1
|
Lyu X, Shi J, Liu Q, Jiang M, Liu X, Li Y, Ding S, Dai X. Immunosuppression of spleen in mice treated with erythropoietin: transcriptomic and immunological analysis. Front Immunol 2025; 16:1560589. [PMID: 40191193 PMCID: PMC11968373 DOI: 10.3389/fimmu.2025.1560589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Background and aim Long term high-dose erythropoietin (EPO) had been reported inducing the formation of abdominal aortic aneurysm (AAA) in mice. When using this model, we found that EPO treated mice showed significant splenomegaly. This is an interesting phenomenon, and its mechanism has not been reported. Therefore, this study aims to explore its mechanism. Methods C57BL/6 mice were given intraperitoneal injection of recombinant human EPO at 10000 IU/kg/day, and the control mice were treated with normal saline (vehicle). After 3 weeks, the spleens were harvested. Pathological changes in histology were observed using Hematoxylin and Eosin (H&E) staining. The differential expression genes (DEGs) were identified using RNA sequencing (RNA-Seq), verified with the real-time quantitative polymerase chain reaction (RT-qPCR). The functional-enrichment analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome enrichment analysis were performed to reveal the functional characteristics and related biological pathways of DEGs. Immunohistofluorescence (IHF) and flow cytometry (FCM) were used to detect immune cell subsets and proliferation markers. Results EPO treatment resulted in splenomegaly, spleen microstructure disorder, splenic corpuscular atrophy, indistinct germinal center, and unclear boundary between white and red pulp structures. RNA-Seq showed that EPO treatment suppressed gene expression associated with immune responses, while promoted cell cycle and DNA replication. IHF and FCM validated that, at the cellular level, T, B, M1 cells were significantly reduced, and M2 cells were significantly decreased after EPO treatment. The proliferation analysis showed that the portion of EDU+ or Ki-67+cells consisted of granulocytes and macrophages, and after EPO treatment, only macrophages showed a significant increase in their number and proportion, while granulocytes did not show a significant response to EPO stimulation. Conclusion Long term high-dose EPO treatment may lead to splenomegaly and immunosuppression of the local immune microenvironment in mice. The mechanism may be related to the increased anti-inflammatory and immunomodulatory functions caused by M2 cells. The study provides, for the first time, the transcriptomic characteristics and immunological of the spleens of EPO treated mice, providing a new perspective for the study of the effects of EPO on mice.
Collapse
Affiliation(s)
- Xinyi Lyu
- The Second Affiliated Hospital, Department of Vascular Surgery, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiahao Shi
- The Second Affiliated Hospital, Department of Vascular Surgery, Hengyang Medical School, University of South China, Hengyang, China
| | - Qi Liu
- The Second Affiliated Hospital, Department of Vascular Surgery, Hengyang Medical School, University of South China, Hengyang, China
| | - Mingjun Jiang
- The Second Affiliated Hospital, Department of Vascular Surgery, Hengyang Medical School, University of South China, Hengyang, China
| | - Xilian Liu
- The Second Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, China
| | - Yulan Li
- The Second Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuqin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xianpeng Dai
- The Second Affiliated Hospital, Department of Vascular Surgery, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Tian H, Zheng J, Wang F, Zhang W, Chen Y, Wang X, Wang X, Xi J, Hu J, Zhang Y. NLRP3 inflammasome promotes functional repair after spinal cord injury in mice by regulating autophagy and its mechanism. Int Immunopharmacol 2025; 149:114230. [PMID: 39922115 DOI: 10.1016/j.intimp.2025.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Inflammation at the injury site exacerbates tissue cell death following a spinal cord injury (SCI). Studies show that NLRP3 inflammasomes are crucial in the inflammation following Spinal Cord Injury, and NLRP3 inflammasomes have been shown to promote cells to undergo excessive autophagy in other diseases. Moreover, excessive autophagy levels could hinder functional repair post-SCI. In this regard, we hypothesized that inhibiting NLRP3 inflammasomes could reduce autophagy levels at the injury site, thus promoting functional repair post-SCI. METHODS Herein, a mouse SCI model was used for in vivo experiments, and an in vitro neuroinflammatory model created using LPS-activated BV2 cells was used for in vitro experiments. Histopathological staining was used to assess tissue repair. Western Blot (WB) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) were used to detect changes in relevant autophagy molecules, macrophage polarization-related markers and downstream inflammatory factors, and Immunofluorescence (IF) was used to detect changes in macrophage polarization. RESULTS Following SCI, the inhibition of NLRP3 inflammasomes resulting from intraperitoneal injection of MCC950 significantly reduced autophagy levels at the injury site, resulting in both histological and behavioral improvements. In addition, the phosphorylation of mTOR during inhibition of NLRP3 inflammasomes to reduce autophagy levels further improved the immune microenvironment at the injury site, and M2-type macrophages were significantly upregulated M2-type macrophages. Moreover, in vitro experiments yielded results consistent with those of in vivo experiments regarding changes in autophagy-related indexes and polarization-related markers. CONCLUSIONS Inhibition of NLRP3 inflammasomes can reduce autophagy level at the injury site to promote functional recovery and play a neuroprotective role. Moreover, phosphorylation of mTOR during the process of inhibition of NLRP3 inflammasomes to reduce autophagy, leading to reduced autophagy levels, could improve the immune microenvironment at the injury site, thus promoting functional recovery and histopathological repair post-SCI.
