1
|
Li W, Zhang Y, Yan B, Luo B, Lv J. Forsythiaside A Ameliorates Oxidative Damage Caused by Cerebral Ischemia Through the Nrf2/HO-1 Signaling Pathway. Chem Biol Drug Des 2025; 105:e70083. [PMID: 40035314 DOI: 10.1111/cbdd.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Forsythiaside A (FA) has anti-inflammatory and antioxidant properties. The aim of this study was to explore the antioxidant effects and mechanisms of FA in ischemic stroke (IS). In this work, IS-related genes were obtained through GEO, GeneCards, TTD, CTD, DrugBank, and MalaCards databases. The targets of the FA were obtained from CTD, TargetNet, Super-PRED, TCMIO, and SwissTargetPrediction databases. GO analysis and KEGG pathway enrichment analysis were performed, and a protein-protein interaction (PPI) network was constructed to screen for key pathways. For in vivo assays, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in rats, and high and low doses of FA were administered. Neurological impairment score, cerebral infarction, cerebral edema, and tissue morphology were evaluated. The content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected. The expressions of cleaved caspase 3, Bax, and bcl-2, and Nrf2/HO-1 pathway-related proteins were detected by Western blot. For in vitro experiments, an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed in HT22 cells, and CCK-8 and LDH release assays were used to evaluate the effect of FA on OGD/R-induced toxicity of HT22 neurons. The Nrf2 inhibitor ML385 was used for the rescue experiments. Network pharmacology and bioinformatics analysis showed that the role of FA in treating IS was associated with oxidative stress. Topological analysis of the PPI network revealed 11 key genes, which were closely associated with the Nrf2 pathway. FA treatment could significantly reduce cerebral infarction, cerebral edema, neurological function impairment, and neuronal injury of the rats with MCAO/R. FA could also inhibit oxidative stress and neuronal apoptosis, and increase the viability of HT22 cells. In addition, FA promoted the nuclear translocation of Nrf2 and activated the Nrf2/HO-1 pathway, while ML385 weakened the protective effect of FA on neuronal viability and antioxidant capacity. In conclusion, FA attenuates the oxidative damage induced by IS by activating the Nrf2/HO-1 signaling pathway, which is a promising natural drug for IS.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ying Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bin Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
2
|
Chen Y, Song S, Wang Y, Wu L, Wu J, Jiang Z, Li X. Topical application of magnolol ameliorates psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism. Bioorg Chem 2025; 154:108059. [PMID: 39693920 DOI: 10.1016/j.bioorg.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Psoriasis (PSO) is a common inflammatory skin disease caused by multiple factors. Magnolia officinalis is an important medicinal plant in China, with various values such as ecology, medicine, food, and daily chemicals. However, its diverse application potential has not been fully explored. Magnolol (MGO) is the main active compound of Magnolia officinalis with significant anti-inflammatory effect. To investigate the application potential of MGO in inflammatory skin disease, the effects and underlying mechanisms of topical MGO treating psoriasis were explored in this study. Network pharmacology and molecular docking firstly predicted that topical MGO may treat psoriasis by regulating pyroptosis pathway and acting on caspase-1 (CASP1). In vitro experiments then demonstrated that MGO could inhibit the level of inflammatory cytokines and the key protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway in lipopolysaccharide (LPS)-stimulated phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. Meanwhile, MGO could inhibit CuSO4-induced neutrophils migration in Tg (mpx:EGFP) zebrafish by suppressing inflammation and pyroptosis. This study further indicated that topical application of MGO ameliorated imiquimod (IMQ)-induced psoriasis-like dermatitis by reducing the release of inflammatory factors and decreasing the key protein expression of pyroptosis-related NLRP3/Caspase-1 pathway. Metabolomics analysis revealed that topical application of MGO could significantly regulate tryptophan metabolism and affect the level of tryptophan in skin lesions. Tryptophan could also regulate inflammation-related genes and inhibit pyroptosis-related NLRP3/Caspase-1 pathway in LPS-stimulated PMA-differentiated THP-1 cells. In conclusion, this study suggested that topical MGO may ameliorate psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zhengmeng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
3
|
Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H. Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177077. [PMID: 39461536 DOI: 10.1016/j.scitotenv.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Antiviral drugs are widely used, yet their potential risks during early development, particularly within the central nervous system, remain contentious. Oseltamivir phosphate (OSE), a commonly prescribed antiviral, is increasingly detected in various environments. However, its toxicity to organisms and the underlying mechanisms are not well understood. In this study, we employed the zebrafish model to evaluate the developmental neurotoxic effects of OSE at environmentally and therapeutically relevant doses, through high-throughput behavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention, and biochemical and molecular assays. Our results indicated that OSE exposure increased heart rate and induced pericardial edema in zebrafish larvae. Additionally, OSE-exposed larvae exhibited hyperactive behavior, impaired social interactions, and reduced habitual learning capacity. Although OSE at our selected levels did not significantly affect neuron count in the brain, it activated neuroinflammatory responses, altered blood vessel morphology, modulated neurotransmitter levels and the expression of neurodevelopment-related genes. Transcriptomic analysis revealed upregulation of mitochondria-related genes associated with oxidative phosphorylation. Further assessments of mitochondrial function demonstrated altered activities of respiratory chain complexes, reduced mitochondrial membrane potential (MMP), and decreased ATP content. Notably, co-treatment with mitochondrial protectants acetyl-l-carnitine-hydrochloride (ALC) or nicotinamide riboside (NR) effectively mitigated OSE-induced neurobehavioral disorders. These findings suggest that overuse of OSE can pose neurodevelopmental risks for both humans and animals, potentially attributable to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Minjian Zou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zhirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Jiayi Ruan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Bixi Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Chuanyin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
4
|
Xiao G, Yang M, Zeng Z, Tang R, Jiang J, Wu G, Xie C, Jia D, Bi X. Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. By regulating TLR4/MyD88/NF-κB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118520. [PMID: 38964626 DOI: 10.1016/j.jep.2024.118520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is directly related to disease progression and contributes significantly to the global burden of disease. Pothos chinensis (Raf.) Merr. (PCM) is commonly used in Yao medicine in China to treat tumors, and orthopedic illnesses such as knee osteoarthritis, and rheumatic bone discomfort. PCM was found to have significant anti-inflammatory properties in previous studies. AIM OF THE STUDY To explore the active compounds of PCM and their anti-inflammatory pharmacological mechanisms through an integrated strategy of serum pharmacochemistry, network pharmacology, and serum metabolomics. MATERIALS AND METHODS The qualitative and quantitative analyses of the chemical components of PCM were performed using UPLC-QTOF-MS/MS and UPLC, respectively, and the prototype components of PCM absorbed into the blood were analyzed. Based on the characterized absorbed into blood components, potential targets and signaling pathways of PCM anti-inflammatory were found using network pharmacology. Furthermore, metabolomics studies using UPLC-QTOF-MS/MS identified biomarkers and metabolic pathways related to the anti-inflammatory effects of PCM. Finally, the hypothesized mechanisms were verified by in vivo and in vitro experiments. RESULTS Forty chemical components from PCM were identified for the first time, and seven of them were quantitatively analyzed, while five serum migratory prototype components were found. Network pharmacology KEGG enrichment analysis revealed that arachidonic acid metabolism, Tyrosine metabolism, TNF signaling pathway, NF-κB signaling pathway, and phenylalanine metabolism were the main signaling pathways of PCM anti-inflammatory. Pharmacodynamic results showed that PCM ameliorated liver injury and inflammatory cell infiltration and downregulated protein expression of IL-1β, NF-κB p65, and MyD88 in the liver. Metabolomics studies identified 53 different serum metabolites, mainly related to purine and pyrimidine metabolism, phenylalanine metabolism, primary bile acid biosynthesis, and glycerophospholipid metabolism. The comprehensive results demonstrated that the anti-inflammatory modulatory network of PCM was related to 5 metabolites, 3 metabolic pathways, 7 targets, and 4 active components of PCM. In addition, molecular docking identified the binding ability between the active ingredients and the core targets, and the anti-inflammatory efficacy of the active ingredients was verified by in vitro experiments. CONCLUSION Our study demonstrated the anti-inflammatory effect of PCM, and these findings provide new insights into the active ingredients and metabolic mechanisms of PCM in anti-inflammation.
Collapse
Affiliation(s)
- Guanlin Xiao
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| | - Minjuan Yang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruiyin Tang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jieyi Jiang
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangyin Wu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Canhui Xie
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dezheng Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Bi
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Guo LY, Wang T, Ma HX, Chen S, Chang ZY, Li F. Synergistic effect of osthole and notopterol combination against Alzheimer's disease and osteoporosis by applying zebrafish AD/OP comorbidity model. Eur J Pharmacol 2024; 979:176829. [PMID: 39053867 DOI: 10.1016/j.ejphar.2024.176829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) are both serious degenerative diseases, with the potential for concurrent occurrence in clinical settings, and they share certain pathological correlations. Osthole (OST) and notopterol (NOT) are the main active ingredients in traditional Chinese medicine, Angelica pubescens and Notopterygium incisum, respectively, and they exhibit neuroprotective and osteoprotective effects. However, whether the combination of OST and NOT produces a synergistic effect against AD and/or OP remains unclear. The aim of this study was to investigate whether the combination of OST and NOT could produce synergistic anti-AD and/or OP effects using the previously constructed zebrafish AD/OP comorbidity model. Active compounds with anti-AD and OP effects were screened from Angelica pubescens and Notopterygium incisum through network pharmacology, identifying OST and NOT, respectively. Then, the AlCl3-induced (Aluminum chloride, AlCl3) AD combined with OP zebrafish model, in conjunction with the Chou-Talalay synergy evaluation model, was employed to assess whether the OST and NOT combination produced synergistic effects against AD and/or OP. Furthermore, a CuSO4-induced (Copper sulfate, CuSO4) inflammation zebrafish model was used to investigate whether the combination of OST and NOT produced synergistic anti-inflammatory effects, thereby resulting in synergistic anti-AD and/or OP effects. The results demonstrated that the OST-NOT combined treatment produced a synergistic anti-AD and OP effect. Moreover, the combined treatment of OST and NOT significantly inhibited nitric oxide (NO) and reactive oxygen species (ROS) release more effectively than OST or NOT alone, indicating a synergistic anti-inflammatory effect of the OST and NOT combined treatment.
