1
|
Zhou H, Long Y, Yu F, Ji C, Gui L, Lu Y. Resveratrol improves gasdermin D-mediated pyroptosis of vascular endothelial cells induced by a high-fat diet and palmitic acid possibly via the SIRT1-p66Shc-NLRP3 pathway. J Nutr Biochem 2025; 140:109890. [PMID: 40054674 DOI: 10.1016/j.jnutbio.2025.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Resveratrol (RSV) ameliorates endothelial dysfunction (ED) primarily through sirtuin 1 (SIRT1). Increasing evidence shows pyroptosis as a novel mechanism in palmitic acid (PA)-induced ED. p66Shc is an adaptor protein involved in oxidative stress. However, whether RSV attenuates the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via p66Shc remains elusive. This study aims to evaluate whether the antipyroptotic effect of RSV and the SIRT1 inhibitor EX527 are related to p66Shc. High-fat diet (HFD) induced obesity in mice, and RSV was administered intragastrically with 400mg/kg/d for 22 successive weeks. The serum levels of interleukin-1β (IL-1β) and IL-18 were analyzed, and the expression of related proteins were assayed with immunohistochemistry in the thoracic aorta. human umbilical vein endothelial cells (HUVECs) were induced by PA, then treated with RSV and EX527 respectively, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) and expression of p66Shc, NLRP3, GSDMD and pyroptosis-related genes were assayed. RSV administration ameliorated endothelial cell pyroptosis by decreasing serum IL-1β and IL-18, the expression of NLRP3, p66Shc, and gasdermin D (GSDMD), and increasing the expression of SIRT1 in the HFD-treated thoracic aorta. PA promoted GSDMD-mediated endothelial cell pyroptosis by ROS production, LDH release, decreased MMP and SIRT1 expression, increased expression of p66Shc and activation of the NLRP3 inflammasome in a dose-dependent manner. RSV attenuated PA-induced pyroptosis, whereas EX527 reversed the antipyroptotic effect of RSV in PA-treated HUVECs. Our results suggested a new mechanism that RSV improves PA-induced pyroptosis in endothelial cells via the SIRT1-p66Shc-NLRP3 pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yueming Long
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Guangdong Hydropower Group Hospital, Guangzhou, China
| | - Fangmei Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chenhui Ji
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Li Gui
- The Comprehensive Experimental Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; The Comprehensive Experimental Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Zhang K, Ma D, Song R, Wu Y, Xu Z, Ni X. The Protective Role of Leptin in Neurological Damage Induced by Chronic Intermittent Hypoxia. Mol Neurobiol 2025:10.1007/s12035-025-05018-w. [PMID: 40335790 DOI: 10.1007/s12035-025-05018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Obstructive sleep apnea syndrome (OSA), characterized by chronic intermittent hypoxia (CIH), is linked to cognitive impairment and neuronal damage. Leptin, a peptide hormone involved in energy metabolism, has shown neuroprotective effects in various neurological disorders, yet its role in CIH-induced cognitive impairment remains unclear. This study used a CIH mouse model to investigate the effects of leptin on cognitive function and neuronal damage, with a particular focus on Sirtuin 1 (SIRT1) as a potential molecular mediator. Mice were exposed to CIH and treated with leptin, with or without a SIRT1 inhibitor. Cognitive performance was assessed using the Morris Water Maze (MWM) and Y-maze tests. Neuronal damage was evaluated by H&E and Nissl staining, while oxidative stress was measured by Reactive Oxygen Species (ROS) and malondialdehyde (MDA) levels, and Superoxide Dismutase (SOD) activity. SIRT1 expression was determined via western blot analysis. Leptin treatment significantly improved cognitive performance in CIH mice, evidenced by reduced escape latency, increased platform crossings in the MWM, and enhanced alternation rates in the Y-maze. Additionally, leptin mitigated CIH-induced neuronal damage and oxidative stress, demonstrated by improved neuronal structure and reduced ROS and MDA levels. These benefits were associated with increased SIRT1 expression, whereas SIRT1 inhibition reversed leptin's positive effects, highlighting the crucial role of SIRT1 in mediating leptin's neuroprotective effects. These findings suggest that leptin alleviates CIH-induced cognitive dysfunction and neuronal damage through SIRT1 upregulation, offering insights into potential therapeutic mechanisms and future clinical applications.
Collapse
Affiliation(s)
- Kai Zhang
- Clinical Department of National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Dandi Ma
- Clinical Department of National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Ruobing Song
- Clinical Department of National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yunxiao Wu
- Department of Otolaryngology, Head and Neck Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhifei Xu
- Clinical Department of National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| | - Xin Ni
- Clinical Department of National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
- Department of Otolaryngology, Head and Neck Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
3
|
Zhao H, Qiu X, Wang S, Wang Y, Xie L, Xia X, Li W. Multiple pathways through which the gut microbiota regulates neuronal mitochondria constitute another possible direction for depression. Front Microbiol 2025; 16:1578155. [PMID: 40313405 PMCID: PMC12043685 DOI: 10.3389/fmicb.2025.1578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
As a significant mental health disorder worldwide, the treatment of depression has long faced the challenges of a low treatment rate, significant drug side effects and a high relapse rate. Recent studies have revealed that the gut microbiota and neuronal mitochondrial dysfunction play central roles in the pathogenesis of depression: the gut microbiota influences the course of depression through multiple pathways, including immune regulation, HPA axis modulation and neurotransmitter metabolism. Mitochondrial function serves as a key hub that mediates mood disorders through mechanisms such as defective energy metabolism, impaired neuroplasticity and amplified neuroinflammation. Notably, a bidirectional regulatory network exists between the gut microbiota and mitochondria: the flora metabolite butyrate enhances mitochondrial biosynthesis through activation of the AMPK-PGC1α pathway, whereas reactive oxygen species produced by mitochondria counteract the flora composition by altering the intestinal epithelial microenvironment. In this study, we systematically revealed the potential pathways by which the gut microbiota improves neuronal mitochondrial function by regulating neurotransmitter synthesis, mitochondrial autophagy, and oxidative stress homeostasis and proposed the integration of probiotic supplementation, dietary fiber intervention, and fecal microbial transplantation to remodel the flora-mitochondrial axis, which provides a theoretical basis for the development of novel antidepressant therapies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Hongyi Zhao
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongfeng Qiu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyu Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wang
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xie
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuwen Xia
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
4
|
Zhang X, Xu H, Yin S, Gozal D, Khalyfa A. Obstructive sleep apnea and memory impairments: Clinical characterization, treatment strategies, and mechanisms. Sleep Med Rev 2025; 81:102092. [PMID: 40286536 DOI: 10.1016/j.smrv.2025.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Obstructive sleep apnea (OSA), is associated with dysfunction in the cardiovascular, metabolic and neurological systems. However, the relationship between OSA and memory impairment, intervention effects, and underlying pathways are not well understood. This review summarizes recent advances in the clinical characterization, treatment strategies, and mechanisms of OSA-induced memory impairments. OSA patients may exhibit significant memory declines, including impairments in working memory from visual and verbal sources. The underlying mechanisms behind OSA-related memory impairment are complex and multifactorial with poorly understood aspects that require further investigation. Neuroinflammation, oxidative stress, neuronal damage, synaptic plasticity, and blood-brain barrier dysfunction, as observed under exposures to intermittent hypoxia and sleep fragmentation are likely contributors to learning and memory dysfunction. Continuous positive airway pressure treatment can provide remarkable relief from memory impairment in OSA patients. Other treatments are emerging but need to be rigorously evaluated for cognitive improvement. Clinically, reliable and objective diagnostic tools are necessary for accurate diagnosis and clinical characterization of cognitive impairments in OSA patients. The complex links between gut-brain axis, epigenetic landscape, genetic susceptibility, and OSA-induced memory impairments suggest new directions for research. Characterization of clinical phenotypic clusters can facilitate advances in precision medicine to predict and treat OSA-related memory deficits.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
5
|
Matias KV, Gonçalves VDC, Scorza FA, Finsterer J, Ciconelli RM, Scorza CA. Nature's Remedies: Exploring the Potential of Propolis to Alleviate Non-Motor Manifestations of Parkinson's Disease. Molecules 2025; 30:1672. [PMID: 40333577 PMCID: PMC12029239 DOI: 10.3390/molecules30081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder with debilitating non-motor symptoms, including gastrointestinal dysfunction, cardiovascular abnormalities, mood and anxiety disorders, cognitive decline, sleep disturbances, respiratory dysfunction, and pain. Despite their significant impact on quality of life, these symptoms are often inadequately addressed. Propolis is a natural bee-derived product, rich in bioactive compounds with anti-inflammatory, antioxidant, immunomodulatory, and neuroprotective properties, which holds potential in PD due to its multitarget and multipathway actions, addressing various underlying mechanisms of non-motor symptom diseases. Preclinical and clinical studies suggest that propolis may influence key pathological mechanisms in PD's non-motor symptoms. Evidence points to its potential benefits in improving cognition, mood disorders, gastrointestinal health, and alleviating cardiovascular and sleep-related issues. Although research on propolis in non-motor symptoms of PD remains scarce, findings from related conditions suggest its ability to influence mechanisms associated with these symptoms. This review underscores the underexplored therapeutic potential of propolis in non-motor symptoms of PD, drawing on existing evidence and advocating for further research to fully assess its role in addressing these symptoms and improving patient outcomes.
