1
|
Liu Y, Huang Z, Zhang TX, Han B, Yang G, Jia D, Yang L, Liu Q, Lau AYL, Paul F, Verkhratsky A, Shi FD, Zhang C. Bruton's tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J Neuroinflammation 2023; 20:309. [PMID: 38129902 PMCID: PMC10740299 DOI: 10.1186/s12974-023-02997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disease of the central nervous system that involves B-cell receptor signaling as well as astrocyte-microglia interaction, which both contribute to evolution of NMOSD lesions. MAIN BODY Through transcriptomic and flow cytometry analyses, we found that Bruton's tyrosine kinase (BTK), a crucial protein of B-cell receptor was upregulated both in the blood and cerebrospinal fluid of NMOSD patients. Blockade of BTK with zanubrutinib, a highly specific BTK inhibitor, mitigated the activation and maturation of B cells and reduced production of causal aquaporin-4 (AQP4) autoantibodies. In a mouse model of NMO, we found that both BTK and pBTK expression were significantly increased in microglia. Transmission electron microscope scan demonstrated that BTK inhibitor ameliorated demyelination, edema, and axonal injury in NMO mice. In the same mice colocalization of GFAP and Iba-1 immunofluorescence indicated a noticeable increase of astrocytes-microglia interaction, which was alleviated by zanubrutinib. The smart-seq analysis demonstrated that treatment with BTK inhibitor instigated microglial transcriptome changes including downregulation of chemokine-related genes and genes involved in the top 5 biological processes related to cell adhesion and migration, which are likely responsible for the reduced crosstalk of microglia and astrocytes. CONCLUSIONS Our results show that BTK activity is enhanced both in B cells and microglia and BTK inhibition contributes to the amelioration of NMOSD pathology. These data collectively reveal the mechanism of action of BTK inhibition and corroborate BTK as a viable therapeutic target.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhenning Huang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tian-Xiang Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bin Han
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Guili Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Alexander Y L Lau
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Health and Medicine, University of Manchester, Manchester, M13 9PL, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Fu-Dong Shi
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Wang Z, Chen G. Immune regulation in neurovascular units after traumatic brain injury. Neurobiol Dis 2023; 179:106060. [PMID: 36871640 DOI: 10.1016/j.nbd.2023.106060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Survivors may experience movement disorders, memory loss, and cognitive deficits. However, there is a lack of understanding of the pathophysiology of TBI-mediated neuroinflammation and neurodegeneration. The immune regulation process of TBI involves changes in the peripheral and central nervous system (CNS) immunity, and intracranial blood vessels are essential communication centers. The neurovascular unit (NVU) is responsible for coupling blood flow with brain activity, and comprises endothelial cells, pericytes, astrocyte end-feet, and vast regulatory nerve terminals. A stable NVU is the basis for normal brain function. The concept of the NVU emphasizes that cell-cell interactions between different types of cells are essential for maintaining brain homeostasis. Previous studies have explored the effects of immune system changes after TBI. The NVU can help us further understand the immune regulation process. Herein, we enumerate the paradoxes of primary immune activation and chronic immunosuppression. We describe the changes in immune cells, cytokines/chemokines, and neuroinflammation after TBI. The post-immunomodulatory changes in NVU components are discussed, and research exploring immune changes in the NVU pattern is also described. Finally, we summarize immune regulation therapies and drugs after TBI. Therapies and drugs that focus on immune regulation have shown great potential for neuroprotection. These findings will help us further understand the pathological processes after TBI.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province 215006, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province 215006, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
3
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
4
|
