance during aging through inhibition of the PERK/CHOP-dependent endoplasmic reticulum stress pathway. Food Funct 2024; 15:9070-9084. [PMID: 39078275 DOI: 10.1039/d4fo00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
PERK/CHOP pathway-mediated excessive endoplasmic reticulum (ER) stress is closely linked to aging-related cognitive impairment (ARCD). Zerumbone (ZB), a naturally occurring sesquiterpene molecule obtained from dietary bitter ginger, has garnered significant interest due to its diverse range of biological properties. It is unclear, though, if ZB can reduce ARCD by preventing ER stress that is dependent on the PERK/CHOP pathway. Here, the PERK-CHOP ER stress pathway was the main focus of an evaluation of the effects and mechanisms of ZB for attenuating ARCD in D-galactose (D-gal)-induced aging mice and SH-SY5Y cells. According to our findings, ZB not only greatly decreased neuronal impairment both in vitro and in vivo, but also significantly alleviated learning and memory failure in vivo. ZB significantly reduced the activation of the PERK/CHOP pathway and neuronal apoptosis in vitro and in vivo, exhibiting the down-regulation of GRP78, p-PREK/PERK, and CHOP expression levels, in addition to suppressing oxidative damage (MDA drop and SOD rise). Comparable outcomes were noted in SH-SY5Y cells subjected to severe ER stress caused by TM. On the other hand, 4-PBA, an ER stress inhibitor, considerably reversed these modifications. Remarkably, CCT020312 (a PERK activator) dramatically overrode the inhibitory effects of ZB on the PERK/CHOP pathway and neuronal death in D-gal-induced SH-SY5Y cells. In contrast, GSK2606414 (a PERK inhibitor) significantly increased these effects of ZB. In summary, our results suggested that ZB prevented D-gal-induced cognitive deficits by blocking the PERK/CHOP-dependent ER stress pathway and apoptosis, suggesting that ZB might be a natural sesquiterpene molecule that relieves ARCD.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juxian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Wang
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mi Zou
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingru Liu
- University College London, Gower Street, London WC1E 6BT, UK
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
8
|
Wang J, Du L, Zhang T, Chu Y, Wang Y, Wang Y, Ji X, Kang Y, Cui R, Zhang G, Liu J, Shi G. Edaravone Dexborneol ameliorates the cognitive deficits of APP/PS1 mice by inhibiting TLR4/MAPK signaling pathway via upregulating TREM2. Neuropharmacology 2024; 255:110006. [PMID: 38763325 DOI: 10.1016/j.neuropharm.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aβ deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China; Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longyuan Du
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junyan Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Uppin V, Zarei M, Acharya P, Nair D, Kempaiah B, Talahalli R. Zerumbone exhibits anti-inflammatory effects by suppressing eicosanoid signaling: Evidence from LPS-induced peripheral blood leukocytes. Prostaglandins Other Lipid Mediat 2024; 173:106852. [PMID: 38761959 DOI: 10.1016/j.prostaglandins.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA4-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot+ software. Further, the leukocytes were treated with zerumbone (1-20 μM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 μM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.
Collapse
Affiliation(s)
- Vinayak Uppin
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Mehrdad Zarei
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Pooja Acharya
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Devika Nair
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Bettadaiah Kempaiah
- Dept. of Spices and Flavor Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Ramaprasad Talahalli
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India.