Collapse
Affiliation(s)
- Kételin Vitória Matias
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, SP, Brazil; (K.V.M.); (V.d.C.G.); (F.A.S.)
| | - Valeria de Cassia Gonçalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, SP, Brazil; (K.V.M.); (V.d.C.G.); (F.A.S.)
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, SP, Brazil; (K.V.M.); (V.d.C.G.); (F.A.S.)
- Departamento de Pesquisa da BP, A Beneficência Portuguesa de São Paulo, São Paulo 01323-001, SP, Brazil;
| | | | - Rozana Mesquita Ciconelli
- Departamento de Pesquisa da BP, A Beneficência Portuguesa de São Paulo, São Paulo 01323-001, SP, Brazil;
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, SP, Brazil; (K.V.M.); (V.d.C.G.); (F.A.S.)
| |
Collapse
|
6
|
Wang J, Liu Q, Zhang K, Zhao S, Shao Q, Fu F, Ma J, Wang Z, Yan YX, Wang H, Sun J, Cheng Y. RNF20 dual regulation of MDA5 signaling to maintain immune homeostasis in chickens. J Virol 2025; 99:e0200824. [PMID: 39998124 PMCID: PMC11915864 DOI: 10.1128/jvi.02008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/05/2025] [Indexed: 02/26/2025] Open
Abstract
RIG-I and MDA5, known as the RIG-I-like receptors (RLRs), play a pivotal role in inducing antiviral responses to RNA viral infections. While chickens lack RIG-I, they possess a functionally enhanced MDA5 that recognizes pathogens and regulates immunity, underscoring the critical role of MDA5 in maintaining immune homeostasis in chickens. However, the precise mechanisms governing the expression and optimal activation of MDA5 remain unclear. Here, we reveal that the chicken E3 ubiquitin ligase RNF20 is essential for modulating MDA5-mediated innate immune homeostasis. Transcriptome sequencing analysis revealed that RNA viral infection of DF-1 cells significantly upregulated the expression of chicken RNF20. Overexpression of RNF20 markedly suppresses the expression of chicken innate immunity-related genes, while RNF20 knockout leads to immune deficiency both in vivo and in vitro. Mechanistically, RNF20 is located in the nucleus, where it maintains the basic expression and regulates the inducible expression of MDA5 to establish immune defense during the early infection phase. In the late phase, RNF20 translocates to the cytoplasm, where it facilitates the K27- and K48-linked polyubiquitination and subsequent degradation of MDA5, thereby preventing immune overstimulation. Overall, this study establishes RNF20 as an important E3 ubiquitin ligase that maintains chicken innate immune homeostasis. IMPORTANCE Chicken MDA5 is an important RNA viral sensor for initiating the antiviral innate immune response. The protein level of MDA5 must be tightly regulated to maintain antiviral innate immune homeostasis. In this study, we demonstrate that the E3 ubiquitin ligase RNF20 precisely regulates MDA5 protein stabilization through nucleoplasmic translocation. Specifically, in uninfected and during early infection, RNF20 regulates MDA5 transcription in the nucleus. While in the late stages of infection, RNF20 translocates out of the nucleus and catalyzes the ubiquitinated degradation of MDA5. Thus, RNF20 is important in regulating chicken antiviral innate immune homeostasis.
Collapse
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiuju Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kehui Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shurui Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Shao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Feiyu Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-xian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Wang K, Yang J, Deng J, Wang A, Chen G, Lin D. Pinocembrin reduces pyroptosis to improve flap survival by modulating the TLR4/NF-κB/NLRP3 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167710. [PMID: 39923325 DOI: 10.1016/j.bbadis.2025.167710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/29/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Pinocembrin has been widely utilized in clinical settings as a topical treatment for detoxification, inflammation reduction, and healing dermal conditions such as cracked skin and burns. METHODS In this study, pinocembrin was administered to hypoxia-reoxygenation model in human umbilical vein endothelial cells and 36 rats for 7 days using the McFarlane flap model. Neovascularization was then assessed using Doppler and lead oxide gelatin angiography. Neutrophil infiltration and mean microvessel density were assessed through hematoxylin and eosin staining. Immunofluorescence was employed to assess neovascularization and inflammation by detecting vascular endothelial growth factor, interleukin-1β, interleukin-6, and tumor necrosis factor-α. Pyroptosis was evaluated using western blot analysis. RESULTS Compared with the control group, the experimental groups exhibited a significant increase in flap survival area with the promotion of neovascularization, mitigation of oxidative stress, and suppression of pyroptosis and inflammation. CONCLUSION Pinocembrin enhanced flap survival, promoted neovascularization, mitigated oxidative stress, and suppressed pyroptosis and inflammation by downregulating the TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Wang X, Gong L, Wei C, Zhao Y, Ran L, Li P, Gu W, Wu X, Liang Z, Wang X. Inhibition of NSUN6 protects against intermittent hypoxia-induced oxidative stress and inflammatory response in adipose tissue through suppressing macrophage ferroptosis and M1 polarization. Life Sci 2025; 364:123433. [PMID: 39884342 DOI: 10.1016/j.lfs.2025.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
AIMS Accumulating studies have demonstrated obstructive sleep apnea (OSA) is strongly associated with metabolic syndrome (MetS) and inflammatory response in adipose tissue. Chronic intermittent hypoxia (CIH) has been proved leading to M1 macrophage polarization that contributes to adipose tissue inflammation, but the molecular mechanism remains unclear. Epigenetic regulation of RNA has been found playing crucial roles in incremental diseases. MAIN METHODS Based on mining the GEO database, we constructed an IH (8 weeks) C57/6 J mice model to investigate the changes and interactions of key gene expression, M1 macrophage infiltration, and inflammatory markers in white adipose tissue. We also used an IH-treated (24 h) RAW 264.7 cells to further explore the mechanisms of hypoxia-induced M1 polarization, oxidative stress, and inflammatory response. KEY FINDINGS According to the analysis of datasets, CIH increases the level of NSUN6 in adipose tissue and NSUN6 shows good diagnostic value of OSA. In the mice model, CIH exposure is also demonstrated to increases NSUN6 level and M1 macrophage infiltration in adipose tissue, which can be reversed by ferroptosis inhibitor. Studies show that CIH leads to ferroptosis and M1 macrophage polarization by promoting the expression of NSUN6 in vitro, thus resulting in inflammatory response. SIGNIFICANCE Our findings provide a better understanding of the mechanisms of CIH-induced inflammation in adipose tissue. NSUN6 is firstly suggested to participate in macrophages ferroptosis and M1 polarization. Inhibition of NSUN6 in macrophages could protects against CIH-induce oxidative stress and inflammatory response in adipose tissue, thus becoming a potential therapeutic target to OSA-associated MetS.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Chang Wei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Yuean Zhao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Longyi Ran