Collapse
Affiliation(s)
- Li-Ying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting Wang
- School of Chinese Material Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, China.
| | - Hou-Xu Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shihao Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhi-Yong Chang
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, 210029, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
8
|
Xia YQ, Yang Y, Liu Y, Li CH, Liu PF. Investigation of copper-induced intestinal damage and proteome alterations in Takifugu rubripes: Potential health risks and environmental toxicology detection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116718. [PMID: 39024957 DOI: 10.1016/j.ecoenv.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 μg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 μg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 μg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.
Collapse
Affiliation(s)
- Yu-Qing Xia
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Cheng-Hua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China.
| |
Collapse
|
9
|
Liu L, Zhong Y, Zheng T, Zhao J, Ding S, Lv J, Xu Q, Zhang Y. Epimedin B exerts an anti-inflammatory effect by regulating the MAPK/NF-κB/NOD-like receptor signalling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109657. [PMID: 38801842 DOI: 10.1016/j.fsi.2024.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Epimedin B (EB), a predominant compound found in Herba Epimedii, has been shown to be effective in the treatment of osteoporosis and peripheral neuropathy. However, the anti-inflammatory effect of EB has not yet been reported. The anti-inflammatory activity of EB was evaluated in a zebrafish inflammation model induced by copper sulfate (CuSO4) and tail cutting. Our findings demonstrated that EB effectively inhibited acute inflammation, mitigated the accumulation of reactive oxygen species (ROS), and ameliorated the neuroinflammation-associated impairment of locomotion in zebrafish. Moreover, EB regulates several genes related to the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB)/Nod-like receptor signalling pathways (mapk8b, src, mmp9, akt1, mapk14a, mapk14b, mapk1, egfra, map3k4, nfκb2, iκbαa, pycard, nlrp3 and caspase1) and inflammatory cytokine (stat6, arg1, irfɑ, stat1ɑ, il-1β, il-4, il-6, il-8, cox-2, ptges, tnf-α and tgf-β). Therefore, our findings indicate that EB could serve as a promising therapeutic candidate for treating inflammation.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yayun Zhong
- School of Pharmacy, Changzhou University, Changzhou, 213164, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Shumin Ding
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Qian Xu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
10
|
Tuoheti K, Bai X, Yang L, Wang X, Cao Y, Yisha Z, Guo L, Zhan S, Wu Z, Liu T. Forsythiaside A suppresses renal fibrosis and partial epithelial-mesenchymal transition by targeting THBS1 through the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 129:111650. [PMID: 38342062 DOI: 10.1016/j.intimp.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Renal fibrosis is a key feature of chronic kidney disease (CKD) progression, whereas no proven effective anti-fibrotic treatments. Forsythiaside A (FTA), derived from Forsythia suspense, has been found to possess nephroprotective properties. However, there is limited research on its anti-fibrotic effects, and its mechanism of action remains unknown. This study aimed to investigate the suppressive effects of FTA on renal fibrosis and explore the underlying mechanisms. In vitro, we established a HK2 cell model induced by transforming growth factor β1 (TGF-β1), and in vivo, we used a mice model induced by unilateral ureteral obstruction (UUO). CCK-8 assay, qRT-PCR, Western blotting, immunofluorescence, flow cytometry, histological staining, immunohistochemistry, TUNEL assay, RNA transcriptome sequencing, and molecular docking were performed. The results showed that FTA (40 μM or 80 μM) treatment improved cell viability and suppressed TGF-β1-induced fibrotic changes and partial epithelial-mesenchymal transition (EMT). Furthermore, FTA treatment reversed the activation of the PI3K/AKT signaling pathway, and THBS1 was identified as the target gene. We found that THBS1 knockdown suppressed the activation of the PI3K/AKT signaling pathway and reduced the fibrosis and partial EMT-related protein level. Conversely, THBS1 overexpression activated the PI3K/AKT signaling pathway and exacerbated renal fibrosis and partial EMT. In vivo, mice were administered FTA (30 or 60 mg/kg) for 2 weeks, and the results demonstrated that FTA administration significantly mitigated tubular injury, tubulointerstitial fibrosis, partial EMT, and apoptosis. In conclusion, FTA inhibited renal fibrosis and partial EMT by targeting THBS1 and inhibiting activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Kuerban Tuoheti
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijie Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanfei Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhaer Yisha
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanzhi Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China; Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, China.
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China; Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, China.
| |
Collapse
|
11
|
Zhou C, Xia Q, Hamezah HS, Fan Z, Tong X, Han R. Efficacy of Forsythia suspensa (Thunb.) Vahl on mouse and rat models of inflammation-related diseases: a meta-analysis. Front Pharmacol 2024; 15:1288584. [PMID: 38500762 PMCID: PMC10946063 DOI: 10.3389/fphar.2024.1288584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Objective: To evaluate the efficacy of the fruits of the medicinal plant Forsythia suspensa (Thunb.) Vahl (FS), in treating inflammation-associated diseases through a meta-analysis of animal models, and also probe deeply into the signaling pathways underlying the progression of inflammation. Materials and methods: All data analyses were performed using Review Manager 5.3 and the results are presented as flow diagrams, risk-of-bias summaries, forest plots, and funnel plots. Summary estimates were calculated using a random- or fixed-effect model, depending on the value of I2. Results: Of the 710 records identified in the initial search, 11 were selected for the final meta-analysis. Each study extracted data from the model and treatment groups for analysis, and the results showed that FS alleviated the inflammatory cytokine levels in serum; oxidant indicator: reactive oxygen species; enzymes of liver function; endotoxin and regulatory cells in blood; and improved the antioxidant enzyme superoxide dismutase. Conclusion: FS effectively reversed the change in acute or chronic inflammation indicators in animal models, and the regulation of multiple channel proteins in inflammatory signaling pathways suggests that FS is a good potential drug for inflammatory disease drug therapy.
Collapse
Affiliation(s)
- Chenyu Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Zheng Fan
- Affiliated Taihe Hospital of Chinese Medicine, Anhui University of Chinese Medicine, Taihe, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Jinzhai, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Zhang L, Lang F, Feng J, Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117275. [PMID: 37797873 DOI: 10.1016/j.jep.2023.117275] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Fenglong Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
13
|
Ding K, Sun E, Huang R, Heng W, Li X, Liu J, Zhao J, Li C, Feng L, Jia X. Integrated metabolome-microbiome analysis investigates the different regulations of Pudilan Xiaoyan oral liquid in young rats with acute pharyngitis compared to adult rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155037. [PMID: 37611464 DOI: 10.1016/j.phymed.2023.155037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Pudilan Xiaoyan Oral Liquid (PDL) is a famous traditional Chinese prescription recorded in the Chinese Pharmacopeia, which is widely used to treat inflammatory diseases of the respiratory tract in children and adults. However, the endogenous changes in children and adults with PDL in the treatment of acute pharyngitis remain unclear. PURPOSE The differential regulatory roles of PDL in endogenous metabolism and gut microbes in young and adult rats were investigated with a view to providing a preclinical data reference for PDL in medication for children. METHODS An acute pharyngitis model was established, and serum levels of inflammatory factors and histopathology were measured. This study simulated the growth and development of children in young rats and explored the endogenous metabolic characteristics and intestinal microbial composition after the intervention of PDL by using serum metabolomic technique and 16S rRNA high-throughput sequencing technique. RESULTS The results showed that PDL had therapeutic effects on young and adult rats with acute pharyngitis. Sixteen biomarkers were identified by metabolomics in the serum of young rats and 23 in adult rats. PDL can also affect intestinal microbial diversity and community richness in young and adult rats. Alloprevotella, Allobaculum, Alistipes, Bifidobacterium, and Enterorhabdus were prominent bacteria in young rats. Bacteria from the phylum Firmicutes of the adult rats changed more significantly under the treatment of PDL. In young rats, amino acid metabolism was the primary regulatory mode of PDL, whereas, in adult rats, glycerophospholipid metabolism was studied. CONCLUSION The regulation of PDL on the serum metabolite group and intestinal microflora in young rats was different from that in adult rats, indicating the necessity of an independent study on children's medication. PDL may also exert therapeutic effects on young and adult rats by regulating gut microbial homeostasis. The results support the clinical application of PDL.