Xia M, Zhang Q, Zhang Y, Li R, Zhao T, Chen L, Liu Q, Zheng S, Li H, Qian Z, Yang L. Growth Differentiation Factor 15 Regulates Oxidative Stress-Dependent Ferroptosis Post Spinal Cord Injury by Stabilizing the p62-Keap1-Nrf2 Signaling Pathway. Front Aging Neurosci 2022; 14:905115. [PMID: 35860670 PMCID: PMC9289442 DOI: 10.3389/fnagi.2022.905115] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023] Open
Abstract
Background Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system (CNS) that causes irreversible damage to the nervous tissue. The consequent hemorrhage contributed by trauma induces neuronal ferroptosis post SCI, which is an important death mode to mediate neuronal loss. Growth differentiation factor 15 (GDF15) is a cytokine that regulates cell proliferation, differentiation, and death. However, the specific role of GDF15 in neuronal ferroptosis post SCI remains unknown. Materials and Methods Neuronal ferroptosis in vitro was measured by detection of lipid peroxidation, glutathione, iron content, and reactive oxidative stress. In vivo, western blotting and immunofluorescence (IF) staining was utilized to measure ferroptosis post SCI. IF staining, TUNEL staining, hematoxylin-eosin staining, and Nissl staining were used to measure neurological damage. Finally, locomotor function recovery was analyzed using the Basso Mouse Scale and Louisville Swim Scale. Results GDF15 was significantly increased in neuronal ferroptosis and silencing GDF15 aggravated ferroptosis both in vitro and in vivo. Besides, GDF15-mediated inhibition of neuronal ferroptosis is through p62-dependent Keap1-Nrf2 pathway. In SCI mice, knockdown of GDF15 significantly exacerbated neuronal death, interfered with axon regeneration and remyelination, aggravated ferroptosis-mediated neuroinflammation, and restrained locomotor recovery. Conclusion GDF15 effectively alleviated neuronal ferroptosis post SCI via the p62-Keap1-Nrf2 signaling pathway and promoted locomotor recovery of SCI mice, which is suggested as a potential target on SCI pathogenesis and treatment.
Collapse
Affiliation(s)
- Mingjie Xia
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qinyang Zhang
- Postgraduate School, Dalian Medical University, Dalian, China
- Department of Orthopedics, Taizhou People’s Hospital, Nanjing Medical University, Taizhou, China
| | - Yanan Zhang
- Postgraduate School, Dalian Medical University, Dalian, China
- Department of Orthopedics, Taizhou People’s Hospital, Nanjing Medical University, Taizhou, China
| | - Rulin Li
- Postgraduate School, Dalian Medical University, Dalian, China
- Department of Orthopedics, Taizhou People’s Hospital, Nanjing Medical University, Taizhou, China
| | - Tianyu Zhao
- Postgraduate School, Dalian Medical University, Dalian, China
- Department of Orthopedics, Taizhou People’s Hospital, Nanjing Medical University, Taizhou, China
| | - Lingxia Chen
- Department of Cardiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiangxian Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shengnai Zheng
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Haijun Li
- Department of Orthopedics, Taizhou People’s Hospital, Nanjing Medical University, Taizhou, China
- Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, China
- *Correspondence: Haijun Li,
| | - Zhanyang Qian
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Zhanyang Qian,
| | - Lei Yang
- Department of Orthopedics, Taizhou People’s Hospital, Nanjing Medical University, Taizhou, China
- Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Lei Yang,
| |
Collapse
|
5
|
Oh J, Bar-Or A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat Rev Neurol 2022; 18:466-475. [PMID: 35697862 DOI: 10.1038/s41582-022-00675-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The rapidly evolving therapeutic landscape of multiple sclerosis (MS) has contributed to paradigm shifts in our understanding of the biological mechanisms that contribute to CNS injury and in treatment philosophies. Opportunities remain to further improve treatment of relapsing-remitting MS, but two major therapeutic gaps are the limiting of progressive disease mechanisms and the repair of CNS injury. In this Review, we provide an overview of selected emerging therapies that predominantly target processes within the CNS that are thought to be involved in limiting non-relapsing, progressive disease injury or promoting tissue repair. Among these, we consider agents that modulate adaptive and innate CNS-compartmentalized inflammation, which can be mediated by infiltrating immune cells and/or resident CNS cells, including microglia and astrocytes. We also discuss agents that target degenerative disease mechanisms, agents that might confer neuroprotection, and agents that create a more favourable environment for or actively contribute to oligodendrocyte precursor cell differentiation, remyelination and axonal regeneration. We focus on agents that are novel for MS, that are known to or are presumed to penetrate the CNS, and that have already entered early stages of development in MS clinical trials.