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Peijun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai 200072, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| | - Xinyuan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
10
|
Lin H, Xu Y, Xiong H, Wang L, Shi Y, Wang D, Wang Z, Ren J, Wang S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118907. [PMID: 39389397 DOI: 10.1016/j.jep.2024.118907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C. A. Meyer. has been used extensively globally as a medicine. It has a therapeutic effect on sleep and is an attractive alternative for patients with insomnia. The United States Patent of Invention has approved the use of P. ginseng alcohol extract (GAE) in nutraceuticals or food to improve sleep. It has shown promise as an effective therapeutic agent for improving sleep and cognition. However, its mechanism of action is not yet fully understood. AIM OF THE STUDY To investigate the therapeutic benefits of GAE on sleep and cognition and its underlying mechanism in aged sleep-deprived rats, with a focus on orexin-mediated autophagy function. MATERIALS AND METHODS We conducted in vivo tests in an aged sleep-deprivation rat model produced using p-chlorophenylalanine (PCPA) coupled with modified multi-platform method to examine the therapeutic effects and mechanisms of GAE. A pentobarbital sodium-induced sleep test and water maze were used to assess sleep and cognitive performance, respectively. An enzyme-linked immunosorbent assay was used to determine orexin levels and aging and sleep markers in serum and hypothalamic tissues. Hematoxylin-eosin staining and Nissl staining were used to assess histopathological changes, and autophagy levels were assessed using transmission electron microscopy, immunofluorescence. Western blot and immunohistochemical staining were performed to detect the levels of orexin, orexin-receptor proteins, and autophagy-associated proteins to study the effects of GAE on hippocampal neurons, and the underlying mechanisms. RESULTS In aged sleep-deprived rats, GAE treatment prolonged sleep duration, improved cognitive function, prevented hippocampal neuronal damage, increased the number of Nissl bodies, improved aging and sleep markers, and enhanced the LC3A/B expression in autophagosomes and neurons. The amount of orexin in serum and hypothalamic tissue and OX1R, OX2R, and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) proteins also reduced, which resulted in the inhibition of the PI3K/Akt/mTOR pathway and activation of the autophagy process. CONCLUSIONS GAE may reduce hypothalamic orexin secretion and interact with orexin receptors to inhibit the PI3K/Akt/mTOR signalling network and activate autophagy. This may be a potential mechanism of action of GAE in regulating sleep-related cognitive function.
Collapse
Affiliation(s)
- Haining Lin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunlong Xu
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huazhong Xiong
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lichao Wang
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuqing Shi
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyi Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zixu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jixiang Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Siming Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
11
|
Wang P, Pan L, Liu Q, Huang Y, Tang Y, Lin B, Liao Y, Luo H, Meng X. Pinocembrin activation of DPP9 inhibits NLRP1 inflammasome activation to alleviate cerebral ischemia/reperfusion-induced lung and intestinal injury. Immunol Res 2024; 73:13. [PMID: 39676095 DOI: 10.1007/s12026-024-09580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
After stroke, there is a high incidence of acute lung injury and impairment of intestinal barrier function. In this research, the effects of pinocembrin on organ injuries induced by cerebral ischemia-reperfusion were investigated in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) and further explored the possible mechanism. The potential targets of pinocembrin against MCAO/R were obtained by online tools. An MCAO/R model was developed in C57BL/6 J mice, in combination with pinocembrin administration and lentivirus-mediated gene intervention. Pinocembrin alleviated neurological impairment, reduced the volume of cerebral infarction, attenuated pathological injury of brain tissues in MCAO/R-induced mice by promoting the expression of dipeptidyl peptidase 9 (DPP9), and blocked the nucleotide-binding domain leucine-rich repeat pyrin domain containing 1 (NLRP1) inflammasome activation. Moreover, pinocembrin attenuated the infiltration of inflammatory cells in the lungs and intestinal histopathological injury induced by MCAO/R. The above effects of pinocembrin were reversed by knocking down DPP9. These findings indicated that pinocembrin inhibits NLRP1 inflammasome activation by inducing DPP9, thus mitigating brain, lung, and intestinal injuries induced by MCAO/R.
Collapse
Affiliation(s)
- Po Wang
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Liya Pan
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Qianqian Liu
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yan Huang
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Youlian Tang
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Baoquan Lin
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yayun Liao
- Department of Neurology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hanwen Luo
- Department of Scientific Research, Liuzhou Worker's Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiaoyan Meng
- Department of Nephrology, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, No. 156, Heping Road, Liunan District, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, P.R. China.
| |
Collapse
|
12
|
Li G, Liu W, Da X, Li Z, Pu J. The natural flavonoid pinocembrin shows antithrombotic activity and suppresses septic thrombosis. Int Immunopharmacol 2024; 142:113237. [PMID: 39340994 DOI: 10.1016/j.intimp.2024.113237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Sepsis, an extreme host response to systemic infection, remains one of the leading causes of mortality worldwide. Platelets, which are integral to both thrombosis and inflammation, play a crucial role in the pathophysiology of sepsis. Excessive platelet activation and aggregation significantly increase the risk of thrombosis, thereby elevating mortality in septic patients. However, the etiology and treatment of this condition have not been comprehensively studied. This study identifies pinocembrin, a natural flavonoid compound derived from propolis, as a potential therapeutic agent for mitigating platelet activation and treating sepsis. In vivo, pinocembrin effectively inhibited FeCl3-induced carotid arterial occlusive thrombus formation and collagen/epinephrine-induced pulmonary thromboembolism in mouse models. In vitro, pinocembrin treatment suppressed multiple facets of platelet activation, including aggregation, secretion, and αIIbβ3-mediated signaling events. Mechanistically, pinocembrin repressed platelet functions by inhibiting Src/Syk/PLCγ2/MAPK signaling pathway. Using cecal ligation and puncture (CLP) mouse model to simulate human sepsis, pinocembrin reduced inflammatory cytokine release and septic thrombosis, thereby improving the survival rate of septic mice. Lipopolysaccharide (LPS)-induced model further substantiated these results. Overall, the inhibition of platelet activity by pinocembrin demonstrates significant therapeutic potential for managing life-threatening septic thrombosis.