Collapse
Affiliation(s)
- Ke Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ran Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wangqin Heng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xuan Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jun Liu
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Chao Li
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
14
|
Chen Y, Wang Y, Song S, Zhang X, Wu L, Wu J, Li X. Topical Application of Baicalin Combined with Echinacoside Ameliorates Psoriatic Skin Lesions by Suppressing the Inflammation-Related TNF Signaling Pathway and the Angiogenesis-Related VEGF Signaling Pathway. ACS OMEGA 2023; 8:40260-40276. [PMID: 37929119 PMCID: PMC10620902 DOI: 10.1021/acsomega.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Baicalin (BAI), the main active component of Scutellaria baicalensis, has significant anti-inflammatory and antibacterial effects. Echinacoside (ECH), an active component from Echinacea purpurea, has significant antiangiogenesis and antioxidant effects. In previous studies, BAI or ECH has been used for some skin inflammation problems by topical treatment. Psoriasis (PSO) is a common inflammatory skin disease with typical features such as excessive inflammatory response and vascular proliferation in skin lesions. Because of the anti-inflammatory effect of BAI and the antiangiogenic activity of ECH, it is proposed that the combination of BAI and ECH can ameliorate psoriatic skin lesions better than a single component. This study aims to explore the effects and potential mechanisms of BAI combined with ECH on imiquimod (IMQ)-induced psoriatic skin lesions by topical treatment. Transcriptome analysis first showed that the TNF signaling pathway and the VEGF signaling pathway were significantly enriched in IMQ-induced psoriatic skin lesions. Topical application of BAI combined with ECH could ameliorate IMQ-induced skin lesions in mice, especially the better effects of B2-E1 (BAI/ECH = 2:1). Network pharmacology analysis and molecular docking indicated that BAI-treated PSO on the skin by regulating the TNF signaling pathway, and ECH treated PSO on the skin by regulating the VEGF signaling pathway. Meanwhile, the ELISA test and the qPCR assay showed that BAI combined with ECH could inhibit the expression of key cytokines and genes related to the TNF signaling pathway and the VEGF signaling pathway. Zebrafish experiments demonstrated the anti-inflammatory and antiangiogenic effects of BAI combined with ECH and revealed the potential mechanisms associated with regulating the inflammation-related TNF signaling pathway and the angiogenesis-related VEGF signaling pathway. This suggested that BAI combined with ECH may be a promising topical agent to ameliorate psoriatic skin lesions in the future.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xiaoli Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| |
Collapse
|
15
|
Madushani KP, Shanaka KASN, Jung S, Kim MJ, Lee J. Ablation of myd88 alters the immune gene expression and immune cell recruitment during VHSV infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109006. [PMID: 37598733 DOI: 10.1016/j.fsi.2023.109006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Myeloid differentiation primary response protein-88 (MYD88) is an essential adaptor molecule in pathogen-related pattern recognition signaling pathways. Toll-like and interleukin receptors recognize numerous signals and are funneled through MyD88 to express genes responsible for the innate and adaptive immune systems. In the present study, the relevance of MyD88 in viral hemorrhagic septicemia virus (VHSV) was investigated by generating myd88-/- zebrafish. The model was challenged with VHSV, and viral propagation was quantified by evaluating clinical symptoms, mortality, and VHSV copy number. The infected fish showed abnormal morphologies, such as subcutaneous hemorrhages, abdominal swelling, and bulging eyes, which were comparatively more intense in myd88-/- fish than in the wild-type. An injury infection experiment conducted in zebrafish larvae indicated a substantial spread of VHSV in the wound site. The number of neutrophils and macrophages recruited to the wounded area were markedly reduced in myd88-/- fish. According to gene expression analysis, VHSV NP gene expression was considerably upregulated in myd88-/- fish. Substantial gene expression and immune cell marker modulation were observed in the mutant model compared to that in the wild-type. These results suggest that the lack of a significant adaptor protein for immune signal transduction results in enhanced VHSV replication.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
16
|
Hu Y, Jia K, Zhou Y, Chen L, Wang F, Yi X, Huang Y, Ge Y, Chen X, Liao D, Peng Y, Meng Y, Liu Y, Luo Q, Cheng B, Zhao Y, Lu H, Yuan W. Rutin hydrate relieves neuroinflammation in zebrafish models: Involvement of NF-κB pathway as a central network. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109062. [PMID: 37678480 DOI: 10.1016/j.fsi.2023.109062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Neuroinflammation is prevalent in multiple brain diseases and may also lead to dementia, cognitive impairment, and impaired spatial memory function associated with neurodegenerative diseases. A neuroprotective and antioxidant flavonoid, rutin hydrate (RH), was evaluated for the anti-neuroinflammatory activity mediated by copper sulfate (CuSO4) solution and lipopolysaccharide (LPS) in zebrafish. The results showed that 100 mg/L RH significantly reduced the ratio of neutrophil mobility in caudal hematopoietic tissue (CHT) region caused by CuSO4 and the number of neutrophils co-localized with facial peripheral nerves. In the LPS model, RH co-injection significantly diminished neutrophil and macrophage migration. Therefore, RH exhibited a significant rescue effect on both models. In addition, RH treatment remarkably reduced the effects of neuroinflammation on the locomotor ability, expression levels of genes associated with behavioral disorders, and acetylcholinesterase (AChE) activity. Furthermore, network pharmacology techniques were employed to investigate the potential mechanisms, and the associated genes and enzyme activities were validated in order to elucidate the underlying mechanisms. Network pharmacological analysis and zebrafish model indicated that RH regulated the expressions of NF-κB pathway-related targets (Toll-like receptor 9 (tlr9), nuclear factor kappa B subunit 1 (nfkb1), RELA proto-oncogene (RelA), nitric oxide synthase 2a, inducible (nos2a), tumour necrosis factor alpha-like (tnfα), interleukin 6 (il6), interleukin 1β (il1β), chemokine 8 (cxcl8), and macrophage migration inhibitory factor (mif)) as well as six key factors (arachidonic acid 4 alpha-lipoxygenase (alox4a), arachidonate 5-lipoxygenase a (alox5), prion protein a (prnpa), integrin, beta 2 (itgb2), catalase (CAT), and alkaline phosphatase (ALP) enzymes). Through this study, a thorough understanding of the mechanism underlying the therapeutic effects of RH in neuroinflammation has been achieved, thereby establishing a solid foundation for further research on the potential therapeutic applications of RH in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yatong Zhou
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lixin Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yurui Ge
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Dalong Liao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
17
|
Xie L, Yan H, Han L, Cui L, Hussain H, Feng Q, Zhao Y, Zhang Z, Li J, Aziz S, He J, Wang D. Structural characterization and anti-inflammatory activity of neutral polysaccharides from American ginseng. Int J Biol Macromol 2023; 248:125586. [PMID: 37379950 DOI: 10.1016/j.ijbiomac.2023.125586] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
American ginseng, a precious classic herbal medicine, is used extensively in China for life prolongation purpose. This study aimed to elucidate the structure and anti-inflammatory activity of a neutral polysaccharide isolated from American ginseng (AGP-A). Nuclear magnetic resonance in conjunction with gas chromatography-mass spectrometry were used to analyze AGP-A's structure, whereas Raw264.7 cell and zebrafish models were employed to assess its anti-inflammatory activity. According to the results, AGP-A has a molecular weight of 5561 Da and is primarily consisted of glucose. Additionally, linear α-(1 → 4)-glucans with α-D-Glcp-(1 → 6)-α-Glcp-(1→ residues linked to the backbone at C-6 formed the backbone of AGP-A. Furthermore, AGP-A significantly decreased pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in Raw264.7 cell model. AGP-A in zebrafish model significantly lower the massive recruitment of neutrophils to the neuromast of the caudal lateral line. Inflammation may be relieved by the AGP-A component in American ginseng based on these results. In conclusion, our study shows the structural characterization, remarkable anti-inflammatory properties of AGP-A and its potential curative efficacy as a safe, valid natural anti-inflammatory medicine.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Liwen Han
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Li Cui
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Qixiang Feng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Zhao
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Zhihao Zhang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Jinfan Li
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Shahid Aziz
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan
| | - Jixiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Daijie Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China.
| |
Collapse
|
18
|
Fu JN, Liu SC, Chen Y, Zhao J, Lu N, Ma T. Forsythiaside A alleviates Lipopolysacchrride-induced acute liver Injury through inhibiting endoplasmic reticulum stress and NLRP3 inflammasome activation. Biol Pharm Bull 2023. [PMID: 37183023 DOI: 10.1248/bpb.b23-00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The liver is the primary site of inflammation caused by bacterial endotoxins in sepsis, and septic acute liver injury (SALI) is usually associated with poor outcomes in sepsis. Forsythiaside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory properties, antioxidant properties, and protective properties against neuroinflammation, sepsis, and edema.Therefore, the purpose of the present study was to examine FTA's potential effects on lipopolysaccharide (LPS)-induced SALI in mice.Our results indicated that pretreatment with FTA significantly attenuated aspartate aminotransferase (AST) and aminoleucine transferase (ALT) levels in plasma, ameliorated histopathological damage, inhibited hepatocyte apoptosis, diminished the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the liver from mice exposed to LPS. Furthermore, our data showed that the administration of LPS resulted in robust endoplasmic reticulum (ER) stress response, as evidenced by GRP78 upregulation, p-PERK activation, elF2α phosphorylation, and ATF4 and CHOP overexpression in the liver. This, in turn, led to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation, including the cleavage of caspase-1, secretion of IL-1β, and pyroptotic cell death in the liver specimens. Importantly, the ER stress response induced by the LPS challenge was blocked by FTA administration. Correspondingly, NLRP3 inflammasome activation was significantly ameliorated by the pretreatment with FTA. Thus, we demonstrated that FTA pretreatment could protect mice from LPS-induced SALI, and its protective effects were possibly mediated by inhibiting ER stress response and subsequent NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jing-Nan Fu
- Department of General Surgery, Tianjin Medical University General Hospital
- Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force
| | - Shu-Chang Liu
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Yi Chen
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital
| | - Ning Lu
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital
| |
Collapse
|
19
|
Zhou X, Ming R, Guo M, Jiao H, Cui H, Hu D, Lu P. Characterization of imidacloprid-induced hepatotoxicity and its mechanisms based on a metabolomic approach in Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161794. [PMID: 36707007 DOI: 10.1016/j.scitotenv.2023.161794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of imidacloprid are attracting increased concern because of its widespread use in agriculture and its persistence in the aquatic environment. Imidacloprid bioaccumulates and triggers various morphological and behavioral responses in amphibians, but the toxic effects and mechanism of imidacloprid in amphibians remain uncertain. In this study, the acute toxicity and chronic effects of imidacloprid on Xenopus laevis were studied. Acute toxicity for 96 h revealed that imidacloprid had an LC50 value of 74.18 mg/L. After exposure for 28 d under 1/10 and 1/100 LC50, liver samples from X. laevis were employed for biochemical analyses, pathological studies, and nontargeted metabolomics to systematically assess the toxic effects and mechanisms of imidacloprid. The results showed that oxidative stress and hepatic tissue morphology changes were observed in treated X. laevis liver. Twelve metabolites involved in metabolic pathway were altered between the control and high exposure groups and twenty-one metabolites were altered between the control and low exposure group. Eight metabolic pathways exposed to high levels and nine metabolic pathways exposed to low level of imidacloprid were disturbed. These pathways were primarily related to amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our research provides essential information to evaluate the potential toxicity of imidacloprid to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Renyue Ming
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Meiting Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Honghao Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
20
|
Zhou C, Chen J, Liu K, Maharajan K, Zhang Y, Hou L, Li J, Mi M, Xia Q. Isoalantolactone protects against ethanol-induced gastric ulcer via alleviating inflammation through regulation of PI3K-Akt signaling pathway and Th17 cell differentiation. Biomed Pharmacother 2023; 160:114315. [PMID: 36716661 DOI: 10.1016/j.biopha.2023.114315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.