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, and Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Herrera‐Luis E, Ortega VE, Ampleford EJ, Sio YY, Granell R, de Roos E, Terzikhan N, Vergara E, Hernandez‐Pacheco N, Perez‐Garcia J, Martin‐Gonzalez E, Lorenzo‐Diaz F, Hashimoto S, Brinkman P, U‐BIOPRED Study Group, Jorgensen AL, Yan Q, Forno E, Vijverberg SJ, Lethem R, Espuela‐Ortiz A, Gorenjak M, Eng C, González‐Pérez R, Hernández‐Pérez JM, Poza‐Guedes P, Sardón O, Corcuera P, Hawkins G, Marsico A, Bahmer T, Rabe KF, Hansen G, Kopp MV, Rios R, Cruz M, González‐Barcala F, Olaguibel JM, Plaza V, Quirce S, Canino G, Cloutier M, del Pozo V, Rodriguez‐Santana JR, Korta‐Murua J, Villar J, Potočnik U, Figueiredo C, Kabesch M, Mukhopadhyay S, Pirmohamed M, Hawcutt D, Melén E, Palmer CN, Turner S, Maitland‐van der Zee AH, von Mutius E, Celedón JC, Brusselle G, Chew FT, Bleecker E, Meyers D, Burchard EG, Pino‐Yanes M. Multi-ancestry genome-wide association study of asthma exacerbations. Pediatr Allergy Immunol 2022; 33:e13802. [PMID: 35754128 PMCID: PMC9671132 DOI: 10.1111/pai.13802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10-5 and replication: ORC allele = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.
Collapse
Affiliation(s)
- Esther Herrera‐Luis
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Victor E. Ortega
- Division of Respiratory MedicineDepartment of Internal MedicineMayo ClinicScottsdaleArizonaUSA
| | - Elizabeth J. Ampleford
- Department of Internal MedicineCenter for Precision MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yang Yie Sio
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Raquel Granell
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Emmely de Roos
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Natalie Terzikhan
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Ernesto Elorduy Vergara
- Institute of Computation BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Natalia Hernandez‐Pacheco
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Javier Perez‐Garcia
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Elena Martin‐Gonzalez
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Fabian Lorenzo‐Diaz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Simone Hashimoto
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Brinkman
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Andrea L. Jorgensen
- Department of Health Data ScienceInstitute of Population HealthUniversity of LiverpoolLiverpoolUK
| | - Qi Yan
- Department of Obstetrics and GynecologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Erick Forno
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Susanne J. Vijverberg
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ryan Lethem
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Antonio Espuela‐Ortiz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and PharmacogenomicsFaculty of MedicineUniversity of MariborMariborSlovenia
| | - Celeste Eng
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ruperto González‐Pérez
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - José M. Hernández‐Pérez
- Pulmonary MedicineHospital Universitario de N.S de CandelariaSanta Cruz de TenerifeSpain
- Pulmonary MedicineHospital General de La PalmaLa Palma, Santa Cruz de TenerifeSpain
| | - Paloma Poza‐Guedes
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - Olaia Sardón
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Paula Corcuera
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
| | - Greg A. Hawkins
- Department of BiochemistryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Annalisa Marsico
- Computational Health CenterHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & AllergologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)LübeckGermany
- Department of Paediatric Respiratory MedicineInselspitalUniversity Children's Hospital of BernUniversity of BernBernSwitzerland
| | - Raimon Rios
- Programa de Pós Graduação em Imunologia (PPGIm)Instituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | - Maria Jesus Cruz