| |
Collapse
|
10
|
Wang Y, Wang Z, Guo S, Li Q, Kong Y, Sui A, Ma J, Lu L, Zhao J, Li S. SVHRSP Alleviates Age-Related Cognitive Deficiency by Reducing Oxidative Stress and Neuroinflammation. Antioxidants (Basel) 2024; 13:628. [PMID: 38929067 PMCID: PMC11200511 DOI: 10.3390/antiox13060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-β-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- Department of International Medical Services, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Songyu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Qifa Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Aoran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Li Lu
- Department of Anatomy, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
12
|
Pan C, Zhang H, Zhang L, Chen L, Xu L, Xu N, Liu X, Meng Q, Wang X, Zhang ZY. Surgery-induced gut microbial dysbiosis promotes cognitive impairment via regulation of intestinal function and the metabolite palmitic amide. MICROBIOME 2023; 11:248. [PMID: 37936242 PMCID: PMC10631187 DOI: 10.1186/s40168-023-01689-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) are the most common postoperative complications with few therapeutic options. Gut microbial dysbiosis is associated with neurological diseases; however, the mechanisms by which the microbiota regulates postoperative gastrointestinal and cognitive function are incompletely understood. METHODS Behavioral testing, MiSeq 16S rRNA gene sequencing, non-target metabolism, intestinal permeability detection, protein assays, and immunofluorescence staining were employed to discern the impacts of surgery on microbial profiles, intestinal barriers, serum metabolism, and the brain. Interventions in mice included fecal microbiota transplantation, the anti-inflammatory agent dexamethasone, Lactobacillus supplementation, indole propionic acid supplementation, and palmitic amide administration. RESULTS Surgery-induced cognitive impairment occurs predominantly in aged mice, and surgery-induced alterations in the microbiota composition profile exacerbate intestinal barrier disruption in aged mice. These adverse effects can be mitigated by transferring microbiota from young donors or by bolstering the intestinal barrier function using dexamethasone, Lactobacillus, or indole propionic acid. Moreover, microbiota composition profiles can be restored by transplanting feces from young mice to aged surgical mice, improving neuropathology and cognitive function, and these effects coincide with increased intestinal permeability. Metabolomic screening identified alterations in metabolites in mouse serum after surgery, especially the increase in palmitic amide. Palmitic amide levels in serum and brain can be decreased by transplanting feces from young mice to aged surgical mice. Oral palmitic amide exacerbates cognitive impairment and neuropathological changes in mice. CONCLUSIONS Gut microbial dysbiosis in mice after surgery is a key mechanism leading to cognition dysfunction, which disrupts the intestinal barrier and metabolic abnormalities, resulting in neuroinflammation and dendritic spine loss. Intestinal barrier damage and high level of palmitic amide in old mice may be the cause of high incidence of PND in the elderly. Preoperative microbiota regulation and intestinal barrier restoration may be of therapeutic benefit in preventing PND. Video Abstract.
Collapse
Affiliation(s)
- Cailong Pan
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Huiwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Lingyuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Lu Chen
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Lu Xu
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Ning Xu
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoliang Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Changle Road 89, Nanjing, 210029, China.
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China.
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
13
|
Fan M, Wang C, Zhao X, Jiang Y, Wang C. Parthenolide alleviates microglia-mediated neuroinflammation via MAPK/TRIM31/NLRP3 signaling to ameliorate cognitive disorder. Int Immunopharmacol 2023; 120:110287. [PMID: 37182449 DOI: 10.1016/j.intimp.2023.110287] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation, mainly mediated by microglia, is involved in the evolution of Alzheimer's disease (AD). Parthenolide (PTL) has diverse pharmacological effects such as anti-inflammatory and antioxidative stress. However, whether PTL can modulate microglia-mediated neuroinflammation to improve cognitive impairment in amyloid precursor protein/presenilin 1 (APP/PS1) mice is unclear. METHODS LPS/IFN-γ-induced BV2 and HMC3 microglia were used for in vitro experiments; the roles of PTL on anti-inflammatory, anti-oxidative, phagocytic activity, and neuroprotection were assessed by inflammatory cytokines assays, dichlorodihydrofluorescein diacetate, phagocytosis, and cell counting kit-8 assays. Western blot and immunofluorescence(IF) were used to examine related molecular mechanisms. In vivo, IF and western blot were applied in LPS-treated wild-type (WT) mice and APP/PS1 mice models. The Morris water maze test was performed to evaluate the effects of PTL on cognitive disorders. RESULTS In vitro, PTL dramatically suppressed proinflammatory cytokines IL-6, IL-1β, and TNF-α release and increased IL-10 levels. Moreover, PTL decreased reactive oxygen species and restored microglial phagocytic activities via the AKT/MAPK/ NF-κB signaling pathway. Importantly, we discovered that PTL obviously enhanced TRIM31 expression and siTRIM31 elevated proinflammatory cytokine levels. Furthermore, we determined that the anti-inflammatory role of PTL was mostly TRIM31/NLRP3 signaling-dependent. In vivo, PTL alleviated microgliosis and astrogliosis in LPS-treated WT and APP/PS1 mice. Additionally, PTL significantly ameliorated memory and learning deficits in cognitive behaviors. CONCLUSIONS PTL improved cognitive and behavioral dysfunction, inhibited neuroinflammation, and showed potent anti-neuroinflammatory activity and neuroprotective effects by improving the MAPK/TRIM31/NLRP3 axis. Our study emphasized the therapeutic potential of PTL for improving cognitive disorders during AD progression.