Collapse
Affiliation(s)
- Gaoxiang Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Liu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwen Da
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyan Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Ling J, Li B, Yuan X, Yang W, Sun K. Intermittent Hypoxia Impairs Cognitive Function and Promotes Mitophagy and Lysophagy in Obstructive Sleep Apnea-Hypopnea Syndrome Rat Model. Mol Biotechnol 2024:10.1007/s12033-024-01319-y. [PMID: 39549209 DOI: 10.1007/s12033-024-01319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Autophagy regulates intermittent hypoxia (IH)-induced obstructive sleep apnea-hypopnea syndrome (OSAHS). We investigated the effects of IH and its withdrawal on cognitive function, autophagy, and lysophagy in OSAHS. An OSAHS rat model was established, and rats were divided into five groups: normoxia control, IH-4w (4-week IH), IH-6w (6-week IH), IH-8w (8-week IH), and IH-8w + 4w (8-week IH and 4-week normoxia). The cognitive behavior; mitochondrial and lysosomal morphology of the hippocampal tissue; mitochondrial respiratory function, permeability, and membrane potential; lysosomal function; autophagy- and lysophagy-related protein levels; and hypoxia-associated autophagy gene expression in rats were assessed. The cognitive function of rats in the IH-4w, IH-6w, and IH-8w groups was significantly impaired. In IH-8w cells, mitochondrial function was damaged with swollen morphology and decreased quantity, respiration, permeability, and membrane potential, along with significantly increased mitophagy-related protein ATG5 and LC3II/LC3 levels and decreased p62 levels. Expression of hypoxia-associated autophagy genes Becn1, Hif1, Bnip3, Bnip3l, and Fundc1 was significantly higher in the IH-8w group. Significantly increased LAMP2, CTSB, and ACP2 levels in IH-8w cells further indicated impaired lysosomal function. Lysophagy-related protein LAMP1, LC3II/LC3I, and TFEB levels were significantly increased in the IH-8w group, whereas p62 level was significantly decreased. The above listed evidence indicated damage to the mitochondria and lysosomes, as well as stimulation of mitophagy and lysophagy in IH-treatment OSAHS rat model. After withdrawing IH and culturing for 4 weeks in normal conditions, the cognitive function of rats improved, and mitophagy and lysophagy decreased. Our findings indicate that IH impairs cognitive function and promotes mitophagy and lysophagy in an OSAHS rat model, and IH withdrawal recovered the above effects.
Collapse
Affiliation(s)
- Jizu Ling
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| | - BoWen Li
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - XinHui Yuan
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - WenKai Yang
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - KeYang Sun
- Department of Pediatric Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| |
Collapse
|
14
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
15
|
Yang H, Yuan Y, Yang K, Wang N, Li X. ELK4 ameliorates cognitive impairment and neuroinflammation induced by obstructive sleep apnea. Brain Res Bull 2024; 216:111054. [PMID: 39173777 DOI: 10.1016/j.brainresbull.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Intermittent hypoxia (IH) in patients with obstructive sleep apnea (OSA) syndrome elicited neuron injury (especially in the hippocampus and cortex), contributing to cognitive dysfunction. This study investigated the effects and clarified the mechanisms of ETS domain-containing protein Elk-4 (ELK4) on the cognitive function and neuroinflammation of mice with IH. Mouse microglia BV2 cells were induced with IH by exposure to fluctuating O2 concentrations (alternating from 5 % to 21 % every 30 min), and mice with OSA were developed and subjected to lentivirus-mediated gene intervention. ELK4 expression was significantly reduced in IH-induced microglia and brain tissues of mice with OSA. Overexpression of ELK4 attenuated oxidative stress, decreased the pro-inflammatory factors IL-1β, IL-6, and TNF-α, and increased the level of the anti-inflammatory factors IL-10 and TGF-β1, as well as the neuroprotective factor BDNF. ELK4 promoted the transcription of fibronectin type III domain-containing protein 5 (FNDC5) by binding to the promoter of FNDC5. Knockdown of FNDC5 in IH-induced microglia and animals reversed the protective effects of ELK4 on OSA-associated neuroinflammation and cognitive dysfunction. Overall, the results demonstrated that ELK4 overexpression repressed microglial activation by inducing the transcription of FNDC5, thus attenuating neuroinflammation and cognitive dysfunction induced by OSA.
Collapse
Affiliation(s)
- Haiming Yang
- Department of Neurology, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Ying Yuan
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Ke Yang
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Ning Wang
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China
| | - Xiao Li
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, PR China.
| |
Collapse
|
16
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
17
|
Ye J, Lv Y, Xie H, Lian K, Xu X. Whole-Genome Metagenomic Analysis of the Oral Microbiota in Patients with Obstructive Sleep Apnea Comorbid with Major Depressive Disorder. Nat Sci Sleep 2024; 16:1091-1108. [PMID: 39100910 PMCID: PMC11296376 DOI: 10.2147/nss.s474052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) patients commonly experience high rates of depression. This study aims to examine the oral microbiota characteristics of OSA and those with comorbid major depressive disorder (OSA+MDD) patients. Methods Participants were enrolled from Aug 2022 to Apr 2023. Polysomnography, psychiatrist interviews, and scales were used to diagnose OSA and MDD. Oral samples were collected from participants by rubbing swabs on buccal mucosa, palate, and gums. Oral microbiota was analyzed via whole-genome metagenomics and bioinformatic analysis followed sequencing. Venous blood was drawn to detect plasma inflammatory factor levels. Results The study enrolled 33 OSA patients, 28 OSA+MDD patients, and 28 healthy controls. Significant differences were found in 8 phyla, 229 genera, and 700 species of oral microbiota among the three groups. Prevotellaceae abundance in the OSA and OSA+MDD groups was significantly lower than that in healthy controls. Linear discriminant analysis effect size (LEfSe) analysis showed that Streptococcaceae and Actinobacteria were the characteristic oral microbiota of the OSA and OSA+MDD groups, respectively. KEGG analysis indicates 30 pathways were changed in the OSA and OSA+MDD groups compared with healthy controls, and 23 pathways were changed in the OSA group compared with the OSA+MDD group. Levels of IL-6 in the OSA+MDD group were significantly higher than in the healthy group, correlating positively with the abundance of Schaalia, Campylobacter, Fusobacterium, Alloprevotella, and Candidatus Nanosynbacter in the oral, as well as with Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale scores. Conclusion Significant differences in oral microbiota populations and gene function were observed among the three groups. OSA patients were characterized by a decreased abundance of Prevotellaceae and an increased abundance of Streptococcaceae. OSA+MDD patients had an increased abundance of Actinobacteria. IL-6 might regulate the relationship between depression and the oral microbiota in OSA+MDD patients.
Collapse
Affiliation(s)
- Jing Ye
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Sleep Medicine Center, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Yunhui Lv
- Sleep Medicine Center, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Hui Xie
- Department of Traumatology, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
18
|
Zhou Z, Zhao Q, Huang Y, Meng S, Chen X, Zhang G, Chi Y, Xu D, Yin Z, Jiang H, Yu L, Wang H. Berberine ameliorates chronic intermittent hypoxia-induced cardiac remodelling by preserving mitochondrial function, role of SIRT6 signalling. J Cell Mol Med 2024; 28:e18407. [PMID: 38894630 PMCID: PMC11187832 DOI: 10.1111/jcmm.18407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.