Collapse
Affiliation(s)
- Chaoyi Zhou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jing Chen
- Tibetan traditional medicine college, Lhasa 850000, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Linhua Hou
- School of Pharmacy, Hebei University, Baoding 071002, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianheng Li
- School of Pharmacy, Hebei University, Baoding 071002, China.
| | - Ma Mi
- Tibetan traditional medicine college, Lhasa 850000, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
21
|
Zhou C, Chen J, Zhang H, Zhang S, Zhang Y, Liu K, Mi M, Xia Q. Investigation of the chemical profile and anti-inflammatory mechanisms of flavonoids from Artemisia vestita Wall. ex Besser via targeted metabolomics, zebrafish model, and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115932. [PMID: 36403745 DOI: 10.1016/j.jep.2022.115932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia vestita Wall. ex Besser is wildly distributed in the western high-altitude area of China and has been used as a Tibetan medicine to treat inflammatory diseases. We previously demonstrated the total flavonoids of Artemisia vestita Wall. ex Besser (TFA) showed obvious anti-inflammatory effects and its content was 276.62 mg/g. However, the chemical profile, active ingredients, and anti-inflammatory mechanisms of TFA are not clear. AIM OF THE STUDY This study aimed to study the components of TFA, evaluate the anti-inflammatory effects of TFA, and preliminarily predict the anti-inflammatory mechanism of TFA. MATERIALS AND METHODS TFA was prepared by the semi-biomimetic extraction method and purified by macroporous resin. The components of TFA were analyzed based on LC-MS combined with the targeted metabolomics method. The anti-inflammatory activity of TFA was evaluated using CuSO4-induced and tail cutting-induced zebrafish inflammation models. Based on the network pharmacology method, the anti-inflammatory mechanism of the main components of TFA was preliminarily predicted. RESULTS A total of 185 components were identified in TFA. TFA showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. According to network pharmacology prediction and experimental verification, 10 compounds were identified as the main active ingredients, including 3,7-di-O-methylquercetin, Hesperetin 5-O-glucoside, Myricitrin, et al. Twenty key targets were recognized, such as TNF, AKT1, VEGFA, MMP9, EGFR, PTGS2 et al. Moreover, the TNF signaling pathway and NOD-like receptor signaling pathway were identified to play vital roles in the anti-inflammatory effects of TFA. CONCLUSIONS This study revealed the chemical profile of TFA and identified the main active ingredients, key targets, and pathways of TFA in anti-inflammatory effects, which is helpful to elucidate the pharmacodynamic substances and action mechanisms of Artemisia vestita Wall. ex Besser, to promote its clinical rational application.
Collapse
Affiliation(s)
- Chaoyi Zhou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jing Chen
- Tibetan Traditional Medicine College, Lhasa, 850000, China
| | - Huazheng Zhang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Ma Mi
- Tibetan Traditional Medicine College, Lhasa, 850000, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
22
|
Kobayashi-Tanabe M, Furuie H, Yamada M, Yamada M. Characterization of a WD-repeat family protein WDR3 in the brain of WDR3 hetero knockout mice. Brain Res 2023; 1800:148188. [PMID: 36463953 DOI: 10.1016/j.brainres.2022.148188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The nuclear protein WDR3 is a member of the WD-repeat family and is a component of the 18S pre-rRNA processing complex. However, the expression and function of WDR3 in the brain remains unknown. To characterize WDR3 in the adult mouse brain, we developed Wdr3 heterozygous knockout (WDR3-HKO) mice. Notably, no homozygous Wdr3 knockout mice were born, suggesting that complete absence of WDR3 causes lethal abnormalities during embryogenesis. Brain Wdr3 mRNA expression was significantly reduced to 60% in the WDR3-HKO mice compared to wild type (WT) mice, while the expression of 18S rRNA did not decline. Using immunohistochemistry and X-gal staining, we demonstrated that WDR3 is widely expressed in the mouse brain, especially in the hippocampus, habenular nucleus, and cerebellum. We observed no differences in body weight during adulthood or developmental weight gain between the WDR3-HKO and WT mice. Interestingly, WDR3-HKO mice exhibited a slight but significant increase in spontaneous locomotor activity compared to WT littermates. In conclusion, the WDR3-HKO mice showed no significant phenotypic changes. Further studies are required to explore the behavioral characteristics of WDR3-HKO mice.
Collapse
Affiliation(s)
- Momoko Kobayashi-Tanabe
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan.
| | - Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8553, Japan.
| |
Collapse
|
23
|
Shen P, Yu J, Long X, Huang X, Tong C, Wang X. Effect of forsythoside A on the transcriptional profile of bovine mammary epithelial cells challenged with lipoteichoic acid. Reprod Domest Anim 2023; 58:89-96. [PMID: 36128756 DOI: 10.1111/rda.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023]
Abstract
Mastitis is a common disease of the dairy cattle, which affects the development of the dairy industry and leads to huge economic losses. Forsythoside A (FTA) has anti-inflammatory, antioxidant, antiviral and anti-apoptotic effects. However, the therapeutic effect and molecular mechanism of FTA on dairy cow mastitis remain unclear. In this study, bovine mammary epithelial cells (BMECs) were stimulated with lipoteichoic acid (LTA), a key virulence factor of Staphylococcus aureus (S. aureus), to construct in vitro models, and then treated with FTA. Subsequently, the differentially expressed genes (DEGs) in different groups were determined by RNA sequencing (RNA-Seq) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyse the possible function of the DEGs, real-time quantitative PCR (RT-qPCR) was used to verify whether the expression levels of these DEGs were consistent with RNA-Seq results. The results showed that cell division cycle 20B (CDC20B), endothelial cell surface expressed chemotaxis and apoptosis regulator (ECSCR), complement factor H-related 5 (CFHR5) and phospholipase A2 group IVA (PLA2G4A) were down-regulated after FTA treatment. In contrast, Kruppel-like factor 15 (KLF15) and Metallothionein 1E (MT1E) were up-regulated. These DEGs are involved in processes such as apoptosis, inflammation and development of cancer. This study provides valuable insights into the transcriptome changes in BMECs after FTA treatment. Further analysis may help identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaochuan Long
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Xiankai Huang
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Zheng X, Chen Z, Shi S, Yan H, Zhou J, Jiang L, Wang H, Hou G, Jiang Z. Forsythiaside A improves Influenza A virus infection through TLR7 signaling pathway in the lungs of mice. BMC Complement Med Ther 2022; 22:164. [PMID: 35733131 PMCID: PMC9214192 DOI: 10.1186/s12906-022-03644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Influenza A virus infection due to drug resistance and side effects of the conventional antiviral drugs yet remains a serious public health threat for humans and animals. Forsythiaside A is an effective ingredient isolated from the Chinese herbal medicine forsythia. It has various pharmacological effects and has a good therapeutic effect against a variety of infectious diseases. This study aimed to further explore the immunological mechanism of Forsythiaside A in the treatment of influenza virus-infected mice and its effect on the Toll-like receptor 7 (TLR7) signaling pathway in the lungs of these mice.
Methods
C57/BL6J mice and TLR7−/− mice were infected with the FM1 strains (H1N1 and A/FM/1/4) of the Influenza A virus. Each group of experimental mice were divided into the mock, virus, oseltamivir, and Forsythiaside A groups. Weight change, lung index change, and the mRNA and protein expression levels of key factors in the TLR7 signaling pathway were detected. Flow cytometry was used to detect the changes in the Th1/Th2 and Th17/Treg ratios.
Results
After infection with the Influenza A virus, the weight loss of C57/BL6J mice treated with forsythoside A and oseltamivir decreased, and the pathological tissue sections showed that the inflammatory damage was reduced. The expression levels of the key factors, TLR7, myeloid differentiation factor 88(Myd88), and nuclear factor-kappa B (NF-κB) in the TLR7 signaling pathway were significantly reduced. Flow cytometry showed that Th1/Th2 and Th17/Treg ratios decreased after Forsythiaside A treatment. In the TLR7−/− mice, there was no significant change after Forsythiaside A treatment in the virus group.
Conclusions
Forsythiaside A affects the TLR7 signaling pathway in mouse lung immune cells and reduces the inflammatory response caused by the Influenza A virus FM1 strain in mouse lungs.