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de NeumologíaHospital Vall d’HebronBarcelonaSpain
| | | | - José María Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de AlergologíaComplejo Hospitalario de NavarraPamplonaNavarraSpain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Departamento de Medicina RespiratoriaHospital de la Santa Creu i Sant PauInstituto de Investigación Biomédica Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Department of AllergyLa Paz University HospitalIdiPAZMadridSpain
| | - Glorisa Canino
- Behavioral Sciences Research InstituteUniversity of Puerto RicoSan JuanPuerto Rico
| | - Michelle Cloutier
- Department of PediatricsUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Immunology DepartmentInstituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Javier Korta‐Murua
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Multidisciplinary Organ Dysfunction Evaluation Research NetworkResearch UnitHospital Universitario Dr. NegrínLas Palmas de Gran CanariaSpain
| | - Uroš Potočnik
- Laboratory for Biochemistry, Molecular Biology and GenomicsFaculty for Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia
| | - Camila Figueiredo
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | - Michael Kabesch
- Department of Paediatric Pneumology and AllergyUniversity Children's Hospital Regensburg (KUNO)RegensburgGermany
| | - Somnath Mukhopadhyay
- Academic Department of PaediatricsBrighton and Sussex Medical School, Royal Alexandra Children's HospitalBrightonUK
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | - Munir Pirmohamed
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Daniel B. Hawcutt
- Department of Women's and Children's HealthUniversity of LiverpoolLiverpoolUK
- Alder Hey Children's HospitalLiverpoolUK
- NIHR Alder Hey Clinical Research FacilityAlder Hey Children's HospitalLiverpoolUK
| | - Erik Melén
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs’ Children’s HospitalSouth General HospitalStockholmSweden
| | - Colin N. Palmer
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | | | - Anke H. Maitland‐van der Zee
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Erika von Mutius
- Institute for Asthma and Allergy PreventionHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
- Dr von Hauner Children's HospitalLudwig‐Maximilians‐UniversitätMunichGermany
- Comprehensive Pneumology Center Munich (CPC‐M)Member of the German Center for Lung ResearchMunichGermany
| | - Juan C. Celedón
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Guy Brusselle
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Respiratory MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Fook Tim Chew
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Eugene Bleecker
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Deborah Meyers
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Esteban G. Burchard
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Maria Pino‐Yanes
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Instituto de Tecnologías Biomédicas (ITB)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| |
Collapse
|
7
|
Chondroitin sulfate proteoglycans prevent immune cell phenotypic conversion and inflammation resolution via TLR4 in rodent models of spinal cord injury. Nat Commun 2022; 13:2933. [PMID: 35614038 PMCID: PMC9133109 DOI: 10.1038/s41467-022-30467-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) act as potent inhibitors of axonal growth and neuroplasticity after spinal cord injury (SCI). Here we reveal that CSPGs also play a critical role in preventing inflammation resolution by blocking the conversion of pro-inflammatory immune cells to a pro-repair phenotype in rodent models of SCI. We demonstrate that enzymatic digestion of CSPG glycosaminoglycans enhances immune cell clearance and reduces pro-inflammatory protein and gene expression profiles at key resolution time points. Analysis of phenotypically distinct immune cell clusters revealed CSPG-mediated modulation of macrophage and microglial subtypes which, together with T lymphocyte infiltration and composition changes, suggests a role for CSPGs in modulating both innate and adaptive immune responses after SCI. Mechanistically, CSPG activation of a pro-inflammatory phenotype in pro-repair immune cells was found to be TLR4-dependent, identifying TLR4 signalling as a key driver of CSPG-mediated immune modulation. These findings establish CSPGs as critical mediators of inflammation resolution failure after SCI in rodents, which leads to prolonged inflammatory pathology and irreversible tissue destruction.