Collapse
Affiliation(s)
- Mingde Fan
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Wang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Zhao
- Department of Transfusion, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
15
|
Twarowski B, Herbet M. Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci 2023; 24:6518. [PMID: 37047492 PMCID: PMC10095343 DOI: 10.3390/ijms24076518] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease is one of the most commonly diagnosed cases of senile dementia in the world. It is an incurable process, most often leading to death. This disease is multifactorial, and one factor of this is inflammation. Numerous mediators secreted by inflammatory cells can cause neuronal degeneration. Neuritis may coexist with other mechanisms of Alzheimer's disease, contributing to disease progression, and may also directly underlie AD. Although much has been established about the inflammatory processes in the pathogenesis of AD, many aspects remain unexplained. The work is devoted in particular to the pathomechanism of inflammation and its role in diagnosis and treatment. An in-depth and detailed understanding of the pathomechanism of neuroinflammation in Alzheimer's disease may help in the development of diagnostic methods for early diagnosis and may contribute to the development of new therapeutic strategies for the disease.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| |
Collapse
|
16
|
Wang C, Ye H, Zheng Y, Qi Y, Zhang M, Long Y, Hu Y. Phenylethanoid Glycosides of Cistanche Improve Learning and Memory Disorders in APP/PS1 Mice by Regulating Glial Cell Activation and Inhibiting TLR4/NF-κB Signaling Pathway. Neuromolecular Med 2023; 25:75-93. [PMID: 35781783 DOI: 10.1007/s12017-022-08717-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Phenylethanoid Glycosides of Cistanche (PhGs) have a certain curative effect on AD animal model, Echinacea (ECH) and verbascoside (ACT), as the quality control standard of Cistanche deserticola Y. C. Ma and the main representative compounds of PhGs have been proved to have neuroprotective effects, but the specific mechanism needs to be further explored. This study explored the mechanisms of PhGs, ECH, and ACT in the treatment of Alzheimer's disease (AD) from the perspectives of glial cell activation, TLR4/NF-κB signaling pathway, and synaptic protein expression. We used APP/PS1 mice as AD models. After treatment with PhGs, ECH, and ACT, the learning and memory abilities of APP/PS1 mice were enhanced, and the pathological changes in brain tissue were alleviated. The expression of pro-inflammatory M1 microglia markers (CD11b, iNOS, and IL-1β) was decreased; the expression of M2 microglia markers (Arg-1 and TGF-β1) was increased, which promoted the transformation of microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. In addition, PhGs, ECH, and ACT could down-regulate the expression of proteins related to the TLR4/NF-κB signaling pathway and up-regulate the expression of synaptic proteins. The results indicated that PhGs, ECH, and ACT played a neuroprotective role by regulating the activation of glial cells and inhibiting the TLR4/NF-κB inflammatory pathway, and improving the expression levels of synapse-related proteins.