Collapse
Affiliation(s)
- Haozhe Tian
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Juan Zheng
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Fangli Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Wenjing Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China
| | - Yuqing Chen
- School of Laboratory Medicine Bengbu Medical University Bengbu China
| | - Xiangshu Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Xiaoxuan Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China.
| | - Yuxin Zhang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China.
| |
Collapse
|
3
|
Ding SQ, Yan HZ, Gao JX, Chen YQ, Zhang N, Wang R, Li JY, Hu JG, Lü HZ. Genetic deletion of the apoptosis associated speck like protein containing a card in LysM + macrophages attenuates spinal cord injury by regulating M1/M2 polarization through ASC-dependent inflammasome signaling axis. Exp Neurol 2024; 382:114982. [PMID: 39353545 DOI: 10.1016/j.expneurol.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Apoptosis associated speck like protein containing a card (ASC), the key adaptor protein of the assembly and activation of canonical inflammasomes, has been found to play a significant role in neuroinflammation after spinal cord injury (SCI). The previous studies indicated that widely block or knockout ASC can ameliorate SCI. However, ASC is ubiquitously expressed in infiltrated macrophages and local microglia, so further exploration is needed on which type of cell playing the key role. In this study, using the LysMcre;Ascflox/flox mice with macrophage-specifc ASC conditional knockout (CKO) and contusive SCI model, we focus on evaluating the specific role of ASC in lysozyme 2 (LysM)+ myeloid cells (mainly infiltrated macrophages) in this pathology. The results revealed that macrophage-specifc Asc CKO exhibited the follow effects: (1) A significant reduction in the numbers of infiltrated macrophages in the all phases of SCI, and activated microglia in the acute and subacute phases. (2) A significant reduction in ASC, caspase-1, interleukin (IL)-1β, and IL-18 compared to control mice. (3) In the acute and subacute phases of SCI, M1 subset differentiation was inhibited, and M2 differentiation was increased. (4) Histology and hindlimb motor recoveries were improved. In conclusion, this study elucidates that macrophage-specific ASC CKO can improve nerve function recovery after SCI by regulating M1/M2 polarization through inhibiting ASC-dependent inflammasome signaling axis. This indicates that ASC in peripheral infiltrated macrophages may play an important role in SCI pathology, at least in mice, could be a potential target for treatment.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Nan Zhang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jiang-Yan Li
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
4
|
Wang A, Zhong G, Ying M, Fang Z, Chen Y, Wang H, Wang C, Liu C, Guo Y. Inhibition of NLRP3 inflammasome ameliorates LPS-induced neuroinflammatory injury in mice via PINK1/Parkin pathway. Neuropharmacology 2024; 257:110063. [PMID: 38972372 DOI: 10.1016/j.neuropharm.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is characterized by the severe loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor dysfunction. The onset of PD is often accompanied by neuroinflammation and α-Synuclein aggregation, and extensive research has focused on the activation of microglial NLRP3 inflammasomes in PD, which promotes the death of dopaminergic neurons. In this study, a model of cerebral inflammatory response was constructed in wild-type and Parkin+/- mice through bilateral intraventricular injection of LPS. LPS-induced activation of the NLRP3 inflammasome in wild-type mice promotes the progression of PD. The use of MCC950 in wild mice injected with LPS induces activation of Parkin/PINK and improves autophagy, which in turn improves mitochondrial turnover. It also inhibits LPS-induced inflammatory responses, improves motor function, protects dopaminergic neurons, and inhibits microglia activation. Furthermore, Parkin+/- mice exhibited motor dysfunction, loss of dopaminergic neurons, activation of the NLRP3 inflammasome, and α-Synuclein aggregation beginning at an early age. Parkin ± mice exhibited more pronounced microglia activation, greater NLRP3 inflammasome activation, more severe autophagy dysfunction, and more pronounced motor dysfunction after LPS injection compared to wild-type mice. Notably, the use of MCC950 in Parkin ± mice did not ameliorate NLRP3 inflammasome activation, autophagy dysfunction, or α-synuclein aggregation. Thus, MCC950 can only exert its effects in the presence of Parkin/PINK1, and targeting Parkin-mediated NLRP3 inflammasome activation is expected to be a potential therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Ao Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Guangshang Zhong
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Mengjiao Ying
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Zhuling Fang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Ying Chen
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Haojie Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Chunjing Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Changqing Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| | - Yu Guo
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
5
|
肖 林, 段 婷, 夏 勇, 陈 悦, 孙 洋, 许 轶, 徐 磊, 闫 兴, 胡 建. [Linarin inhibits microglia activation-mediated neuroinflammation and neuronal apoptosis in mouse spinal cord injury by inhibiting the TLR4/NF-κB pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1589-1598. [PMID: 39276055 PMCID: PMC11378057 DOI: 10.12122/j.issn.1673-4254.2024.