Collapse
Affiliation(s)
- Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Qiusheng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
- Shenyang Joint Logistics Support CenterPharmaceutical Instruments Supervision and Inspection StationShenyangChina
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
- Jinzhou Medical UniversityJinzhouLiaoningChina
| | - Xin Chen
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
- Jinzhou Medical UniversityJinzhouLiaoningChina
| | - Guoxin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Yanbang Chi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Dengyue Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
- School of Biomedical Engineering, Faculty of MedicineDalian University of TechnologyDalianLiaoningChina
| | - Zongtao Yin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Hui Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
19
|
Zhang JJ, Mao-Mao, Shao MM, Wang MC. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155535. [PMID: 38537442 DOI: 10.1016/j.phymed.2024.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Mao-Mao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Min-Min Shao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Meng-Chuan Wang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China.
| |
Collapse
|
20
|
Si J, Chen X, Qi K, Li D, Liu B, Zheng Y, Ji E, Yang S. Shengmaisan combined with Liuwei Dihuang Decoction alleviates chronic intermittent hypoxia-induced cognitive impairment by activating the EPO/EPOR/JAK2 signaling pathway. Chin J Nat Med 2024; 22:426-440. [PMID: 38796216 DOI: 10.1016/s1875-5364(24)60640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 05/28/2024]
Abstract
Chronic intermittent hypoxia (CIH), a principal pathophysiological aspect of obstructive sleep apnea (OSA), is associated with cognitive deficits. Clinical evidence suggests that a combination of Shengmaisan and Liuwei Dihuang Decoctions (SMS-LD) can enhance cognitive function by nourishing yin and strengthening the kidneys. This study aimed to assess the efficacy and underlying mechanisms of SMS-LD in addressing cognitive impairments induced by CIH. We exposed C57BL/6N mice to CIH for five weeks (20%-5% O2, 5 min/cycle, 8 h/day) and administered SMS-LD intragastrically (15.0 or 30 g·kg-1·day) 30 min before each CIH session. Additionally, AG490, a JJanus kinase 2 (JAK2) inhibitor, was administered via intracerebroventricular injection. Cognitive function was evaluated using the Morris water maze, while synaptic and mitochondrial structures were examined by transmission electron microscopy. Oxidative stress levels were determined using DHE staining, and the activation of the erythropoietin (ER)/ER receptor (EPOR)/JAK2 signaling pathway was analyzed through immunohistochemistry and Western blotting. To further investigate molecular mechanisms, HT22 cells were treated in vitro with either SMS-LD medicated serum alone or in combination with AG490 and then exposed to CIH for 48 h. Our results indicate that SMS-LD significantly mitigated CIH-induced cognitive impairments in mice. Specifically, SMS-LD treatment enhanced dendritic spine density, ameliorated mitochondrial dysfunction, reduced oxidative stress, and activated the EPO/EPOR/JAK2 signaling pathway. Conversely, AG490 negated SMS-LD's neuroprotective and cognitive improvement effects under CIH conditions. These findings suggest that SMS-LD's beneficial impact on cognitive impairment and synaptic and mitochondrial integrity under CIH conditions may predominantly be attributed to the activation of the EPO/EPOR/JAK2 signaling pathway.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Department of Geriatrics, First People's Hospital of Xiaogan, Xiaogan 432000, China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| |
Collapse
|
21
|
Hong G, Li S, Zheng G, Zheng X, Zhan Q, Zhou L, Wei Q, He W, Chen Z. Therapeutic potential of a prominent dihydroxyflavanone pinocembrin for osteolytic bone disease: In vitro and in vivo evidence. J Orthop Translat 2024; 45:197-210. [PMID: 38685969 PMCID: PMC11056316 DOI: 10.1016/j.jot.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 05/02/2024] Open
Abstract
Background/objective As the pivotal cellular mediators of bone resorption and pathological bone remodeling, osteoclasts have emerged as a prominent target for anti-resorptive interventions. Pinocembrin (PIN), a predominant flavonoid found in damiana, honey, fingerroot, and propolis, has been recognized for its potential therapeutic effects in osteolysis. The purpose of our project is to investigate the potential of PIN to prevent bone resorption in ovariectomized (OVX) mice by suppressing osteoclast production through its underlying mechanisms. Methods The study commenced by employing protein-ligand molecular docking to ascertain the specific interaction between PIN and nuclear factor-κB (NF-κB) ligand (RANKL). Subsequently, PIN was introduced to bone marrow macrophages (BMMs) under the stimulation of RANKL. The impact of PIN on osteoclastic activity was assessed through the utilization of a positive TRAcP staining kit and a hydroxyapatite resorption assay. Furthermore, the study investigated the generation of reactive oxygen species (ROS) in osteoclasts induced by RANKL using H2DCFDA. To delve deeper into the underlying mechanisms, molecular cascades triggered by RANKL, including NF-κB, ROS, calcium oscillations, and NFATc1-mediated signaling pathways, were explored using Luciferase gene report, western blot analysis, and quantitative real-time polymerase chain reaction. Moreover, an estrogen-deficient osteoporosis murine model was established to evaluate the therapeutic effects of PIN in vivo. Results In this study, we elucidated the profound inhibitory effects of PIN on osteoclastogenesis and bone resorption, achieved through repression of NF-κB and NFATc1-mediated signaling pathways. Notably, PIN also exhibited potent anti-oxidative properties by mitigating RANKL-induced ROS generation and augmenting activities of ROS-scavenging enzymes, ultimately leading to a reduction in intracellular ROS levels. Moreover, PIN effectively abrogated the expression of osteoclast-specific marker genes (Acp5, Cathepsin K, Atp6v0d2, Nfatc1, c-fos, and Mmp9), further underscoring its inhibitory impact on osteoclast differentiation and function. Additionally, employing an in vivo mouse model, we demonstrated that PIN effectively prevented osteoclast-induced bone loss resultant from estrogen deficiency. Conclusion Our findings highlight the potent inhibitory effects of PIN on osteoclastogenesis, bone resorption, and RANKL-induced signaling pathways, thereby establishing PIN as a promising therapeutic candidate for the prevention and management of osteolytic bone diseases. The translational potential of this article PIN serves as a promising therapeutic agent for the prevention and management of osteolytic bone diseases and holds promise for future clinical applications in addressing conditions characterized by excessive bone resorption. PIN is a natural compound found in various sources, including damiana, honey, fingerroot, and propolis. Its widespread availability and potential for therapeutic use make it an attractive candidate for further investigation and development as a clinical intervention.