Collapse
|
25
|
Anti-Inflammatory and Antioxidant Properties of Physalis alkekengi L. Extracts In Vitro and In Vivo: Potential Application for Skin Care. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7579572. [PMID: 36310614 PMCID: PMC9605834 DOI: 10.1155/2022/7579572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Inflammatory skin disorders are becoming major issues threatening public health with increasing prevalence. This study was to evaluate the anti-inflammatory, antioxidant, and antisenescent activities of traditional folk medicinal plant, Physalis alkekengi L. extracts to alleviate skin inflammation and its possible mechanisms. METHODS Lipopolysaccharides (LPS)-treated murine macrophages RAW264.7 and human skin keratinocytes HaCaT were incubated with the plant extracts, respectively. The production of nitric oxide (NO) was tested by using Griess reagents. The activity of nitric oxide synthase (NOS) was detected through a fluorescence microplate reader. Reactive oxygen species (ROS) production and cell apoptosis were quantified by flow cytometry. The proinflammatory cytokines were measured using ELISA and qRT-PCR. Human skin fibroblasts (HFF-1) were coincubated with D-galactose (D-gal) and the plant extracts. The senescence associated-galactosidase (SA-β-gal) was stained to evaluate cellular senescence. The senescence-associated secretory phenotype (SASP), IL-1β, was measured through ELISA. The mRNA of IL-1α in SLS-stimulated and PGE2 in UV-radiated 3D skin models were detected by qRT-PCR. In vivo ROS production and neutrophil recruitment in CuSO4-treated zebrafish models were observed by fluorescence microscopy. Inflammation-related factors were measured by qRT-PCR. Results. In vitro, Physalis alkekengi L. significantly reduced NO production, NOS activity, cell apoptosis, transcription of TNF-α, IL-6, IL-1β and ROS production. These plant extracts markedly attenuated SA-β-gal and IL-1β and downregulated the production of IL-1α and PGE2. In vivo, the plant extracts dramatically dampened ROS production, the number of neutrophils, and proinflammatory cytokines. CONCLUSIONS Cumulatively, this work systematically demonstrated the anti-inflammatory, antioxidant, and antisenescent properties of Physalis alkekengi L. and proposed the possible roles of Physalis alkekengi L. in inflammatory signaling pathways, providing an effective natural product for the treatment of inflammatory skin disorders.
Collapse
|
26
|
Li W, Luo F, Wu X, Fan B, Yang M, Zhong W, Guan D, Wang F, Wang Q. Anti-Inflammatory Effects and Mechanisms of Dandelion in RAW264.7 Macrophages and Zebrafish Larvae. Front Pharmacol 2022; 13:906927. [PMID: 36091818 PMCID: PMC9454954 DOI: 10.3389/fphar.2022.906927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dandelions (Taraxacum spp.) play an important role in the treatment of inflammatory diseases. In this study, we investigated the anti-inflammatory effects of Dandelion Extract (DE) in LPS-induced RAW264.7 macrophages and copper sulfate (CuSO4)-induced zebrafish larvae. DE was not toxic to RAW264.7 cells at 75 μg/ml as measured by cell viability, and DE inhibited LPS-induced cell morphological changes as measured by inverted microscopy. In survival experiments, DE at 25 μg/ml had no toxicity to zebrafish larvae. By using an enzymatic standard assay, DE reduced the production of nitric oxide (NO) in LPS-induced RAW264.7 cells. Fluorescence microscopy results show that DE reduced LPS-induced ROS production and apoptosis in RAW264.7 cells. DE also inhibited CuSO4-induced ROS production and neutrophil aggregation in zebrafish larvae. The results of flow cytometry show that DE alleviated the LPS-induced cell cycle arrest. In LPS-induced RAW264.7 cells, RT-PCR revealed that DE decreased the expression of M1 phenotypic genes iNOS, IL-6, and IL-1β while increasing the expression of M2 phenotypic genes IL-10 and CD206. Furthermore, in CuSO4-induced zebrafish larvae, DE reduced the expression of iNOS, TNF-α, IL-6, and IL-10. The findings suggest that DE reduces the LPS-induced inflammatory response in RAW264.7 cells by regulating polarization and apoptosis. DE also reduces the CuSO4-induced inflammatory response in zebrafish larvae.
Collapse
Affiliation(s)
- Wenju Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fulong Luo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaohui Wu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingran Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Rehabilitation Hospital, Chengdu, China
| | - Dongyan Guan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Yang HX, Liu QP, Zhou YX, Chen YY, An P, Xing YZ, Zhang L, Jia M, Zhang H. Forsythiasides: A review of the pharmacological effects. Front Cardiovasc Med 2022; 9:971491. [PMID: 35958429 PMCID: PMC9357976 DOI: 10.3389/fcvm.2022.971491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Forsythiasides are a kind of phenylethanol glycosides existing in Forsythia suspensa (Thunb.) Vahl, which possesses extensive pharmacological activities. According to the different groups connected to the nucleus, forsythiasides can be divided into A-K. In recent years, numerous investigations have been carried out on forsythiasides A, B, C, D, E, and I, which have the effects of cardiovascular protection, anti-inflammation, anti-oxidation, neuroprotection, et al. Mechanistically, forsythiasides regulate toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappaB (NF-κB), nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and other signaling pathways, as well as the expression of related cytokines and kinases. Further exploration and development may unearth more treatment potential of forsythiasides and provide more evidence for their clinical applications. In summary, forsythiasides have high development and application value.
Collapse
Affiliation(s)
- Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Zhuo Xing
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Min Jia
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai, China
- Min Jia,
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong Zhang,
| |
Collapse
|
28
|
Fu K, Ma C, Wang C, Zhou H, Gong L, Zhang Y, Li Y. Forsythiaside A alleviated carbon tetrachloride-induced liver fibrosis by modulating gut microbiota composition to increase short-chain fatty acids and restoring bile acids metabolism disorder. Biomed Pharmacother 2022; 151:113185. [PMID: 35623173 DOI: 10.1016/j.biopha.2022.113185] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
Liver fibrosis is a chronic and progressive disease with complex pathogenesis related to bile acids (BAs) and gut microbiota. Forsythiaside A (FTA), isolated from the traditional Chinese medicine Forsythiae Fructus (Lian Qiao), is a natural hepatoprotective agent. The purpose of this study was to investigate the protective effect of FTA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Liver fibrosis was induced in mice by intraperitoneal injection of 2 mL/kg CCl4 three times a week for 4 weeks. FTA attenuated CCl4-induced liver fibrosis in mice, which was proved by the results of Masson and Sirius red staining, liver hydroxyproline, hyaluronic acid, laminin, type III procollagen, and type IV collagen assays. FTA inhibited hepatic stellate cell activation, and reduced hepatic inflammation and oxidative stress in mice treated with CCl4. What's more, FTA ameliorated CCl4-induced gut dysbiosis, maintained intestinal barrier function, increased the production of short-chain fatty acids (SCFAs), and improved endotoxemia, as manifested by decreased serum lipopolysaccharide levels and increased expression of ileal tight junction proteins. Besides, FTA can modulate the genes related to bile acid metabolism to alter the distribution of fecal BAs in fibrotic mice. In a word, FTA can improve liver fibrosis by inhibiting inflammation and oxidative stress, regulating gut microbiota and BA metabolism, and increasing the content of SCFAs. The results of this study provided an important reference for the study on the mechanisms by which natural products prevent liver fibrosis.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
29
|
Cui C, Zhu L, Wang Q, Liu R, Xie D, Guo Y, Yu D, Wang C, Chen D, Jiang P. A GC-MS-based untargeted metabolomics approach for comprehensive metabolic profiling of vancomycin-induced toxicity in mice. Heliyon 2022; 8:e09869. [PMID: 35855991 PMCID: PMC9287194 DOI: 10.1016/j.heliyon.2022.e09869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022] Open
Abstract
Background Vancomycin is a glycopeptide antibiotic that is commonly used for severe drug-resistant infections treatment. Application of vancomycin frequently leads to severe ototoxicity, hepatotoxicity, and nephrotoxicity; however, the comprehensive metabolic analysis of vancomycin-induced toxicity is lacking. Purpose This study attempted to investigate the metabolic changes after vancomycin administration in mice. Methods Experimental mice (n = 9) received continuous intraperitoneal injection of vancomycin (400 mg/kg) every day for 7 days, and mice in control group (n = 9) were treated with the same amount of normal saline. Pathological changes of the kidney were examined using haematoxylin and eosin (HE) staining. A gas chromatography-mass spectrometry (GC-MS) approach was used to identify discriminant metabolites in serum and various organs including the heart, liver, kidney, spleen, cerebral cortex, hippocampus, inner ear, lung, and intestine. The potential metabolites were identified using orthogonal partial least squares discrimination analysis (OPLS-DA). Subsequently, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG, http://www.kegg.jp) were employed to depict the metabolic pathways. Results Compared with the control group, the vancomycin induced 13, 17, 27, 22, 16, 10, 17, 11, 10, and 7 differential metabolites in the serum, liver, kidney, heart, cerebral cortex, lung, spleen, intestine, hippocampus, and inner ear, respectively. Further pathway analyses identified that amino acids metabolism, fatty acids biosynthesis, energy metabolism, and lipid metabolism were disrupted after VCM exposure. Conclusion Vancomycin affects the metabolism in various organs in mice, which provides new insights for identification of vancomycin-induced toxicity, and facilitate to better understanding of the metabolic pathogenesis of vancomycin.