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the mechanism underlying the neuroprotective effect of linarin (LIN) against microglia activation-mediated inflammation and neuronal apoptosis following spinal cord injury (SCI). METHODS Fifty C57BL/6J mice (8- 10 weeks old) were randomized to receive sham operation, SCI and linarin treatment at 12.5, 25, and 50 mg/kg following SCI (n=10). Locomotor function recovery of the SCI mice was assessed using the Basso Mouse Scale, inclined plane test, and footprint analysis, and spinal cord tissue damage and myelination were evaluated using HE and LFB staining. Nissl staining, immunofluorescence assay and Western blotting were used to observe surviving anterior horn motor neurons in injured spinal cord tissue. In cultured BV2 cells, the effects of linarin against lipopolysaccharide (LPS)‑induced microglia activation, inflammatory factor release and signaling pathway changes were assessed with immunofluorescence staining, Western blotting, RT-qPCR, and ELISA. In a BV2 and HT22 cell co-culture system, Western blotting was performed to examine the effect of linarin against HT22 cell apoptosis mediated by LPS-induced microglia activation. RESULTS Linarin treatment significantly improved locomotor function (P < 0.05), reduced spinal cord damage area, increased spinal cord myelination, and increased the number of motor neurons in the anterior horn of the SCI mice (P < 0.05). In both SCI mice and cultured BV2 cells, linarin effectively inhibited glial cell activation and suppressed the release of iNOS, COX-2, TNF-α, IL-6, and IL-1β, resulting also in reduced neuronal apoptosis in SCI mice (P < 0.05). Western blotting suggested that linarin-induced microglial activation inhibition was mediated by inhibition of the TLR4/NF- κB signaling pathway. In the cell co-culture experiments, linarin treatment significantly decreased inflammation-mediated apoptosis of HT22 cells (P < 0.05). CONCLUSION The neuroprotective effect of linarin is medicated by inhibition of microglia activation via suppressing the TLR4/NF‑κB signaling pathway, which mitigates neural inflammation and reduce neuronal apoptosis to enhance motor function of the SCI mice.
Collapse
|
6
|
Fu GQ, Wang YY, Xu YM, Bian MM, Zhang L, Yan HZ, Gao JX, Li JL, Chen YQ, Zhang N, Ding SQ, Wang R, Li JY, Hu JG, Lü HZ. Exosomes derived from vMIP-II-Lamp2b gene-modified M2 cells provide neuroprotection by targeting the injured spinal cord, inhibiting chemokine signals and modulating microglia/macrophage polarization in mice. Exp Neurol 2024; 377:114784. [PMID: 38642665 DOI: 10.1016/j.expneurol.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1β, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, PR China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jiang-Yan Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
7
|
Yang H, Li D, Gao G. Kaempferol Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis (NASH) by Suppressing Neutrophil-Mediated NLRP3-ASC/TMS1-Caspase 3 Signaling. Molecules 2024; 29:2630. [PMID: 38893506 PMCID: PMC11173805 DOI: 10.3390/molecules29112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a significant hepatic condition that has gained worldwide attention. Kaempferol (Kae), renowned for its diverse biological activities, including anti-inflammatory, antioxidant, anti-aging, and cardio-protective properties, has emerged as a potential therapeutic candidate for non-alcoholic steatohepatitis (NASH). Despite its promising therapeutic potential, the precise underlying mechanism of Kae's beneficial effects in NASH remains unclear. Therefore, this study aims to clarify the mechanism by conducting comprehensive in vivo and in vitro experiments. RESULTS In this study, a murine model of non-alcoholic steatohepatitis (NASH) was established by feeding C57BL/6 female mice a high-fat diet for 12 weeks. Kaempferol (Kae) was investigated for its ability to modulate systemic inflammatory responses and lipid metabolism in this model (20 mg/kg per day). Notably, Kae significantly reduced the expression of NLRP3-ASC/TMS1-Caspase 3, a crucial mediator of liver tissue inflammation. Additionally, in a HepG2 cell model induced with palmitic acid/oleic acid (PA/OA) to mimic NASH conditions, Kae demonstrated the capacity to decrease lipid droplet accumulation and downregulate the expression of NLRP3-ASC/TMS1-Caspase 3 (20 µM and the final concentration to 20 nM). These findings suggest that Kae may hold therapeutic potential in the treatment of NASH by targeting inflammatory and metabolic pathways. CONCLUSIONS These findings suggest that kaempferol holds potential as a promising therapeutic intervention for ameliorating non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- He Yang
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Guolan Gao
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
8
|
Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep 2024; 14:6553. [PMID: 38504116 PMCID: PMC10951339 DOI: 10.1038/s41598-024-56683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024] Open
Abstract
Spinal cord injury (SCI) can cause a range of functional impairments, and patients with SCI have limited potential for functional recovery. Previous studies have demonstrated that autophagy plays a role in the pathological process of SCI, but the specific mechanism of autophagy in this context remains unclear. Therefore, we explored the role of autophagy in SCI by identifying key autophagy-related genes and pathways. This study utilized the GSE132242 expression profile dataset, which consists of four control samples and four SCI samples; autophagy-related genes were sourced from GeneCards. R software was used to screen differentially expressed genes (DEGs) in the GSE132242 dataset, which were then intersected with autophagy-related genes to identify autophagy-related DEGs in SCI. Subsequently, the expression levels of these genes were confirmed and analyzed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) analysis was conducted to identify interaction genes, and the resulting network was visualized with Cytoscape. The MCODE plug-in was used to build gene cluster modules, and the cytoHubba plug-in was applied to screen for hub genes. Finally, the GSE5296 dataset was used to verify the reliability of the hub genes. We screened 129 autophagy-related DEGs, including 126 up-regulated and 3 down-regulated genes. GO and KEGG pathway enrichment analysis showed that these 129 genes were mainly involved in the process of cell apoptosis, angiogenesis, IL-1 production, and inflammatory reactions, the TNF signaling pathway and the p53 signaling pathway. PPI identified 10 hub genes, including CCL2, TGFB1, PTGS2, FN1, HGF, MYC, IGF1, CD44, CXCR4, and SERPINEL1. The GSE5296 dataset revealed that the control group exhibited lower expression levels than the SCI group, although only CD44 and TGFB1 showed significant differences. This study identified 129 autophagy-related genes that might play a role in SCI. CD44 and TGFB1 were identified as potentially important genes in the autophagy process after SCI. These findings provide new targets for future research and offer new perspectives on the pathogenesis of SCI.