Collapse
Affiliation(s)
- Chunhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Hongxia Ye
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Yanjie Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Yanqiang Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Mengyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Yan Long
- Central Laboratory, Shenzhen Sami Medical Center, Shenzhen, China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China.
| |
Collapse
|
17
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
18
|
Role of Zerumbone, a Phytochemical Sesquiterpenoid from Zingiber zerumbet Smith, in Maintaining Macrophage Polarization and Redox Homeostasis. Nutrients 2022; 14:nu14245402. [PMID: 36558562 PMCID: PMC9783216 DOI: 10.3390/nu14245402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages and microglia are highly versatile cells that can be polarized into M1 and M2 phenotypes in response to diverse environmental stimuli, thus exhibiting different biological functions. In the central nervous system, activated resident macrophages and microglial cells trigger the production of proinflammatory mediators that contribute to neurodegenerative diseases and psychiatric disorders. Therefore, modulating the activation of macrophages and microglia by optimizing the inflammatory environment is beneficial for disease management. Several naturally occurring compounds have been reported to have anti-inflammatory and neuroprotective properties. Zerumbone is a phytochemical sesquiterpenoid and also a cyclic ketone isolated from Zingiber zerumbet Smith. In this study, we found that zerumbone effectively reduced the expression of lipocalin-2 in macrophages and microglial cell lines. Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), has been characterized as an adipokine/cytokine implicated in inflammation. Moreover, supplement with zerumbone inhibited reactive oxygen species production. Phagocytic activity was decreased following the zerumbone supplement. In addition, the zerumbone supplement remarkably reduced the production of M1-polarization-associated chemokines CXC10 and CCL-2, as well as M1-polarization-associated cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α. Furthermore, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 and the production of NO were attenuated in macrophages and microglial cells supplemented with zerumbone. Notably, we discovered that zerumbone effectively promoted the production of the endogenous antioxidants heme oxygenase-1, glutamate-cysteine ligase modifier subunit, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase-1 and remarkably enhanced IL-10, a marker of M2 macrophage polarization. Endogenous antioxidant production and M2 macrophage polarization were increased through activation of the AMPK/Akt and Akt/GSK3 signaling pathways. In summary, this study demonstrated the protective role of zerumbone in maintaining M1 and M2 polarization homeostasis by decreasing inflammatory responses and enhancing the production of endogenous antioxidants in both macrophages and microglia cells. This study suggests that zerumbone can be used as a potential therapeutic drug for the supplement of neuroinflammatory diseases.
Collapse
|
19
|
Xu L, Li L, Pan C, Song J, Zhang C, Wu X, Hu F, Liu X, Zhang Z, Zhang Z. Erythropoietin signaling in peripheral macrophages is required for systemic β-amyloid clearance. EMBO J 2022; 41:e111038. [PMID: 36215698 PMCID: PMC9670197 DOI: 10.15252/embj.2022111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
Impaired clearance of beta-amyloid (Aβ) is a primary cause of sporadic Alzheimer's disease (AD). Aβ clearance in the periphery contributes to reducing brain Aβ levels and preventing Alzheimer's disease pathogenesis. We show here that erythropoietin (EPO) increases phagocytic activity, levels of Aβ-degrading enzymes, and Aβ clearance in peripheral macrophages via PPARγ. Erythropoietin is also shown to suppress Aβ-induced inflammatory responses. Deletion of EPO receptor in peripheral macrophages leads to increased peripheral and brain Aβ levels and exacerbates Alzheimer's-associated brain pathologies and behavioral deficits in AD-model mice. Moreover, erythropoietin signaling is impaired in peripheral macrophages of old AD-model mice. Exogenous erythropoietin normalizes impaired EPO signaling and dysregulated functions of peripheral macrophages in old AD-model mice, promotes systemic Aβ clearance, and alleviates disease progression. Erythropoietin treatment may represent a potential therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Lu Xu
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
- Department of Neurology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Lei Li
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Cai‐Long Pan
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Jing‐Jing Song
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Chen‐Yang Zhang
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Xiang‐Hui Wu
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Fan Hu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xue Liu
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Zhiren Zhang
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Zhi‐Yuan Zhang