Collapse
|
8
|
Liu A, Manuel AM, Dai Y, Zhao Z. Prioritization of risk genes in multiple sclerosis by a refined Bayesian framework followed by tissue-specificity and cell type feature assessment. BMC Genomics 2022; 23:362. [PMID: 35545758 PMCID: PMC9092676 DOI: 10.1186/s12864-022-08580-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating immune-mediated disease of the central nervous system that affects over 2 million people worldwide, resulting in a heavy burden to families and entire communities. Understanding the genetic basis underlying MS could help decipher the pathogenesis and shed light on MS treatment. We refined a recently developed Bayesian framework, Integrative Risk Gene Selector (iRIGS), to prioritize risk genes associated with MS by integrating the summary statistics from the largest GWAS to date (n = 115,803), various genomic features, and gene-gene closeness. RESULTS We identified 163 MS-associated prioritized risk genes (MS-PRGenes) through the Bayesian framework. We replicated 35 MS-PRGenes through two-sample Mendelian randomization (2SMR) approach by integrating data from GWAS and Genotype-Tissue Expression (GTEx) expression quantitative trait loci (eQTL) of 19 tissues. We demonstrated that MS-PRGenes had more substantial deleterious effects and disease risk. Moreover, single-cell enrichment analysis indicated MS-PRGenes were more enriched in activated macrophages and microglia macrophages than non-activated ones in control samples. Biological and drug enrichment analyses highlighted inflammatory signaling pathways. CONCLUSIONS In summary, we predicted and validated a high-confidence MS risk gene set from diverse genomic, epigenomic, eQTL, single-cell, and drug data. The MS-PRGenes could further serve as a benchmark of MS GWAS risk genes for future validation or genetic studies.
Collapse
Affiliation(s)
- Andi Liu
- grid.267308.80000 0000 9206 2401Department of Epidemiology, School of Public Health, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Astrid M. Manuel
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yulin Dai
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Zhongming Zhao
- grid.267308.80000 0000 9206 2401Department of Epidemiology, School of Public Health, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
9
|
Mashima R, Okuyama T, Ohira M. Physiology and Pathophysiology of Heparan Sulfate in Animal Models: Its Biosynthesis and Degradation. Int J Mol Sci 2022; 23:1963. [PMID: 35216081 PMCID: PMC8876164 DOI: 10.3390/ijms23041963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Heparan sulfate (HS) is a type of glycosaminoglycan that plays a key role in a variety of biological functions in neurology, skeletal development, immunology, and tumor metastasis. Biosynthesis of HS is initiated by a link of xylose to Ser residue of HS proteoglycans, followed by the formation of a linker tetrasaccharide. Then, an extension reaction of HS disaccharide occurs through polymerization of many repetitive units consisting of iduronic acid and N-acetylglucosamine. Subsequently, several modification reactions take place to complete the maturation of HS. The sulfation positions of N-, 2-O-, 6-O-, and 3-O- are all mediated by specific enzymes that may have multiple isozymes. C5-epimerization is facilitated by the epimerase enzyme that converts glucuronic acid to iduronic acid. Once these enzymatic reactions have been completed, the desulfation reaction further modifies HS. Apart from HS biosynthesis, the degradation of HS is largely mediated by the lysosome, an intracellular organelle with acidic pH. Mucopolysaccharidosis is a genetic disorder characterized by an accumulation of glycosaminoglycans in the body associated with neuronal, skeletal, and visceral disorders. Genetically modified animal models have significantly contributed to the understanding of the in vivo role of these enzymes. Their role and potential link to diseases are also discussed.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; (T.O.); (M.O.)
| | | | | |
Collapse
|
10
|
Li L, Luo Q, Shang B, Yang X, Zhang Y, Pan Q, Wu N, Tang W, Du D, Sun X, Jiang L. Selective activation of cannabinoid receptor-2 reduces white matter injury via PERK signaling in a rat model of traumatic brain injury. Exp Neurol 2022; 347:113899. [PMID: 34678230 DOI: 10.1016/j.expneurol.2021.113899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI. METHODS The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies. RESULTS JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133 ultimately alleviates WMI and improves neurological behavior following TBI. However, these effects were prevented by SR144528, a selective CB2 antagonist. CONCLUSIONS This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Qing Luo
- Department of Ultrasound, Nanchong Central Hospital, Nanchong, China
| | - Bin Shang
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Xiaomin Yang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuling Pan
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Wu
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Donglin Du
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Jiang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
OUP accepted manuscript. Brain 2022; 145:3179-3186. [DOI: 10.1093/brain/awac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 03/13/2022] [Indexed: 11/15/2022] Open
|
12
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
13
|