Collapse
Affiliation(s)
- Zhen Shang
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Weipeng Shi
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Haitao Fu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
- Shandong Institute of Traumatic Orthopedics, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, 266000, China.
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266000, China.
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
9
|
Xu Y, Geng Z, Sun Y, Zhu G, Xiao L, Wang Z, Li B, Liu X, Shi J, Song X, Hu J, Qi Q. Complanatuside A improves functional recovery after spinal cord injury through inhibiting JNK signaling-mediated microglial activation. Eur J Pharmacol 2024; 965:176287. [PMID: 38158110 DOI: 10.1016/j.ejphar.2023.176287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Complanatuside A (ComA) is a flavonoid-rich compound in Astragalus membranaceus that has anti-inflammatory and neuroprotective effects. In this study, we focused on the effect of ComA on spinal cord injury (SCI) in mice and explored its possible mechanisms. METHODS The SCI model was constructed using C57BL/6J mice, and the effect of ComA on motor function recovery in SCI mice was evaluated through the BMS (Basso Mouse Scale) and footprint test. The histological effects of ComA on SCI mice were evaluated by hematoxylin-eosin (H&E) staining, Luxol-fast blue (LFB) staining, and Nissl staining. In both in vivo and in vitro experiments, we detected the activation of microglia and the release of inflammatory factors through molecular experiments. Immunofluorescence and Western blotting confirmed that ComA can prevent neuronal apoptosis caused by activated microglia through the c-Jun N-terminal kinase (JNK) pathway. RESULTS Our research results confirm that ComA can improve motor function in mice after SCI. Our in vitro results indicate that ComA can inhibit the activation of BV2 cells and the release of proinflammatory mediators. In addition, ComA can prevent neuronal cell apoptosis caused by activated BV2 cells. Finally, we found that ComA works through the JNK signaling pathway. CONCLUSIONS ComA can accelerate the restoration of motor function in mice after SCI, possibly by reducing neuronal apoptosis via inhibition of JNK-related signaling pathways, a reduction in microglial activation, and inhibition of inflammatory factor release. Our data indicate that ComA is a promising drug candidate for improving functional recovery in patients with SCI.
Collapse
Affiliation(s)
- Yibo Xu
- School of Basic Medicine, Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yang Sun
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Guoqing Zhu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Linyu Xiao
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Zhiyuan Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Bohan Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Jinran Shi
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Qi Qi
- School of Basic Medicine, Bengbu Medical University, Bengbu, Anhui, China; Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
10
|
Luan X, Li G, Ding Y, Sun J, Li X, Jiang W, Shi Y, He M, Guo J, Fan R, Zheng J, Li Y, Duan X, Zhang G. Serum apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a novel stroke biomarker. Clin Chim Acta 2024; 553:117734. [PMID: 38128818 DOI: 10.1016/j.cca.2023.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a promising stroke biomarker. However, a large study of human serum ASC has not yet to be reported; additionally, the diagnostic value of prehospital concentration and practicality of ASC remains unknown. METHODS We recruited 774 Chinese stroke patients, including 523 with ischemic stroke (IS) and 251 with hemorrhagic stroke (HS) within 14 days following symptom onset in the emergency department, alongside 481 healthy individuals and 64 cognitive impairment patients as controls. Serum ASC concentrations were determined using automated chemiluminescence immunoassay, exploring the relationship between serum ASC concentration and subtypes, severity, and sampling timepoints of stroke. RESULTS ASC concentrations were significantly higher in stroke patients compared with all controls (P < 0.001). HS patients had greater ASC concentrations than IS patients (P < 0.05). With increasing ASC concentration, the proportion of severe cases increased. The area under the receiver operating characteristic curve (AUC) for differentiating between healthy individuals and stroke patients in the hyperacute phase was 0.78; this markedly improved (0.90) when considering samples from healthy individuals and patients with subarachnoid hemorrhage (SAH) ≤ 3 h from last-known-well (LKW). CONCLUSIONS Serum ASC is a valuable biomarker for stroke differentiation and aids in the clinical diagnosis of stroke severity and subtypes.