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
- Department of Neurology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| |
Collapse
|
20
|
Diao W, Qian Q, Sheng G, He A, Yan J, Dahlgren RA, Wang X, Wang H. Triclosan targets miR-144 abnormal expression to induce neurodevelopmental toxicity mediated by activating PKC/MAPK signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128560. [PMID: 35245871 DOI: 10.1016/j.jhazmat.2022.128560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Although the previous research confirmed that triclosan (TCS) induced an estrogen effect by acting on a novel G-protein coupled estrogen-membrane receptor (GPER), the underlying mechanisms by which downstream pathways induce neurotoxicity remain unclear after TCS activation of GPER. By employing a series of techniques (Illumina miRNA-seq, RT-qPCR, and artificial intervention of miRNA expression), we screened out four important miRNAs, whose target genes were directly/indirectly involved in neurodevelopment and neurobehavior. Especially, the miR-144 up-regulation caused vascular malformation and severely affected hair-cell development and lateral-line-neuromast formation, thereby causing abnormal motor behavior. After microinjecting 1-2-cell embryos, the similar phenotypic malformations as those induced by TCS were observed, including aberrant neuromast, cuticular-plate development and motor behavior. By KEGG pathway enrichment analysis, these target genes were demonstrated to be mainly related to the PKC/MAPK signaling pathway. When a PKC inhibitor was used to suppress the PKC/MAPK pathway, a substantial alleviation of TCS-induced neurotoxicity was observed. Therefore, TCS acts on GPER to activate the downstream PKC/MAPK signaling pathway, further up-regulating miR-144 expression and causing abnormal modulation of these nerve-related genes to trigger neurodevelopmental toxicity. These findings unravel the molecular mechanisms of TCS-induced neurodegenerative diseases, and offer theoretical guidance for TCS-pollution early warning and management.
Collapse
Affiliation(s)
- Wenqi Diao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Guangyao Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Anfei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
21
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
22
|
Biji M, Prabha B, Lankalapalli RS, Radhakrishnan KV. Transition Metal/Lewis Acid Catalyzed Reactions of Zerumbone for Diverse Molecular Motifs. CHEM REC 2021; 21:3943-3953. [PMID: 34708494 DOI: 10.1002/tcr.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Zerumbone is a naturally occurring humulene type sesquiterpene, isolated from the rhizomes of Zingiber zerumbet (L.) Smith with excellent therapeutic potential and is recognized as a valuable synthon for the construction of diverse array of natural product motifs. In this review, we intended to highlight our achievements in utilizing abundant natural product zerumbone and its derivatives for the development of pharmacologically relevant molecular scaffolds. We provided an account of the transition-metal catalyzed 1,4-conjugate addition reactions of zerumbone and its derivatives along with palladium-catalyzed cross-couplings, transition metal-based Lewis acid promoted interrupted Nazarov cyclisation reaction with substituted indoles and transannular cyclizations, photo-induced transformations of zerumbone and its epoxide.
Collapse
Affiliation(s)
- Mohanan Biji
- Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India-, 695019.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bernard Prabha
- Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India-, 695019
| | - Ravi S Lankalapalli
- Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India-, 695019.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kokkuvayil Vasu Radhakrishnan
- Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India-, 695019.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
23
|
Schepici G, Contestabile V, Valeri A, Mazzon E. Ginger, a Possible Candidate for the Treatment of Dementias? Molecules 2021; 26:5700. [PMID: 34577171 PMCID: PMC8470323 DOI: 10.3390/molecules26185700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022] Open
Abstract
As the human life expectancy increases, age-linked diseases have become more and more frequent. The worldwide increment of dementia cases demands medical solutions, but the current available drugs do not meet all the expectations. Recently the attention of the scientific community was attracted by natural compounds, used in ancient medicine, known for their beneficial effects and high tolerability. This review is focused on Ginger (Zingiber officinale) and explore its properties against Alzheimer's Disease and Vascular Dementia, two of the most common and devastating forms of dementia. This work resumes the beneficial effects of Ginger compounds, tested in computational in vitro and in vivo models of Alzheimer's Disease and Vascular Dementia, along with some human tests. All these evidences suggest a potential role of the compounds of ginger not only in the treatment of the disease, but also in its prevention.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (V.C.); (A.V.)