Collapse
Affiliation(s)
- Guoju Hong
- Traumatology & Orthopaedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
| | - Shuqiang Li
- Department of Oncology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
| | - Guanqiang Zheng
- Department of Rehabilitation, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
| | - Xiaoxia Zheng
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Qunzhang Zhan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Lin Zhou
- Department of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Qiushi Wei
- Traumatology & Orthopaedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
| | - Wei He
- Traumatology & Orthopaedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510378, PR China
| | - Zhenqiu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| |
Collapse
|
22
|
Tang K, Sun L, Chen L, Feng X, Wu J, Guo H, Zheng Y. Bioinformatics Analysis and Experimental Validation of Mitochondrial Autophagy Genes in Knee Osteoarthritis. Int J Gen Med 2024; 17:639-650. [PMID: 38414629 PMCID: PMC10898481 DOI: 10.2147/ijgm.s444847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Background Mitochondrial autophagy is closely related to the pathogenesis of osteoarthritis, In order to explore the role of mitochondrial autophagy related genes in knee osteoarthritis (KOA) and its molecular mechanism. Methods KOA-related transcriptome data were extracted from the Gene Expression Omnibus (GEO) database. Differentially expressed mitochondrial autophagy gene (DEMGs) were screened in patients with KOA by differential expression analysis. The STRING website was used to construct a protein-protein interaction (PPI) network among DEMGs. Molecular complex detection (MCODE) method in Cytoscape software was performed to identify hub DEMGs. Support vector machine recursive feature elimination (SVM-RFE) method was used to construct the hub DEMG diagnosis model. Genes with diagnostic value were identified as biomarkers by plotting receiver operating characteristic (ROC) curves and Expression validation. CIBERSORT algorithm was used to calculate the proportion of 22 immune cells in each sample in the GSE114007 dataset. Finally, biomarker expression was verified by qPCR. Results A total of 15 DEMGs were obtained and enrichment analyses showed that these DEMG strains were mainly enriched in the mitophagy-animal, shigellosis, autophagy-animal and FoxO signal pathways. The PPI network unveiled 13 DEMGs with interactions. In addition, 8 hub DEMGs (ULK1, CALCOCO2, MAP1LC3B, BNIP3L, GABARAPL1, BNIP3, FKBP8 and FOXO3) were obtained for KOA. And 5 model DEMGs (BNIP3L, BNIP3, MAP1LC3B, ULK1 and FOXO3) were screened. The ROC curves revealed that BNIP3 and FOXO3 has strong diagnostic value in these models of DEMG. Immune-infiltration and correlation analysis showed that BNIP3 and FOXO3 were significantly correlated with three different immune cells, including primary B cells, M0 macrophage and M2 macrophage. The cartilage tissue samples qPCR verification results show that FOXO3 and BNIP3 were all down-regulated in KOA (p < 0.01), and the validation results are consistent with the above analysis. Conclusion BNIP3 and FOXO3 have been identified as biomarkers for the diagnosis of KOA, which might supply a new insight for the pathogenesis and treatment of KOA.
Collapse
Affiliation(s)
- Kuihan Tang
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, 550000, People’s Republic of China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, 550000, People’s Republic of China
| | - Xiaobo Feng
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Jiarui Wu
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, 550000, People’s Republic of China
| | - Hao Guo
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, 550000, People’s Republic of China
| | - Yong Zheng
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| |
Collapse
|
23
|
Li C, Zhao Z, Jin J, Zhao C, Zhao B, Liu Y. NLRP3-GSDMD-dependent IL-1β Secretion from Microglia Mediates Learning and Memory Impairment in a Chronic Intermittent Hypoxia-induced Mouse Model. Neuroscience 2024; 539:51-65. [PMID: 38154620 DOI: 10.1016/j.neuroscience.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Hypoxia/reoxygenation caused by chronic intermittent hypoxia (CIH) plays an important role in cognitive deficits in patients with obstructive sleep apnea. However, the precise underlying mechanism remains unclear. This study investigated whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in CIH-induced spatial learning and memory impairment in mice, and the possible underlying upstream and downstream mechanisms. The C57BL/6 male mice were exposed to CIH (21% O2-6% O2, 4 min/cycle, 8 h/day) for 9 weeks to investigate the role of NLRP3 in CIH-induced spatial learning and memory impairment in mice. BV2 cells were exposed to intermittent hypoxia (21% O2-1% O2, 90 min/cycle) for 48 h to investigate the possible mechanisms in vitro. We found that: 1) inhibition of NLRP3 inflammasome activation improved CIH-induced spatial learning and memory impairment in mice. 2) CIH damaged hippocampal neurons but increased the number of microglia in mice hippocampi; CIH activated microglia-specific NLRP3 inflammasome, leading to upregulation of matured IL-1β and N-GSDMD. 3) intermittent hypoxia activated NLRP3 inflammasome via the ROS-NF-κB signaling pathway to promote the release of matured IL-1β from microglia in a GSDMD-dependent manner without pyroptosis. 4) The IL-1β released from microglia might impair the synaptic plasticity of hippocampal CA3-CA1 synapses by acting on IL-1 receptors in hippocampal neurons. Our findings reveal that ROS-NF-κB-NLRP3 inflammasome-GSDMD dependent IL-1β release from microglia may participate in CIH-induced spatial learning and memory impairment by acting on hippocampal neuronal IL-1 receptor, leading to synaptic plasticity impairment.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China; Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| | - Zhen Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Jiahao Jin
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Chenlu Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| | - Yuzhen Liu
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
24
|
Neikirk K, Marshall AG, Santisteban MM, Hinton A. BNIP3 as a new tool to promote healthy brain aging. Aging Cell 2024; 23:e14042. [PMID: 38030595 PMCID: PMC10861191 DOI: 10.1111/acel.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
The article "Neuronal induction of BNIP3-mediated mitophagy slows systemic aging in Drosophila" reveals BCL2-interacting protein 3 as a therapeutic target to counteract brain aging and prolong overall organismal health with age. In this spotlight, we consider the roles of BNIP3, a mitochondrial outer membrane protein, in the adult nervous system, including its induction of mitophagy and prevention of dysfunctional mitochondria in the aged brain. Implications for other tissue types to reduce the burden of aging are further considered.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Andrea G. Marshall
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
25
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
26
|
Moradi MT, Fadaei R, Sharafkhaneh A, Khazaie H, Gozal D. The role of lncRNAs in intermittent hypoxia and sleep Apnea: A review of experimental and clinical evidence. Sleep Med 2024; 113:188-197. [PMID: 38043330 DOI: 10.1016/j.sleep.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
In this narrative review, we present a comprehensive assessment on the putative roles of long non-coding RNAs (lncRNAs) in intermittent hypoxia (IH) and sleep apnea. Collectively, the evidence from cell culture, animal, and clinical research studies points to the functional involvement of lncRNAs in the pathogenesis, diagnosis, and potential treatment strategies for this highly prevalent disorder. Further research is clearly warranted to uncover the mechanistic pathways and to exploit the therapeutic potential of lncRNAs, thereby improving the management and outcomes of patients suffering from sleep apnea.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amir Sharafkhaneh
- Sleep Disorders and Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - David Gozal
- Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr, Huntington, WV, 25701, USA.
| |
Collapse
|
27
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
28
|
Miao LW, Liu TZ, Sun YH, Cai N, Xuan YY, Wei Z, Cui BB, Jing LL, Ma HP, Xian CJ, Wang JF, Gao YH, Chen KM. Simulated microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia. J Cell Physiol 2023; 238:2692-2709. [PMID: 37796139 DOI: 10.1002/jcp.31127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.