Collapse
Affiliation(s)
- Xin Luan
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guoge Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Jialu Sun
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Xiaotong Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Wencan Jiang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Yijun Shi
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Min He
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Jinghan Guo
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Rong Fan
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Jiageng Zheng
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Yubin Li
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China
| | - Xuejun Duan
- Beijing North Institute of Biotechnology Co., Ltd., NO. A20 Panjiamiao, Fengtai District, Beijing 100076, China.
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China.
| |
Collapse
|
11
|
Zhu G, Song X, Sun Y, Xu Y, Xiao L, Wang Z, Sun Y, Zhang L, Zhang X, Geng Z, Qi Q, Wang Y, Wang L, Li J, Zuo L, Hu J. Esculentoside A ameliorates BSCB destruction in SCI rat by attenuating the TLR4 pathway in vascular endothelial cells. Exp Neurol 2023; 369:114536. [PMID: 37690527 DOI: 10.1016/j.expneurol.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1β, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yibo Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Linyu Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | | | - Yijie Sun
- Bengbu Medical College, Bengbu, Anhui, China
| | | | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
12
|
Wang X, Shen J, Xu C, Wan C, Yang H, Qiu Y, Xu M, Duo W, Sun T, Cui J, Chu L, Yang X. Proteomic profile of Trichinella spiralis infected mice with acute spinal cord injury: A 4D label-free quantitative analysis. Comp Immunol Microbiol Infect Dis 2023; 97:101994. [PMID: 37207504 DOI: 10.1016/j.cimid.2023.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Spinal cord injury (SCI) can cause severe loss of locomotor and sensory activities, with no ideal treatment. Emerging reports suggest that the helminth therapy is highly effective in relieving numerous inflammatory diseases. Proteomic profiling is often used to elucidate the underlying mechanism behind SCI. Herein, we systematically compared the protein expression profiles of murine SCI spinal cord and Trichinella spiralis treated murine SCI spinal cord, using a 4D label-free technique known for its elevated sensitivity. Relative to the SCI mice, the T. spiralis-treated mice exhibited marked alterations in 91 proteins (31 up- and 60 down-regulated). Based on our Gene Ontology (GO) functional analysis, the differentially expressed proteins (DEPs) were primarily enriched in the processes of metabolism, biological regulation, cellular process, antioxidant activity, and other cell functions. In addition, according to the Clusters of Orthologous Groups of protein/EuKaryotic Orthologous Groups (COG/KOG) functional stratification, proteins involved in signaling transduction mechanisms belonged to the largest category. Over-expressed DEPs were also enriched in the "NADPH oxidase complex", "superoxide anion generation", "other types of O-glycan biosynthesis", and "HIF-1 signaling pathway". Furthermore, the protein-protein interaction (PPI) network identified the leading 10 hub proteins. In conclusion, we highlighted the dynamic proteomic profiling of T. spiralis-treated SCI mice. Our findings provide significant insight into the molecular mechanism behind T. spiralis regulation of SCI.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Junhong Shen
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Changyan Xu
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Chen Wan
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Haoyu Yang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Yu Qiu
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Mengmeng Xu
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Wenjuan Duo
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Tongjun Sun
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Jie Cui
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| | - Liang Chu
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Xiaodi Yang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
13
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
14
|
Li JL, Fu GQ, Wang YY, Bian MM, Xu YM, Zhang L, Chen YQ, Zhang N, Ding SQ, Wang R, Fang R, Tang J, Hu JG, Lü HZ. The polarization of microglia and infiltrated macrophages in the injured mice spinal cords: a dynamic analysis. PeerJ 2023; 11:e14929. [PMID: 36846458 PMCID: PMC9951800 DOI: 10.7717/peerj.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Background Following spinal cord injury (SCI), a large number of peripheral monocytes infiltrate into the lesion area and differentiate into macrophages (Mø). These monocyte-derived Mø are very difficult to distinguish from the local activated microglia (MG). Therefore, the term Mø/MG are often used to define the infiltrated Mø and/or activated MG. It has been recognized that pro-inflammatory M1-type Mø/MG play "bad" roles in the SCI pathology. Our recent research showed that local M1 cells are mainly CD45-/lowCD68+CD11b+ in the subacute stage of SCI. Thus, we speculated that the M1 cells in injured spinal cords mainly derived from MG rather than infiltrating Mø. So far, their dynamics following SCI are not yet entirely clear. Methods Female C57BL/6 mice were used to establish SCI model, using an Infinite Horizon impactor with a 1.3 mm diameter rod and a 50 Kdynes force. Sham-operated (sham) mice only underwent laminectomy without contusion. Flow cytometry and immunohistofluorescence were combined to analyze the dynamic changes of polarized Mø and MG in the acute (1 day), subacute (3, 7 and 14 days) and chronic (21 and 28 days) phases of SCI. Results The total Mø/MG gradually increased and peaked at 7 days post-injury (dpi), and maintained at high levels 14, 21 and 28 dpi. Most of the Mø/MG were activated, and the Mø increased significantly at 1 and 3 dpi. However, with the pathological process, activated MG increased nearly to 90% at 7, 14, 21 and 28 dpi. Both M1 and M2 Mø were increased significantly at 1 and 3 dpi. However, they decreased to very low levels from 7 to 28 dpi. On the contrary, the M2-type MG decreased significantly following SCI and maintained at a low level during the pathological process.