| |
Collapse
|
24
|
Zarei M, Uppin V, Acharya P, Talahalli R. Ginger and turmeric lipid-solubles attenuate heated oil-induced oxidative stress in the brain via the upregulation of NRF2 and improve cognitive function in rats. Metab Brain Dis 2021; 36:225-238. [PMID: 33170419 DOI: 10.1007/s11011-020-00642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 01/20/2023]
Abstract
In this study, we elucidated the modulatory potentials of lipid-solubles from ginger and turmeric that may migrate to oils during heating on the brain antioxidant defense and cognitive response in rats. Male Wistar rats were fed with control diet [including native canola oil (N-CNO), and native sunflower oil (N-SFO)], or experimental diets [including heated canola oil (H-CNO), heated sunflower oil (H-SFO), heated canola oil with ginger (H-CNO + GI), heated canola oil with turmeric (H-CNO + TU), heated sunflower oil with ginger (H-SFO + GI), heated sunflower oil with turmeric (H-SFO + TU)] for 90 days. Memory parameters [Morris water maze, elevated plus maze, novel object recognition test, T-maze (spontaneous alteration)], locomotor skills (open field test and rotarod test), antioxidant defense enzymes, reactive oxygen species, NOS2, ICAM-1, and NRF-2 level in the brain were assessed. Compared to their respective controls, heated oil-fed rats, but not those fed oils heated with ginger or turmeric, showed significant (p < 0.05) reduction in the memory, motor coordination skills, antioxidant defense enzymes, and NRF-2 activation in the brain. Compared to their respective controls, the brain NOS-2 and ICAM-1 were significantly (p < 0.05) increased in heated oil-fed rats, but not those fed oils heated with ginger or turmeric. Chronic intake of repeatedly heated oil causes brain dysfunction by inducing oxidative stress through NRF-2 downregulation. Lipid-solubles from ginger and turmeric that may migrate to oil during heating prevent the oxidative stress and cognitive dysfunction triggered by heated oils in rats.
Collapse
Affiliation(s)
- Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Vinayak Uppin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Ramaprasad Talahalli
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
25
|
Seibel R, Schneider RH, Gottlieb MGV. Effects of Spices (Saffron, Rosemary, Cinnamon, Turmeric and Ginger) in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:347-357. [PMID: 34279199 DOI: 10.2174/1567205018666210716122034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/14/2021] [Accepted: 03/17/2021] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the elderly, causing disability, physical, psychological, social, and economic damage to the individual, their families, and caregivers. Studies have shown some spices, such as saffron, rosemary, cinnamon, turmeric, and ginger, have antioxidant and anti-inflammatory properties that act in inhibiting the aggregation of acetylcholinesterase and amyloid in AD. For this reason, spices have been studied as beneficial sources against neurodegenerative diseases, including AD. In this sense, this study aims to present a review of some spices (Saffron, Rosemary, Cinnamon, Turmeric and Ginger) and their bioactive compounds, most consumed and investigated in the world regarding AD. In this article, scientific evidence is compiled in clinical trials in adults, the elderly, animals, and in vitro, on properties considered neuroprotective, having no or negative effects on neuroprotection of these spices and their bioactive compounds. The importance of this issue is based on the pharmacological treatment for AD that is still not very effective. In addition, the recommendations and prescriptions of these spices are still permeated by questioning and lack of robust evidence of their effects on neurodegeneration. The literature search suggests all spices included in this article have bioactive compounds with anti-inflammatory and antioxidant actions associated with neuroprotection. To date, the amounts of spice ingestion in humans are not uniform, and there is no consensus on its indication and chronic consumption guarantees safety and efficacy in neuroprotection. Therefore, clinical evidence on this topic is necessary to become a formal adjuvant treatment for AD.