Collapse
Affiliation(s)
- Lu-Wei Miao
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Tian-Zhen Liu
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Yue-Hong Sun
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Nan Cai
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Ying-Ying Xuan
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Zhenlong Wei
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Bing-Bing Cui
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Lin-Lin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Hui-Ping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ju-Fang Wang
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yu-Hai Gao
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Ke-Ming Chen
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, China
| |
Collapse
|
29
|
You C, Zhang Z, Ying H, Yang Z, Ma Y, Hong J, Xue M, Li X, Li H, Zhang C, Wang W, Cai X, Li X. Blockage of calcium-sensing receptor improves chronic intermittent hypoxia-induced cognitive impairment by PERK-ATF4-CHOP pathway. Exp Neurol 2023; 368:114500. [PMID: 37553048 DOI: 10.1016/j.expneurol.2023.114500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is involved in cognitive impairment of children. Chronic intermittent hypoxia (CIH) is considered as the critical pathophysiological mechanism of OSAHS. Calcium sensitive receptor (CaSR) mediated apoptosis in many neurological disease models by endoplasmic reticulum stress (ERS)-related pathway. However, little is known about the role of CaSR in OSAHS-induced cognitive dysfunction. In this study, we explored the effect of CaSR on CIH-induced cognitive impairment and possible mechanisms on regulation of PERK-ATF4-CHOP pathway in vivo and in vitro. CIH exposed for 9 h in PC12 cells and resulted in the cell apoptosis, simulating OSAHS-induced neuronal injury. CIH upregulated the level of CaSR, p-PERK, ATF4 and CHOP, contributing to the cell apoptosis. Treated with CaSR inhibitor (NPS-2143) or p-PERK inhibitor (GSK2656157) before CIH exposure, CIH-induced PC12 cell apoptosis was alleviated via inhibition of CaSR by downregulating p-PERK, ATF4 and CHOP. In addition, we established CIH mice model. With CIH exposure for 4 weeks in mice, more spatial memory errors were observed during 8-arm radial maze test. CIH significantly increased apoptotic cells in hippocampus via upregulating cleaved Caspase-3 and downregulating ratio of Bcl-2 to Bax. Besides, treatment of CaSR inhibitor alleviated the hippocampal neuronal apoptosis following CIH with downregulated p-PERK, ATF4 and CHOP, suggesting that CaSR contributed to CIH-induced neuronal apoptosis in hippocampus via ERS pathway. Sum up, our results demonstrated that CaSR accelerated hippocampal apoptosis via PERK-ATF4-CHOP pathway, holding a critical function on CIH-mediated cognitive impairment. Conversely, inhibition of CaSR suppressed PERK-ATF4-CHOP pathway and alleviated cognitive impairment.
Collapse
Affiliation(s)
- Cancan You
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zilong Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huiya Ying
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zijing Yang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yixuan Ma
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingyi Hong
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Mingjie Xue
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuan Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huimin Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pediatric, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China
| | - Chengrui Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
30
|
Li J, Li Y, Wang X, Xie Y, Lou J, Yang Y, Jiang S, Ye M, Chen H, Diao W, Xu S. Pinocembrin alleviates pyroptosis and apoptosis through ROS elimination in random skin flaps via activation of SIRT3. Phytother Res 2023; 37:4059-4075. [PMID: 37150741 DOI: 10.1002/ptr.7864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Random skin flap grafting is the most common skin grafting technique in reconstructive surgery. Despite progress in techniques, the incidence of distal flap necrosis still exceeds 3%, which limits its use in clinical practice. Current methods for treating distal flap necrosis are still lacking. Pinocembrin (Pino) can inhibit reactive oxygen species (ROS) and cell death in a variety of diseases, such as cardiovascular diseases, but the role of Pino in random flaps has not been explored. Therefore, we explore how Pino can enhance flap survival and its specific upstream mechanisms via macroscopic examination, Doppler, immunohistochemistry, and western blot. The results suggested that Pino can enhance the viability of random flaps by inhibiting ROS, pyroptosis and apoptosis. The above effects were reversed by co-administration of Pino with adeno-associated virus-silencing information regulator 2 homolog 3 (SIRT3) shRNA, proving the beneficial effect of Pino on the flaps relied on SIRT3. In addition, we also found that Pino up-regulates SIRT3 expression by activating the AMP-activated protein kinase (AMPK) pathway. This study proved that Pino can improve random flap viability by eliminating ROS, and ROS-induced cell death through the activation of SIRT3, which are triggered by the AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yamin Xie
- Department of Service Quality Management, Sanmen People's Hospital, Taizhou, China
| | - Junsheng Lou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihan Ye
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaizhi Chen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyi Diao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116677. [PMID: 37268259 DOI: 10.1016/j.jep.2023.116677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear. AIM OF THE STUDY To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH. MATERIALS AND METHODS The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3. RESULTS The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions. CONCLUSION The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
32
|
Zhu X, Liu H, Wang D, Guan R, Zou Y, Li M, Zhang J, Chen J. NLRP3 deficiency protects against hypobaric hypoxia induced neuroinflammation and cognitive dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114828. [PMID: 36989949 DOI: 10.1016/j.ecoenv.2023.114828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
As increasing number of people migrated to high altitude, highland encephalopathy and hypoxia-induced cognitive impairment arouse public attention. Yet, its underlying mechanisms remain unclear. Emerging evidence has implied neuroinflammation and neuronal loss may be involved. In the present study, we investigated the neuroinflammation and neuronal loss in mice after hypoxic insult. Our reports showed hypobaric hypoxia exposure for 3 weeks led to impaired spatial exploration and short-term memory in mice, concomitant with neuron loss. In addition, hypoxia induced neuroinflammation and NLRP3 inflammasome activation. Besides, to explore the role of the inflammasome in hypoxia-induced cognitive dysfunction, NLRP3 knockout mice were applied and the results showed that NLRP3 could negatively regulate GPX4 to modify antioxidant capacity. In summary, our work demonstrated that hypoxia exposure led to neuroinflammation and neuronal-deletion, which may be the key events in the process of hypoxia induced cognitive impairment. NLRP3 inflammasome promoted antioxidant deficiency by negatively regulating GPX4.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- Tianjin Institute of Environmental and Operational Medicine, China
| | - Huiping Liu
- School of Medicine, Quzhou College of Technology, China
| | - Diya Wang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ming Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China.
| | - Jingyuan Chen
- Tianjin Institute of Environmental and Operational Medicine, China.
| |
Collapse
|
33
|
Ying H, Zhang Z, Wang W, Yang Z, You C, Li Y, Cai X, Li X. Inhibition of Calcium-Sensing Receptor Alleviates Chronic Intermittent Hypoxia-Induced Cognitive Dysfunction via CaSR-PKC-ERK1/2 Pathway. Mol Neurobiol 2023; 60:2099-2115. [PMID: 36600080 DOI: 10.1007/s12035-022-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is typically characterized by chronic intermittent hypoxia (CIH), associated with cognitive dysfunction in children. Calcium-sensing receptor (CaSR) mediates the apoptosis of hippocampal neurons in various diseases. However, the effect of CaSR on OSAHS remains elusive. In the present study, we investigated the role of CaSR in CIH-induced memory dysfunction and underlying mechanisms on regulation of PKC-ERK1/2 signaling pathway in vivo and in vitro. CIH exposures for 4 weeks in mice, modeling OSAHS, contributed to cognitive dysfunction. CIH accelerated apoptosis of hippocampal neurons and resulted in the synaptic plasticity deficit via downregulated synaptophysin (Syn) protein level. The mice were intraperitoneally injected with CaSR inhibitor (NPS2143) 30 min before CIH exposure and the results demonstrated CaSR inhibitor alleviated the apoptosis and synaptic plasticity deficit in the hippocampus of CIH mice. We established intermittent hypoxia PC12 cell model and found that the activation of CaSR accelerated CIH-induced PC12 apoptosis and synaptic plasticity deficit by upregulated p-ERK1/2 and PKC. Overall, our findings revealed that CaSR held a critical function on CIH-induced cognitive dysfunction in mice by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity via augmenting CaSR-PKC-ERK1/2 pathway; otherwise, inhibition of CaSR alleviated CIH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Huiya Ying
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zilong Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijing Yang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cancan You
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuanai Li
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China.