Collapse
Affiliation(s)
- Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Li Zhu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Qian Wang
- Department of Clinical Medicine, Jining Medical University, Jining 272000, China
| | - Ruijuan Liu
- Department of Pulmonary and Critical Care Medicine, Jining First People's Hospital, Jining 272000, China
| | - Dadi Xie
- Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Yujin Guo
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Dingyi Yu
- Jining Life Science Center, Jining 272000, China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Dan Chen
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| |
Collapse
|
30
|
Forsythiaside A Regulates Activation of Hepatic Stellate Cells by Inhibiting NOX4-Dependent ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9938392. [PMID: 35035671 PMCID: PMC8754607 DOI: 10.1155/2022/9938392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Hepatic stellate cells (HSCs) activation is an important step in the process of hepatic fibrosis. NOX4 and reactive oxygen species expressed in HSCs play an important role in liver fibrosis. Forsythiaside A (FA), a phenylethanoid glycoside extracted and isolated from Forsythiae Fructus, has significant antioxidant activities. However, it is not clear whether FA can play a role in inhibiting the HSCs activation through regulating NOX4/ROS pathway. Therefore, our purpose is to explore the effect and mechanism of FA on HSCs activation to alleviate liver fibrosis. LX2 cells were activated by TGF-β1 in vitro. MTT assay and Wound Healing assay were used to investigate the effect of FA on TGF-β1-induced LX2 cell proliferation and migration. Elisa kit was used to measure the expression of MMP-1 and TIMP-1. Western blot and RT-qPCR were used to investigate the expression of fibrosis-related COLI, α-SMA, MMP-1 and TIMP-1, and inflammation-related TNF-α, IL-6 and IL-1β. The hydroxyproline content was characterized using a biochemical kit. The mechanism of FA to inhibit HSCs activation and apoptosis was detected by DCF-DA probe, RT-qPCR, western blot and flow cytometry. NOX4 siRNA was used to futher verify the effect of FA on NOX4/ROS pathway. The results showed that FA inhibited the proliferation and migration of LX2 cells and adjusted the expression of MMP-1, TIMP-1, COLI, α-SMA, TNF-α, IL-6 and IL-1β as well as promoted collagen metabolism to show potential in anti-hepatic fibrosis. Mechanically, FA down-regulated NOX4/ROS signaling pathway to improve oxidation imbalances, and subsequently inhibited PI3K/Akt pathway to suppress proliferation. FA also promoted the apoptosis of LX2 cells by Bax/Bcl2 pathway. Furthermore, the effects of FA on TGF-β1-induced increased ROS levels and α-SMA and COLI expression were weaken by silencing NOX4. In conclusion, FA had potential in anti-hepatic fibrosis at least in part by remolding of extracellular matrix and improving oxidation imbalances to inhibit the activation of HSCs and promote HSCs apoptosis.
Collapse
|
31
|
Zhao C, Zhang H, Zhou J, Lu Q, Zhang Y, Yu X, Wang S, Liu R, Pu Y, Yin L. Metabolomics-based molecular signatures reveal the toxic effect of co-exposure to nitrosamines in drinking water. ENVIRONMENTAL RESEARCH 2022; 204:111997. [PMID: 34506781 DOI: 10.1016/j.envres.2021.111997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrosamines, a group of emerging nitrogenous pollutants, are ubiquitously found in the drinking water system. However, less is known about how systemic biological responses resist or tolerate nitrosamines, especially long-term co-exposure at low concentrations. In this study, untargeted metabolomics was used to investigate the metabolic perturbations in human esophageal epithelial Het-1A cells induced by a mixture of nine common nitrosamines in drinking water at environmentally relevant, human-internal-exposure, and genotoxic concentrations. Generally, the disrupted metabolic spectrum became complicated with nitrosamines dose increasing. Notably, two inflammation-associated pathways, namely, cysteine (Cys) and methionine (MET) metabolism, and nicotinate and nicotinamide metabolism, changed significantly under the action of nitrosamines, even at the environmentally relevant level. Furthermore, targeted metabolomics and molecular biology indicators in cells were identified in mice synchronously. For one thing, the up-regulated Cys and MET metabolism provided methyl donors for histone methylation in the context of pro-inflammatory response. For another, the down-regulated NAD+/NADH ratio inhibited the deacetylation of NF-кB p65 and eventually activated the NF-кB signaling pathway. Taken collectively, the metabolomics molecular signatures were important indicative markers for nitrosamines-induced inflammation. The potential crosstalk between the inflammatory cascade and metabolic regulation also requires further studies. These findings suggest that more attention should be paid to long-term co-exposure at low concentrations in the control of nitrosamines pollution in drinking water. Additionally, this study also highlights a good prospect of the combined metabolomic-molecular biology approach in environmental toxicology.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
32
|
Efficacy and Safety of Lianhua Qingke Tablets in the Treatment of Mild and Common-Type COVID-19: A Randomized, Controlled, Multicenter Clinical Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8733598. [PMID: 35186107 PMCID: PMC8853799 DOI: 10.1155/2022/8733598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
Background Lianhua Qingke (LH) tablets is an effective traditional Chinese medicine against various viral infections, especially in relieving coughing. However, its effects on COVID-19 are unknown. Methods To examine the therapeutic effectiveness of LH tablets in COVID-19 patients with mild and common types, a randomized, multicenter, controlled study was carried out. COVID-19 cases were randomized to undergo routine treatment with or without LH tablets (4 tablets, three times a day) for 14 days. The primary endpoints were the rate of achieving clinical symptom resolution and the corresponding time. Results There were 144 participants in the full analysis set (72 each in the LH and control groups). The LH group participants had elevated symptom alleviation rate at 14 days compared with control cases (FAS: 98.61% vs. 84.72%, p = 0.0026). In comparison with control group participants, the LH group participants had reduced median time to clinical symptom alleviation (median: 4 vs. 7 days, p < 0.0001). Higher resolution rates of coughing (98.44% vs. 84.51%, p = 0.0045) and expectoration (100% vs. 82.35%, p = 0.0268) were observed in the LH group. Times to recovery of fever (median: 2 vs. 3 days, p = 0.0007), coughing (median: 4 vs. 7 days, p < 0.0001), and expectoration (median: 3 vs. 6 days, p < 0.0001) were also notably shorter in the LH group. Moreover, the LH group had elevated improvement rates in chest computed tomography signs (FAS: 86.11% vs. 72.22%, p = 0.0402) and clinical cure at day 28 (FAS: 83.33% vs. 68.06%, p = 0.0326). However, no differences were found in the laboratory test and viral assay. Serious adverse events were not detected. Conclusion These preliminary findings indicate LH tablets may be effective in symptomatic COVID-19, especially in relieving coughing. This trial was registered in Chinese Clinical Trial Registry (ChiCTR2100042069).
Collapse
|
33
|
Li Y, Yang Y, Kang X, Li X, Wu Y, Xiao J, Ye Y, Yang J, Yang Y, Liu H. Study on The Anti-Inflammatory Effects of Callicarpa nudiflora Based on The Spectrum-Effect Relationship. Front Pharmacol 2022; 12:806808. [PMID: 35153761 PMCID: PMC8829221 DOI: 10.3389/fphar.2021.806808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Callicarpa nudiflora (C. nudiflora) is widely used to treat inflammation-related diseases in China. C. nudiflora mainly contains phenylethanol glycosides, flavonoids, triterpenes, diterpenes, iridoid glycosides, volatile oils, and other small molecules. Therefore, it is necessary to screen out anti-inflammatory active substances from C. nudiflora. In this paper, high-performance liquid chromatography was used to establish the fingerprint of C. nudiflora extracts. The anti-inflammation of C. nudiflora extracts were evaluated by the experiment of toes swelling in inflammatory rats. Then, the spectrum–effect relationship between the fingerprints and anti-inflammatory activities was researched by Pearson analysis and orthogonal partial least squares analysis to identify a group of anti-inflammatory compounds of C. nudiflora extracts. The differences of extracts are illustrated by principal component analysis and cluster analysis in pharmacological effects. Finally, 12 compounds, including catalpol (P1), caffeic acid (P2), protocatechuic acid (P9), 3,4-dihydroxybenzaldehyde (P10), forsythiaside E (P12), protocatechualdehyde isomers (P14), forsythiaside B (P15), rutin (P16), alyssonoside (P21), verbascoside (P22), 2′-acetyl forsythoside B (P24), and isorhamnetin (P32) by HPLC-DAD and UPLC-Q-TOF MS/MS, were determined as potential compounds for anti-inflammatory activity in C. nudiflora. In particular, six compounds were identified as active substances with the greatest anti-inflammatory potential. Moreover, all compounds were tested for anti-inflammatory experiments or anti-inflammatory literature retrieval. In this study, a method for rapid screening of potential anti-inflammatory active ingredients of C. nudiflora was established, which can provide a reference for the future study of active compounds of C. nudiflora.
Collapse
Affiliation(s)
- Yamei Li
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China.,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yifang Yang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry, Shanghai, China.,Shanghai Yaochen Biotechnology Co. Ltd., Shanghai, China
| | - Xingdong Kang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Shanghai, China
| | - Xiaofeng Li
- Jiangxi Puzheng Pharmaceutical Co. Ltd., Ji'an, China
| | - Yongzhong Wu
- Jiangxi Puzheng Pharmaceutical Co. Ltd., Ji'an, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co. Ltd., Ji'an, China
| | - Yang Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Shanghai, China
| | - Jianqiong Yang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yang Yang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Hai Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China.,College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
34
|
Sun X, Wang D, Ding L, Xu Y, Qi W, Zhao D, Liu L, Yin C, Cui C, Wang Z, Sun L, Sun L. Activation of Autophagy Through the NLRP3/mTOR Pathway: A Potential Mechanism for Alleviation of Pneumonia by QingFei Yin. Front Pharmacol 2022; 12:763160. [PMID: 35111047 PMCID: PMC8802069 DOI: 10.3389/fphar.2021.763160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
QingFei Yin (QFY), a Chinese traditional medicine recipe, is known for its excellent therapeutic pharmacological effects for the treatment of bacterial lung infections, although its molecular mechanism of action remains unknown. Here, QFY chemical composition was determined using a High-Performance Liquid Chromatography-Mass (HPLC-MS/MS)-based method then QFY was evaluated for protective pharmacological effects against pneumonia using two models: a Streptococcus pneumoniae-induced in vivo mouse model and an in vitro pneumolysin (PLY)-induced murine lung alveolar-derived MH-S cell line-based model. Notably, QFY exerted prominent anti-pneumonia effects both in vivo and in vitro. To further explore QFY protective effects, 4D label-free proteomics analysis, pathologic evaluation, and immunohistochemical (IHC) analysis were conducted to identify cellular pathways involved in QFY protection. Notably, our results indicated that NF-κB/NLRP3 and autophagy pathways may contribute to pharmacological effects associated with QFY-based protection. Briefly, QFY triggered autophagy via down-regulation of upstream NLRP3/mTOR signaling pathway events, resulting in the amelioration of inflammatory injury. Collectively, our results revealed molecular mechanisms underlying QFY protection against pneumonia as a foundation for the future development of novel treatments to combat this disease and reduce antibiotic abuse.