Collapse
Affiliation(s)
- Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Fang
- Department of Clinical Medical, Bengbu Medical College, Bengbu, China
| | - Jie Tang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Tang H, Gu Y, Jiang L, Zheng G, Pan Z, Jiang X. The role of immune cells and associated immunological factors in the immune response to spinal cord injury. Front Immunol 2023; 13:1070540. [PMID: 36685599 PMCID: PMC9849245 DOI: 10.3389/fimmu.2022.1070540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition prevalent worldwide. Where the pathological mechanisms underlying SCI are concerned, we can distinguish between primary injury caused by initial mechanical damage and secondary injury characterized by a series of biological responses, such as vascular dysfunction, oxidative stress, neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory response. Secondary injury causes further tissue loss and dysfunction, and the immune response appears to be the key molecular mechanism affecting injured tissue regeneration and functional recovery from SCI. Immune response after SCI involves the activation of different immune cells and the production of immunity-associated chemicals. With the development of new biological technologies, such as transcriptomics, the heterogeneity of immune cells and chemicals can be classified with greater precision. In this review, we focus on the current understanding of the heterogeneity of these immune components and the roles they play in SCI, including reactive astrogliosis and glial scar formation, neutrophil migration, macrophage transformation, resident microglia activation and proliferation, and the humoral immunity mediated by T and B cells. We also summarize findings from clinical trials of immunomodulatory therapies for SCI and briefly review promising therapeutic drugs currently being researched.
Collapse
Affiliation(s)
- Huaguo Tang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanjie Gu
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Lei Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Gang Zheng
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiugui Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
16
|
Xue MT, Sheng WJ, Song X, Shi YJ, Geng ZJ, Shen L, Wang R, Lü HZ, Hu JG. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neurosci Ther 2022; 28:1059-1071. [PMID: 35403332 PMCID: PMC9160450 DOI: 10.1111/cns.13839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Background Inflammatory reactions induced by spinal cord injury (SCI) are essential for recovery after SCI. Atractylenolide III (ATL‐III) is a natural monomeric herbal bioactive compound that is mainly derived in Atractylodes macrocephala Koidz and has anti‐inflammatory and neuroprotective effects. Objective Here, we speculated that ATL‐III may ameliorate SCI by modulating microglial/macrophage polarization. In the present research, we focused on investigating the role of ATL‐III on SCI in rats and explored the potential mechanism. Methods The protective and anti‐inflammatory effects of ATL‐III on neuronal cells were examined in a rat SCI model and lipopolysaccharide (LPS)‐stimulated BV2 microglial line. The spinal cord lesion area, myelin integrity, and surviving neurons were assessed by specific staining. Locomotor function was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale, grid walk test, and footprint test. The activation and polarization of microglia/macrophages were assessed by immunohistofluorescence and flow cytometry. The expression of corresponding inflammatory factors from M1/M2 and the activation of relevant signaling pathways were assessed by Western blotting. Results ATL‐III effectively improved histological and functional recovery in SCI rats. Furthermore, ATL‐III promoted the transformation of M1 into M2 and attenuated the activation of microglia/macrophages, further suppressing the expression of corresponding inflammatory mediators. This effect may be partly mediated by inhibition of neuroinflammation through the NF‐κB, JNK MAPK, p38 MAPK, and Akt pathways. Conclusion This study reveals a novel effect of ATL‐III in the regulation of microglial/macrophage polarization and provides initial evidence that ATL‐III has potential therapeutic benefits in SCI rats.
Collapse
Affiliation(s)
- Meng-Tong Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Wen-Jie Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Xue Song
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Yu-Jiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Zhi-Jun Geng
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China.,Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
17
|
Liu X, Mao Y, Huang S, Li W, Zhang W, An J, Jin Y, Guan J, Wu L, Zhou P. Selenium nanoparticles derived from Proteus mirabilis YC801 alleviate oxidative stress and inflammatory response to promote nerve repair in rats with spinal cord injury. Regen Biomater 2022; 9:rbac042. [PMID: 35855111 PMCID: PMC9290869 DOI: 10.1093/rb/rbac042] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial biotransformation and detoxification of biotoxic selenite into selenium nanoparticles (SeNPs) has emerged as an efficient technique for the utilization of selenium. SeNPs are characterized by high bioavailability and have several therapeutic effects owing to their antioxidant, anti-inflammatory and neuroprotective activities. However, their influence on microenvironment disturbances and neuroprotection after spinal cord injury (SCI) is yet to be elucidated. This study aimed to assess the influence of SeNPs on SCI and explore the underlying protective mechanisms. Overall, the proliferation and differentiation of neural stem cells were facilitated by SeNPs derived from Proteus mirabilis YC801 via the Wnt/β-catenin signaling pathway. The SeNPs increased the number of neurons to a greater extent than astrocytes after differentiation and improved nerve regeneration. A therapeutic dose of SeNPs remarkably protected the integrity of the spinal cord to improve the motor function of the hind limbs after SCI and decreased the expression of several inflammatory factors such as tumor necrosis factor-α and interleukin-6 in vivo and enhanced the production of M2-type macrophages by regulating their polarization, indicating the suppressed inflammatory response. Besides, SeNPs reversed the SCI-mediated production of reactive oxygen species. In conclusion, SeNPs treatment holds the potential to improve the disturbed microenvironment and promote nerve regeneration, representing a promising therapeutic approach for SCI.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Shengwei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 239000, China