Collapse
Affiliation(s)
- Raquel Seibel
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre/RS, Brazil
| | - Rodolfo H Schneider
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre/RS, Brazil
| | - Maria G V Gottlieb
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre/RS, Brazil
| |
Collapse
|
26
|
Kong F, Jiang X, Wang R, Zhai S, Zhang Y, Wang D. Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer's disease. J Neuroinflammation 2020; 17:305. [PMID: 33059746 PMCID: PMC7565774 DOI: 10.1186/s12974-020-01967-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neuroinflammation is a principal element in Alzheimer’s disease (AD) pathogenesis, so anti-inflammation may be a promising therapeutic strategy. Forsythoside B (FTS•B), a phenylethanoid glycoside isolated from Forsythiae fructus, has been reported to exert anti-inflammatory effects. However, no studies have reported whether the anti-inflammatory properties of FTS•B have a neuroprotective effect in AD. In the present study, these effects of FTS•B were investigated using amyloid precursor protein/presenilin 1 (APP/PS1) mice, BV-2 cells, and HT22 cells. Methods APP/PS1 mice were administered FTS•B intragastrically for 36 days. Behavioral tests were then carried out to examine cognitive functions, including the Morris water maze, Y maze, and open field experiment. Immunohistochemistry was used to analyze the deposition of amyloid-beta (Aβ), the phosphorylation of tau protein, and the levels of 4-hydroxynonenal, glial fibrillary acidic protein, and ionized calcium-binding adapter molecule 1 in the hippocampus. Proteins that showed marked changes in levels related to neuroinflammation were identified using proteomics and verified using enzyme-linked immunosorbent assay and western blot. BV-2 and HT22 cells were also used to confirm the anti-neuroinflammatory effects of FTS•B. Results In APP/PS1 mice, FTS•B counteracted cognitive decline, ameliorated the deposition of Aβ and the phosphorylation of tau protein, and attenuated the activation of microglia and astrocytes in the cortex and hippocampus. FTS•B affected vital signaling, particularly by decreasing the activation of JNK-interacting protein 3/C-Jun NH2-terminal kinase and suppressing WD-repeat and FYVE-domain-containing protein 1/toll-like receptor 3 (WDFY1/TLR3), further suppressing the activation of nuclear factor-κB (NF-κB) signaling. In BV-2 and HT22 cells, FTS•B prevented lipopolysaccharide-induced neuroinflammation and reduced the microglia-mediated neurotoxicity. Conclusions FTS•B effectively counteracted cognitive decline by regulating neuroinflammation via NF-κB signaling in APP/PS1 mice, providing preliminary experimental evidence that FTS•B is a promising therapeutic agent in AD treatment.
Collapse
Affiliation(s)
- Fan'ge Kong
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ruochen Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Siyu Zhai
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yizhi Zhang
- Department of Neurology, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
27
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
28
|
Biological and Computational Studies for Dual Cholinesterases Inhibitory Effect of Zerumbone. Nutrients 2020; 12:nu12051215. [PMID: 32344943 PMCID: PMC7281973 DOI: 10.3390/nu12051215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) mediate the degradation of acetylcholine (ACh), a primary neurotransmitter in the brain. Cholinergic deficiency occurs during the progression of Alzheimer’s disease (AD), resulting in widespread cognitive dysfunction and decline. We evaluated the potential effect of a natural cholinesterase inhibitor, zerumbone, using in vitro target enzyme assays, as well as in silico docking and ADMET (absorption, distribution, metabolism, excretion, and toxicity) simulation. Zerumbone showed a predominant cholinesterase inhibitory property with IC50 values of 2.74 ± 0.48 µM and 4.12 ± 0.42 µM for AChE and BChE, respectively; however, the modes of inhibition were different. Computational docking simulation indicated that Van der Waals interactions between zerumbone and both the cholinesterases were the main forces responsible for its inhibitory effects. Furthermore, zerumbone showed the best physicochemical properties for both bioavailability and blood–brain barrier (BBB) permeability. Together, in the present study, zerumbone was clearly identified as a unique dual AChE and BChE inhibitor with high permeability across the BBB, suggesting a strong potential for its physiological benefits and/or pharmacological efficacy in the prevention of AD.
Collapse
|