Collapse
Affiliation(s)
- Xiaozhou Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lizhong Ding
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Xu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Provincial Key Laboratory of Bio Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of Bio Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chengcheng Yin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Changsheng Cui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liping Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
35
|
Lang W, Cheng M, Zheng X, Zhao Y, Qu Y, Jia Z, Gong H, Ali I, Tang J, Zhang H. Forsythiaside A alleviates methotrexate-induced intestinal mucositis in rats by modulating the NLRP3 signaling pathways. Int Immunopharmacol 2021; 103:108466. [PMID: 34933162 DOI: 10.1016/j.intimp.2021.108466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Most chemotherapeutic drugs can kill the tumor cells, but also cause a vast damage to body, such as intestinal mucositis (IM). The present study was design to find out the effect of Forsythiaside A (FTA) on chemotherapeutic-induced IM in rats. Briefly, for 3 consecutive days, male Sprague-Dawley rats were treated with 7 mg / kg methotrexate (MTX) to establish IM and simultaneously administered with 40 or 80 mg / kg FTA for 7 days. Our results showed that the final body weight and daily food intake were increased, and the disease activity index was reduced in the MTX group after FTA treatment. The MTX group showed the pathological alterations like the inflammatory cells infiltration, the mucosal layer destruction, glands expansion, intestinal villi structure disorder and goblet cells reduction, while we found that 80 mg / kg FTA treatment displayed evident reversal effects. ELISA further suggested that TNF-α, IL-1β and IL-18 levels in serum in MTX-induced rats were reduced after 80 mg / kg FTA treatment. Moreover, FTA decreased the number of leukocytes, neutrophils and lymphocytes in peripheral blood. Western blot and immunofluorescence results indicated that the expression levels of NLRP3, cleaved caspase 1, cleaved IL-1β and CD68 positive rate were down-regulated in MTX-induced rats after 80 mg / kg FTA intervention. The findings of the current study suggested that FTA effectively inhibited MTX-induced IM in rats by attenuating the activation of the NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Min Cheng
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, China
| | - Yongping Zhao
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Yunlong Qu
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Zhao Jia
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, China
| | - Ihsan Ali
- College of veterinary science faculty of animal husbandry and veterinary science, the University of Agriculture Peshawar, Pakistan
| | - Jingwen Tang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (under planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, No. 360 Hebei Street, Haigang District, Qinhuangdao 066004, China.
| |
Collapse
|
36
|
Qu Q, Li Y, Dong Q, Li S, Du H, Wang Z, Gong X, Zhang W, Lv W, Chao L, Liu M, Tang X, Guo S. Comparative Evaluation of Forsythiae Fructus From Different Harvest Seasons and Regions by HPLC/NIR Analysis and Anti-inflammatory and Antioxidant Assays. Front Pharmacol 2021; 12:737576. [PMID: 34899295 PMCID: PMC8652199 DOI: 10.3389/fphar.2021.737576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Forsythiae Fructus (FF), the dry fruit of Forsythia suspensa (Thunb.) Vahl, has a long history of use in traditional Chinese Medicine for its heat-clearing and detoxifying properties. It possesses clinical therapeutic effects and biological functions showing efficacy in handling different diseases. To investigate the FF differences in Henan, Shanxi, and Shaanxi in August and October, the surface morphology, mid-infrared and near-infrared spectrums, and HPLC were analyzed. Concurrently, the anti-inflammatory and antioxidant effects on LPS-induced J774A.1 cells were evaluated by western blot and RT-qPCR. The results showed that FF from different Harvest Seasons and Regions are provided with different microstructures and mid-infrared and near-infrared spectrums, and the levels of forsythiaside A and phillyrin of FF from Shanxi in August and phillygenin of FF from Shaanxi in August were the highest. Meanwhile, FF from Shanxi and Shaanxi in August markedly reduced the levels of inflammatory cytokines and mediators (TNF-α, IL-1β, NF-κB, and iNOS) and the protein expression levels of phosphorylated total IKKα/β and nuclear NF-κB. In August, SXFF and SAXFF also promoted the mRNA expression levels of HO-1 and NQO1 and the protein expression levels of HO-1 and nuclear Nrf2 and suppressed the protein expression levels of KEAP1. Spearman correlation analysis showed that phillygenin had a strong correlation with the protein expression on LPS-induced J774A.1 cells. In summary, our results showed that FF from harvest seasons and regions contributed to the distinct differences in microstructure, the mid-infrared and near-infrared spectrums, and compound content. More importantly, FF from Shanxi and Shaanxi in August showed marked anti-inflammatory and antioxidant activities, but with some differences, which may be because of different contents of phillygenin and phillyrin of lignans in FF.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuefei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shupeng Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaopei Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenchang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Limin Chao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinggang Tang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
37
|
Li Y, Zhao D, Qian M, Liu J, Pan C, Zhang X, Duan X, Zhang Y, Jia W, Wang L. Amlodipine, an anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut microbiota. Br J Pharmacol 2021; 179:2054-2077. [PMID: 34862599 DOI: 10.1111/bph.15768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic fatty liver disease (NAFLD) represents a severe public health problem. It often coexists with hypertension in the context of metabolic syndrome. Here, we investigated the effects of amlodipine on non-alcoholic fatty liver disease combined with hypertension and the underlying mechanism. EXPERIMENTAL APPROACH mice were fed with high-fat diet and 0.05% N-Nitro-L-arginine methylester sterile water to induce NAFLD with hypertension. Gut microbiota composition and function were assessed by 16S ribosomal DNA and metagenomic sequencing. Untargeted metabolome profiles were applied to identify differential metabolites in mice cecum. KEY RESULTS Amlodipine besylate (AB) and amlodipine aspartate (AA) significantly decreased liver injury, hepatic steatosis and improved lipid metabolism with a concomitant reduction in the expression of lipogenic genes in mice with NAFLD and hypertension. Mechanistically, AA and AB have potential in restoring intestinal barrier integrity and improving antimicrobial defense along with the elevated abundances of Akkermansia, Bacteroides and Lactobacillus. Noteworthily, the gut microbiota in AB and AA-treated mice had higher abundance of functional genes involved in taurine and hypotaurine metabolism. Consistently, the strengthened taurine and hypotaurine metabolism was confirmed by the untargeted metabolome analysis. Based on the correlation and causal analysis, the altered gut microbiota composition and the enhancement of taurine and hypotaurine metabolism may synergistically decreased ALT, liver triglycerides, lipogenic genes and plasma cholesterol in HFD-fed hypertensive mice. CONCLUSION AND IMPLICATIONS Collectively, AA and AB exert multi-factorial improvements in NAFLD and hypertension by modulating gut microbiota, and may serve as a promising therapeutic agent for treating these diseases.
Collapse
Affiliation(s)
- Yang Li
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Danyang Zhao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinxin Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xubin Duan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yufei Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenxin Jia
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Qi R, Kang Y, Li X, Zhang X, Han Y, Cai R, Gao Y, Qi Y. Forsythiasides-Rich Extract From Forsythiae Fructus Inhibits Mast Cell Degranulation by Enhancing Mitochondrial Ca 2+ Uptake. Front Pharmacol 2021; 12:696729. [PMID: 34194333 PMCID: PMC8237228 DOI: 10.3389/fphar.2021.696729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) activated via IgE/FcεRI or MAS-related G protein coupled receptor (Mrgpr)-mediated pathway can release granules that play prominent roles in hypersensitivity reactions. Forsythiae Fructus, a well-known traditional Chinese medicine, has been clinically used for allergic diseases. Although previous studies indicated that Forsythiae Fructus extract inhibited compound 48/80-induced histamine release from MCs, its effect on IgE-dependent MC degranulation and possible underlying mechanisms remain to be explored. Herein, we prepared the forsythiasides-rich extract (FRE) and investigated its action on MC degranulation and explored its underlying mechanism. Our data showed that FRE could dampen IgE/FcεRI- and Mrgpr-mediated MC degranulation in vitro and in vivo. Mechanism study indicated that FRE decreased cytosolic Ca2+ (Ca2+[c]) level rapidly and reversibly. Moreover, FRE decreased Ca2+[c] of MCs independent of plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). While, along with Ca2+[c] decrease, the increase of mitochondrial Ca2+ (Ca2+[m]) occurred simultaneously in FRE-treated RBL-2H3 cells. In the isolated mitochondria, FRE also promoted the subcellular organelle to uptake more extramitochondrial Ca2+. In conclusion, by increasing Ca2+[m] uptake, FRE decreases Ca2+[c] level to suppress MC degranulation. Our findings may provide theoretical support for the clinical application of Forsythiae Fructus on allergy and other MC-involved diseases.
Collapse
Affiliation(s)
- Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 2021; 169:105690. [PMID: 34029711 DOI: 10.1016/j.phrs.2021.105690] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Forsythiae Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a widely used Chinese medicinal herb in clinic for its extensive pharmacological activities. Forsythiaside A is the main active index component isolated from Forsythiae Fructus and possesses prominent bioactivities. Modern pharmacological studies have confirmed that Forsythiaside A exhibits significant activities in treating various diseases, including inflammation, virus infection, neurodegeneration, oxidative stress, liver injury, and bacterial infection. In this review, the pharmacological activities of Forsythiaside A have been comprehensively reviewed and summarized. According to the data, Forsythiaside A shows remarkable anti-inflammation, antivirus, neuroprotection, antioxidant, hepatoprotection, and antibacterial activities through regulating multiple signaling transduction pathways such as NF-κB, MAPK, JAK/STAT, Nrf2, RLRs, TRAF, TLR7, and ER stress. In addition, the toxicity and pharmacokinetic properties of Forsythiaside A are also discussed in this review, thus providing a solid foundation and evidence for further studies to explore novel effective drugs from Chinese medicine monomers.