| | - Weifeng Li
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Wei Zhang
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jingzhou An
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Yongchao Jin
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jianzhong Guan
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lifang Wu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233004, China
- Spinal Deformity Clinical Research Center of Anhui Province, Fuyang 236000, China
| |
Collapse
|
18
|
Qi Q, Wang XX, Li JL, Chen YQ, Chang JR, Xi J, Lü HZ, Zhang YX. Neuroprotective Effects of the Pannexin-1 Channel Inhibitor: Probenecid on Spinal Cord Injury in Rats. Front Mol Neurosci 2022; 15:848185. [PMID: 35663270 PMCID: PMC9162172 DOI: 10.3389/fnmol.2022.848185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Proinflammatory immune cell subsets constitute the majority in the local microenvironment after spinal cord injury (SCI), leading to secondary pathological injury. Previous studies have demonstrated that inflammasomes act as an important part of the inflammatory process after SCI. Probenecid, an inhibitor of the Pannexin-1 channel, can inhibit the activation of inflammasomes. This article focuses on the effects of probenecid on the local immune microenvironment, histopathology, and behavior of SCI. Our data show that probenecid inhibited the expression and activation of nucleotide-binding oligomerization domain receptor pyrindomain-containing 1 (NLRP1), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1, interleukin-1β (IL-1β), and caspase-3 proteins associated with inflammasomes, thereby suppressing the proportion of M1 cells. And consequently, probenecid reduced the lesion area and demyelination in SCI. Moreover, the drug increased the survival of motor neurons, which resulted in tissue repair and improved locomotor function in the injured SC. Altogether, existing studies indicated that probenecid can alleviate inflammation by blocking Pannexin-1 channels to inhibit the expression of caspase-1 and IL-1β, which in turn restores the balance of immune cell subsets and exerts neuroprotective effects in rats with SCI.
Collapse
Affiliation(s)
- Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
- School of Basic Medicine, Bengbu Medical College, Bengbu, China
| | - Xiao-Xuan Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yu-Qing Chen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Jian-Rong Chang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
- *Correspondence: He-Zuo Lü,
| | - Yu-Xin Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
- Yu-Xin Zhang,
| |
Collapse
|
19
|
Zhai X, Chen K, Yang H, Li B, Zhou T, Wang H, Zhou H, Chen S, Zhou X, Wei X, Bai Y, Li M. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnology 2021; 19:274. [PMID: 34496892 PMCID: PMC8425042 DOI: 10.1186/s12951-021-01022-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an inflammatory condition, and excessive adenosine triphosphate (ATP) is released into the extracellular space, which can be catabolized into adenosine by CD73. Extracellular vesicles have been designed as nano drug carriers in many diseases. However, their impacts on delivery of CD73 after SCI are not yet known. We aimed to construct CD73 modified extracellular vesicles and explore the anti-inflammatory effects after SCI. METHODS CD73 engineered extracellular vesicles (CD73+ hucMSC-EVs) were firstly established, which were derived from human umbilical cord mesenchymal stem cells (hucMSCs) transduced by lentiviral vectors to upregulate the expression of CD73. Effects of CD73+ hucMSC-EVs on hydrolyzing ATP into adenosine were detected. The polarization of M2/M1 was verified by immunofluorescence. Furthermore, A2aR and A2bR inhibitors and A2bR knockdown cells were used to investigate the activated adenosine receptor. Biomarkers of microglia and levels of cAMP/PKA were also detected. Repetitively in vivo study, morphology staining, flow cytometry, cytokine analysis, and ELISA assay, were also applied for verifications. RESULTS CD73+ hucMSC-EVs reduced concentration of ATP and promoted the level of adenosine. In vitro experiments, CD73+ hucMSC-EVs increased macrophages/microglia M2:M1 polarization, activated adenosine 2b receptor (A2bR), and then promoted cAMP/PKA signaling pathway. In mice using model of thoracic spinal cord contusion injury, CD73+ hucMSC-EVs improved the functional recovery after SCI through decreasing the content of ATP in cerebrospinal fluid and improving the polarization from M1 to M2 phenotype. Thus, the cascaded pro-inflammatory cytokines were downregulated, such as TNF-α, IL-1β, and IL-6, while the anti-inflammatory cytokines were upregulated, such as IL-10 and IL-4. CONCLUSIONS CD73+ hucMSC-EVs ameliorated inflammation after spinal cord injury by reducing extracellular ATP, promoting A2bR/cAMP/PKA pathway and M2/M1 polarization. CD73+ hucMSC-EVs might be promising nano drugs for clinical application in SCI therapy.