Tran AP, Warren PM, Silver J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res 2021; 387:319-336. [PMID: 34076775 PMCID: PMC8975767 DOI: 10.1007/s00441-021-03477-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Severe spinal cord injury causes permanent loss of function and sensation throughout the body. The trauma causes a multifaceted torrent of pathophysiological processes which ultimately act to form a complex structure, permanently remodeling the cellular architecture and extracellular matrix. This structure is traditionally termed the glial/fibrotic scar. Similar cellular formations occur following stroke, infection, and neurodegenerative diseases of the central nervous system (CNS) signifying their fundamental importance to preservation of function. It is increasingly recognized that the scar performs multiple roles affecting recovery following traumatic injury. Innovative research into the properties of this structure is imperative to the development of treatment strategies to recover motor function and sensation following CNS trauma. In this review, we summarize how the regeneration potential of the CNS alters across phyla and age through formation of scar-like structures. We describe how new insights from next-generation sequencing technologies have yielded a more complex portrait of the molecular mechanisms governing the astrocyte, microglial, and neuronal responses to injury and development, especially of the glial component of the scar. Finally, we discuss possible combinatorial therapeutic approaches centering on scar modulation to restore function after severe CNS injury.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Philippa Mary Warren
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Saraswat D, Shayya HJ, Polanco JJ, Tripathi A, Welliver RR, Pol SU, Seidman RA, Broome JE, O'Bara MA, van Kuppervelt TH, Phillips JJ, Dutta R, Sim FJ. Overcoming the inhibitory microenvironment surrounding oligodendrocyte progenitor cells following experimental demyelination. Nat Commun 2021; 12:1923. [PMID: 33772011 PMCID: PMC7998003 DOI: 10.1038/s41467-021-22263-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease.
Collapse
Affiliation(s)
- Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hani J Shayya
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessie J Polanco
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ajai Tripathi
- Department of Neuroscience, Lerner Research Institute, Cleveland, OH, USA
| | - R Ross Welliver
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Suyog U Pol
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Richard A Seidman
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jacqueline E Broome
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Melanie A O'Bara
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Toin H van Kuppervelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ranjan Dutta
- Department of Neuroscience, Lerner Research Institute, Cleveland, OH, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Brown D, Moezzi D, Dong Y, Koch M, Yong VW. Combination of Hydroxychloroquine and Indapamide Attenuates Neurodegeneration in Models Relevant to Multiple Sclerosis. Neurotherapeutics 2021; 18:387-400. [PMID: 33410109 PMCID: PMC8116375 DOI: 10.1007/s13311-020-01002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
As the underlying pathophysiology of progressive forms of multiple sclerosis (MS) remains unclear, current treatment strategies are inadequate. Progressive MS is associated with increased oxidative stress and neuronal damage in lesions along with an extensive representation of activated microglia/macrophages. To target these disease mechanisms, we tested the novel combination of generic medications, hydroxychloroquine (HCQ), and indapamide, in tissue culture and in mice. HCQ is an anti-malarial medication found to inhibit microglial activation and to ameliorate disease activity in experimental autoimmune encephalomyelitis. We are currently completing a phase II trial of HCQ in primary progressive MS ( ClinicalTrials.gov Identifier: NCT02913157). Indapamide is an antihypertensive previously discovered in our laboratory drug screen to be an anti-oxidant. As these medications have a different spectrum of activities on disease mechanisms relevant to progressive MS, their use in combination may be more effective than either alone. We thus sought preclinical data for the effectiveness of this combination. In vitro, indapamide had robust hydroxyl scavenging activity, while HCQ and indapamide alone and in combination protected against iron-induced neuronal killing; TNF-α levels in activated microglia were reduced by either drug alone, without additional combination effects. In mice with a lysolecithin lesion that manifests demyelination and axonal loss in the spinal cord, the combination but not individual treatment of HCQ and indapamide reduced CD68+ microglia/macrophage representation in lesions, attenuated axonal injury, and lowered levels of lipid peroxidation. Our study supports the combination of indapamide and HCQ as a new treatment strategy targeting multiple facets of progressive MS.
Collapse
Affiliation(s)
- Dennis Brown
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Dorsa Moezzi
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Yifei Dong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Marcus Koch
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|