Collapse
|
40
|
Markin PA, Brito A, Moskaleva NE, Tagliaro F, La Frano MR, Savitskii MV, Appolonova SA. Short- and long-term exposures of the synthetic cannabinoid 5F-APINAC induce metabolomic alterations associated with neurotransmitter systems and embryotoxicity confirmed by teratogenicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:109000. [PMID: 33561556 DOI: 10.1016/j.cbpc.2021.109000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Synthetic cannabinoids are abused substances with strong psychoactive effects. Little is known about the effects on neurotransmission and the toxicity of the second-generation cannabinoid 5F-APINAC. The objective was to assess the influence of short- and long-term exposures of 5F-APINAC on metabolites associated with neurotransmission on zebrafish. METHODS Short-term ("acute", 4 h) and long-term ("chronic", 96 h) exposures to 5F-APINAC were performed at 0.001, 0.01, 0.1, 1.0 and 10 μM. Intervention groups were compared with a vehicle control. Each group n = 20 zebrafish eggs/larvae. Metabolites related to neurotransmission were determined. RESULTS In chronic exposure, larvae exposed to 10 μM 5F-APINAC presented morphological and developmental alterations. GABA had the lowest concentrations at higher exposure in acute (p < 0.01) and chronic (p < 0.001) experiments. Glutamine showed a descending trend in the acute experiment, but an ascending trend in the chronic exposure (p < 0.05). In chronic exposure, tryptophan presented an overall descending trend, but with a neat increase at 10 μM 5F-APINAC (p < 0.001). Tryptamine in acute exposure presented lower (p < 0.05) concentrations at higher doses. Dopamine and acetylcholine presented highest (p < 0.05) concentrations in the acute and chronic exposures, but with a drop at the highest doses in the chronic experiments. In chronic exposure, xanthurenic acid decreased, except for the highest dose. Picolinic acid was increased at the highest doses in the chronic experiment (p < 0.001). CONCLUSIONS Short- and long-term exposures induced metabolomic alterations associated with the gamma-aminobutyric acid/glutamic acid, dopaminergic/adrenergic, cholinergic neurotransmitter systems, and the kynurenine pathway. Chronic exposure at 10 μM 5F-APINAC was associated with embryotoxicity confirmed by teratogenesis.
Collapse
Affiliation(s)
- Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; PhD Program in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy; I.M. Sechenov First Moscow State Medical University, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital biodesign and personalized healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Tagliaro
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Mark V Savitskii
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Russia
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
41
|
Zhao X, Gong L, Wang C, Liu M, Hu N, Dai X, Peng C, Li Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113569. [PMID: 33186701 DOI: 10.1016/j.jep.2020.113569] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevanceQuercetin is the active component of the higher content in PCP, which exerts various biological activities such as anti-obesity effect, anti-inflammatory and anti-oxidant activities in alcoholic liver disease (ALD). AIM OF THE STUDY P2X7 receptor (P2X7R) plays an important role in health and disease, which can be activated by extracellular ATP to induce a variety of downstream events, including lipid metabolism, inflammatory molecule release, oxidative stress. However, whether the mechanism of quercetin on ethanol-induced hepatic steatosis via P2X7R-mediated haven't been elucidated. MATERIAL AND METHODS Zebrafish transgenic (fabp10: EGFP) larvae were treated with 100 μM, 50 μM, 25 μM quercetin for 48 h at 3 days post fertilization (dpf), then soaked in 350 mmol/L ethanol for 32 h, treated with 1 mM ATP (P2X7R activator) for 30min. Serum lipids, liver steatosis, oxidative stress factors were respectively detected. The mRNA levels in the related pathways were measured by quantitative Real-Time PCR (RT-qPCR) to investigate the mechanisms. RESULTS Quercetin improved the liver function via decreasing ALT, AST and γ-GT level of zebrafish with acute ethanol-induced hepatic steatosis and attenuated hepatic TG, TC accumulation. Additionally, quercetin significantly reduced the MDA content and suppressed the ethanol-induced reduction of hepatic oxidative stress biomarkers GSH, CAT and SOD and significantly down-regulated the expression of P2X7R, and up-regulated the expression of phosphatidylinositol 3-kinase (PI3K), Kelch like ECH associated protein1 (Keap1), Nuclear Factor E2 related factor 2 (Nrf2). Moreover, ATP stimulation activated P2X7R, which further mediated the mRNA expressions of PI3K, Keap1 and Nrf2. CONCLUSION Quercetin exhibited hepatoprotective capacity in zebrafish model, via regulating P2X7R-mediated PI3K/Keap1/Nrf2 oxidative stress signaling pathway.
Collapse
Affiliation(s)
- Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
42
|
Tong C, Chen T, Chen Z, Wang H, Wang X, Liu F, Dai H, Wang X, Li X. Forsythiaside a plays an anti-inflammatory role in LPS-induced mastitis in a mouse model by modulating the MAPK and NF-κB signaling pathways. Res Vet Sci 2021; 136:390-395. [PMID: 33799169 DOI: 10.1016/j.rvsc.2021.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Forsythiaside A, a major bioactive component extracted from Forsythiae fructus, possesses multiple biological properties, especially anti-inflammatory properties. In the present study, the anti-inflammatory effect of forsythiaside A was investigated in lipopolysaccharide (LPS)-induced acute mastitis in mice. Our results showed that the expression levels of IL-1β, IL-6, TNF-α, p38 MAPK, IκBα, and NF-κB p65 in the LPS group were all up-regulated, and obvious pathological changes were observed by sectioning. Compared with those in the LPS group, the expression levels of the above factors were significantly reduced, and the inflammation symptoms were also significantly reduced by section observation after forsythiaside A intervention. These results indicated that forsythiaside A effectively inhibited LPS-induced mammary inflammation in mice by attenuating the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Wuhu Overseas Student Pioneer Park, Wuhu 241006, China
| | - Tong Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Zewen Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Hao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Xuefang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of sciences, Zhengzhou 450002, Henan Province, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Hongyu Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Key Laboratory for Animal-Derived Food Safety of Henan province, Zhengzhou 450000, Henan Province, PR China.
| | - Xiao Li
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of sciences, Zhengzhou 450002, Henan Province, PR China.
| |
Collapse
|
43
|
Markin PA, Brito A, Moskaleva NE, Tagliaro F, Tarasov VV, La Frano MR, Savitskii MV, Appolonova SA. Short- and medium-term exposures of diazepam induce metabolomic alterations associated with the serotonergic, dopaminergic, adrenergic and aspartic acid neurotransmitter systems in zebrafish (Danio rerio) embryos/larvae. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100816. [PMID: 33610025 DOI: 10.1016/j.cbd.2021.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Diazepam is a well-known psychoactive drug widely used worldwide for the treatment of anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, sleeplessness, agitation, and pre/post-operative sedation. It is part of the benzodiazepine family, substances known to primarily act by binding and enhancing gamma-aminobutyric acid (GABAA) receptors. The objective of the present work was to investigate the influence of short and medium-term diazepam exposures on neurotransmitters measured through targeted metabolomics using a zebrafish embryo model. METHODS Short-term (2.5 h) and medium-term (96 h) exposures to diazepam were performed at drug concentrations of 0.8, 1.6, 16, and 160 μg/L. Intervention groups were compared with a vehicle control group. Each group consisted of 20 zebrafish eggs/larvae. Metabolites related with neurotransmission were determined by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). RESULTS Thirty-six compounds were quantified. Significantly increased tryptophan and serotonin concentrations were found in the intervention groups receiving higher doses of diazepam in 2.5 h exposure (p < 0.05 control versus intervention groups). Tyrosine concentrations were higher (p < 0.05) at higher concentrations in 2.5 h exposure, but lower (p < 0.05) at higher concentrations in 96 h exposure. Both phenylalanine and aspartic acid concentrations were higher (p < 0.05) at higher doses in 2.5 h and 96 h exposure. CONCLUSIONS Short- and medium-term exposures to diazepam induce dose- and time-dependent metabolomic alterations associated with the serotonergic, dopaminergic/adrenergic, and aspartic acid neurotransmitter systems in zebrafish.
Collapse
Affiliation(s)
- Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; PhD Program in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy; I.M. Sechenov First Moscow State Medical University, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Tagliaro
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Mark V Savitskii
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Russia
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
44
|
Anti-Inflammatory Property of the Essential Oil from Cinnamomum camphora (Linn.) Presl Leaves and the Evaluation of Its Underlying Mechanism by Using Metabolomics Analysis. Molecules 2020; 25:molecules25204796. [PMID: 33086631 PMCID: PMC7587563 DOI: 10.3390/molecules25204796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/10/2023] Open
Abstract
Cinnamomum camphora (Linn.) Presl has been widely used in traditional Chinese medicine for a variety of purposes. Our previous study indicated the antibacterial mechanism of the essential oil (EO) from C. camphora leaves; however, its anti-inflammatory activity and the underlying mechanism have not been clearly demonstrated. Thus, the present study investigated its anti-inflammatory property. Our data revealed that EO significantly decreased the release of nitric oxide (NO) and the mRNA expression of inducible NO synthase (iNOS) in lipopolysaccharide (LPS)-induced BV2 microglial cells. EO also attenuated LPS-induced increase in the mRNA expression and secretion of inflammatory cytokines including interleukin-6 (IL-6), IL-18, IL-1β and tumor necrosis factor-α (TNF-α). Furthermore, the metabolic profiles of LPS-induced BV2 microglial cells treated with or without EO were explored. Thirty-nine metabolites were identified with significantly different contents, including 21 upregulated and 18 downregulated ones. Five pathways were enriched by shared differential metabolites. Compared with the control cells, the glucose level was decreased, while the lactate level was increased, in the culture supernatant from LPS-stimulated cells, which were reversed by EO treatment. Moreover, compared to the LPS-treated group, the activities of phosphofructokinase (PFK) and pyruvate kinase (PK) in EO group were decreased. In summary, the current study demonstrated that EO from C. camphora leaves acts as an anti-inflammatory agent, which might be mediated through attenuating the glycolysis capacity of microglial cells.
Collapse
|