Collapse
Affiliation(s)
- Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Huan Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bo Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tianjunke Zhou
- Basic Medicine College, Naval Medical University, Shanghai, 200433, China
| | - Haojue Wang
- Basic Medicine College, Naval Medical University, Shanghai, 200433, China
| | - Huipeng Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shaofeng Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaozhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
de Souza JG, Starobinas N, Ibañez OCM. Unknown/enigmatic functions of extracellular ASC. Immunology 2021; 163:377-388. [PMID: 34042182 DOI: 10.1111/imm.13375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), encoded by PYCARD gene, is a 22 kDa small molecule, which aggregates into ASC specks during inflammasome activation. ASC protein is an adaptor protein present in several inflammasome complexes that performs several intra- and extracellular functions, in monomeric form or as ASC specks, during physiological and pathological processes related to inflammation and adaptive immunity. Extracellular ASC specks (eASC specks) released during cell death by pyroptosis can contribute as a danger signal to the propagation of inflammation via phagocytosis and activation of surrounding cells. ASC specks are found in the circulation of patients with chronic inflammatory diseases and have been considered as relevant blood biomarkers of inflammation. eASC amplifies the inflammatory signal, may induce the production of autoantibodies, transports molecules that bind to this complex, contributing to the generation of antibodies, and can induce the maturation of cytokines promoting the modelling of the adaptive immunity. Although several advances have been registered in the last 21 years, there are numerous unknown or enigmatic gaps in the understanding of the role of eASC specks in the organism. Here, we provide an overview about the ASC protein focusing on the probable roles of eASC specks in several diseases, up to the most recent studies concerning COVID-19.
Collapse
Affiliation(s)
- Jean Gabriel de Souza
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Immunology Catalyst, GlaxoSmithKline, Stevenag, UK
| | - Nancy Starobinas
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Olga Celia Martinez Ibañez
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
21
|
Chen J, Chen YQ, Shi YJ, Ding SQ, Shen L, Wang R, Wang QY, Zha C, Ding H, Hu JG, Lü HZ. VX-765 reduces neuroinflammation after spinal cord injury in mice. Neural Regen Res 2021; 16:1836-1847. [PMID: 33510091 PMCID: PMC8328782 DOI: 10.4103/1673-5374.306096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a major cause of neuronal injury after spinal cord injury. We hypothesized that inhibiting caspase-1 activation may reduce neuroinflammation after spinal cord injury, thus producing a protective effect in the injured spinal cord. A mouse model of T9 contusive spinal cord injury was established using an Infinite Horizon Impactor, and VX-765, a selective inhibitor of caspase-1, was administered for 7 successive days after spinal cord injury. The results showed that: (1) VX-765 inhibited spinal cord injury-induced caspase-1 activation and interleukin-1β and interleukin-18 secretion. (2) After spinal cord injury, an increase in M1 cells mainly came from local microglia rather than infiltrating macrophages. (3) Pro-inflammatory Th1Th17 cells were predominant in the Th subsets. VX-765 suppressed total macrophage infiltration, M1 macrophages/microglia, Th1 and Th1Th17 subset differentiation, and cytotoxic T cells activation; increased M2 microglia; and promoted Th2 and Treg differentiation. (4) VX-765 reduced the fibrotic area, promoted white matter myelination, alleviated motor neuron injury, and improved functional recovery. These findings suggest that VX-765 can reduce neuroinflammation and improve nerve function recovery after spinal cord injury by inhibiting caspase-1/interleukin-1β/interleukin-18. This may be a potential strategy for treating spinal cord injury. This study was approved by the Animal Care Ethics Committee of Bengbu Medical College (approval No. 2017-037) on February 23, 2017.
Collapse
Affiliation(s)
- Jing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Qing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Jiao Shi
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Qi-Yi Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Cheng Zha
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hai Ding
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jian-Guo Hu
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - He-Zuo Lü
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
22
|
Gong L, Lv Y, Li S, Feng T, Zhou Y, Sun Y, Mi D. Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1682. [PMID: 33490194 PMCID: PMC7812200 DOI: 10.21037/atm-20-6519] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Spinal cord injuries (SCIs), along with subsequent secondary injuries, often result in irreversible damage to both sensory and motor functions. However, a thorough view of the underlying pathological mechanisms of SCIs, especially in a temporal-spatial manner, is still lacking. Methods To obtain a comprehensive, real-time view of multiple subsets of the cellular mechanisms involved in SCIs, we applied RNA-sequencing technology to characterize the temporal changes in gene expression around the lesion site of contusion SCI in rats. First, we identified the differentially expressed genes (DEGs) in contrast to sham controls at 1, 4, and 7 days post SCI. Through bioinformatics analysis, including Pathway analysis, Gene-act-net, and Pathway-act-net, we screened and verified potential key pathways and genes associated with either the acute or subacute stages of SCI pathology. Results The top three overrepresented pathways were associated with cytokine-cytokine receptor interaction, TNF signaling pathway, and cell cycle at day 1; lysosome, cytokine-cytokine receptor interaction, phagosome at day 4; and phagosome, lysosome, cytokine-cytokine receptor interaction at day 7 post injury. Further, we identified uniquely enriched genes at each time point, such as Ccr1 and Nos2 at day 1; as well as Mgst2, and Pla2g3 at 4 and 7 days post-injury. Conclusions Our pathway analysis suggested a transition from inflammatory responses to multiple forms of cell death processes from the acute to subacute stages of SCI. Further, our results revealed a continuous transformation from a more inflammatory to an apoptotic/self-repairing transcriptome following the time-course of SCIs. Our research provides novel insights into the molecular mechanisms of SCI pathophysiology and identifies potential targets for therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Shenglong Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Feng
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yi Zhou
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| |
Collapse
|