| |
Collapse
|
34
|
Li T, Zheng Y, Wu Z, Guo M, Liu R, Zeng W, Lv Y. YTHDF2 controls hexavalent chromium-induced mitophagy through modulating Hif1α and Bnip3 decay via the m 6A/mRNA pathway in spermatogonial stem cells/progenitors. Toxicol Lett 2023; 377:38-50. [PMID: 36739042 DOI: 10.1016/j.toxlet.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and SSC homeostasis is essential for lifelong male fertility. Currently, environmental pollution remains one of the factors affecting human reproductive health. Chromium is a prevalent metal element, and excessive exposure to hexavalent chromium (Cr (VI)) can cause male reproductive disorders. Nevertheless, the toxic effects of Cr (VI) on SSCs and the underlying mechanisms remain incompletely understood. Here, we showed that Cr (VI) exposure triggered mitophagy in mouse SSCs/progenitors in a time-dependent manner. Concurrently, Cr (VI) treatment caused reactive oxygen species (ROS) accumulation and activated the HIF1α-mediated BNIP3 expression to trigger mitophagy. In addition, Cr (VI) exposure significantly decreased the level of m6A modification. Further, we identified that YTHDF2 regulated the stability of Bnip3 and Hif1α mRNAs in an m6A-dependent manner, which was involved in Cr (VI)-induced mitophagy. Collectively, our study not only expands the mechanisms for Cr (VI)-caused male reproductive toxicity, but also provides pharmacological targets for prevention and treatment of Cr (VI)-induced male fertility impairment.
Collapse
Affiliation(s)
- Tianjiao Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhili Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Zhou J, Liu H, Zhang T, Wang Z, Zhang J, Lu Y, Li Z, Kong W, Zhao J. MORN4 protects cardiomyocytes against ischemic injury via MFN2-mediated mitochondrial dynamics and mitophagy. Free Radic Biol Med 2023; 196:156-170. [PMID: 36682578 DOI: 10.1016/j.freeradbiomed.2023.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
The imbalance of mitochondrial fission and fusion dynamics causes ischemic cardiomyocyte apoptosis and heart injury by affecting mitophagy. Regulation of mitochondrial dynamics is an important therapeutic strategy for ischemic heart diseases. Considering the important roles of MORN motifs in heart diseases and chloroplast fission, we aimed to investigate the possible role of MORN repeat-containing protein 4 (MORN4) in the progression of myocardial infarction (MI), ischemic cardiomyocyte apoptosis, mitochondrial dynamics, and mitophagy. We found that in the MI mouse, MORN4 knockdown remarkably accelerated cardiac injury and fibrosis with deteriorating cardiac dysfunction. Sphingosylphosphorylcholine (SPC) alleviated ischemic cardiomyocyte apoptosis and heart injury through increased level of MORN4, indicating a vital function of MORN4 in heart with SPC used to clarify the molecular mechanisms underlying the functions of MORN4. Mechanistically, we found that MORN4 directly binds to MFN2 and promotes the phosphorylation of MFN2 S442 through Rho-associated protein kinase 2 (ROCK2), which mediates beneficial mitophagy induced by mitochondrial dynamics, while SPC promoted the binding of MORN4 and MFN2 and the process. Taken together, our data reveal a new perspective role of MORN4 in ischemic heart injury, and report that SPC could regulate myocardial mitochondrial homeostasis by activating the MORN4-MFN2 axis during the ischemic situation, this finding provides novel targets for improving myocardial ischemia tolerance and rescue of acute myocardial infarction.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China; Experimental Center for Medical Research, Weifang Medical University, Weifang, 261000, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jiaojiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
36
|
Chen S, Zhang P, Feng J, Li R, Chen J, Zheng WV, Zhang H, Yao P. LMP1 mediates tumorigenesis through persistent epigenetic modifications and PGC1β upregulation. Oncol Rep 2023; 49:53. [PMID: 36734290 PMCID: PMC9926514 DOI: 10.3892/or.2023.8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Latent membrane protein 1 (LMP1), which is encoded by the Epstein‑Barr virus (EBV), has been considered as an oncogene, although the detailed mechanism behind its function remains unclear. It has been previously reported that LMP1 promotes tumorigenesis by upregulation of peroxisome proliferator‑activated receptor‑γ coactivator‑1β (PGC1β). The present study aimed to investigate the potential mechanism for transient EBV/LMP1 exposure‑mediated persistent PGC1β expression and subsequent tumorigenesis through modification of mitochondrial function. Luciferase reporter assay, chromatin immunoprecipitation and DNA mutation techniques were used to evaluate the PGC1β‑mediated expression of dynamin‑related protein 1 (DRP1). Tumorigenesis was evaluated by gene expression, oxidative stress, mitochondrial function and in vitro cellular proliferation assays. The potential effects of EBV, LMP1 and PGC1β on tumor growth were evaluated in an in vivo xenograft mouse model. The present in vitro experiments showed that LMP1 knockdown did not affect PGC1β expression or subsequent cell proliferation in EBV‑positive tumor cells. PGC1β regulated DRP1 expression by coactivation of GA‑binding protein α and nuclear respiratory factor 1 located on the DRP1 promoter, subsequently modulating mitochondrial fission. Transient exposure of either EBV or LMP1 in human hematopoietic stem cells caused persistent epigenetic changes and PGC1β upregulation after long‑term cell culture even in the absence of EBV/LMP1, which decreased oxidative stress, and potentiated mitochondrial function and cell proliferation in vitro. Enhanced tumor growth and shortened survival were subsequently observed in vivo. It was concluded that PGC1β expression and subsequent cell proliferation were independent from LMP1 in EBV‑positive tumor cells. PGC1β modulated mitochondria fission by regulation of DRP1 expression. Transient EBV/LMP1 exposure caused persistent PGC1β expression, triggering tumor growth in the absence of LMP1. The present study proposes a novel mechanism for transient EBV/LMP1 exposure‑mediated tumorigenesis through persistent epigenetic changes and PGC1β upregulation, uncovering the reason why numerous forms of lymphoma exhibit upregulated PGC1β expression, but are devoid of EBV/LMP1.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Ping Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Rui Li
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
37
|
Kuang BC, Wang ZH, Hou SH, Zhang J, Wang MQ, Zhang JS, Sun KL, Ni HQ, Gong NQ. Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis. Acta Pharmacol Sin 2023; 44:367-380. [PMID: 35794373 PMCID: PMC9889399 DOI: 10.1038/s41401-022-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Disrupted redox homeostasis contributes to renal ischemia-reperfusion (IR) injury. Abundant natural products can activate nuclear factor erythroid-2-related factor 2 (Nrf2), thereby providing therapeutic benefits. Methyl eugenol (ME), an analog of the phenolic compound eugenol, has the ability to induce Nrf2 activity. In this study, we investigated the protective effects of ME against renal oxidative damage in vivo and in vitro. An IR-induced acute kidney injury (AKI) model was established in mice. ME (20 mg·kg-1·d-1, i.p.) was administered to mice on 5 consecutive days before IR surgery. We showed that ME administration significantly attenuated renal destruction, improved the survival rate, reduced excessive oxidative stress and inhibited mitochondrial lesions in AKI mice. We further demonstrated that ME administration significantly enhanced Nrf2 activity and increased the expression of downstream antioxidative molecules. Similar results were observed in vitro in hypoxia/reoxygenation (HR)-exposed proximal tubule epithelial cells following pretreatment with ME (40 μmol·L-1). In both renal oxidative damage models, ME induced Nrf2 nuclear retention in tubular cells. Using specific inhibitors (CC and DIF-3) and molecular docking, we demonstrated that ME bound to the binding pocket of AMPK with high affinity and activated the AMPK/GSK3β axis, which in turn blocked the Nrf2 nuclear export signal. In addition, ME alleviated the development of renal fibrosis induced by nonfatal IR, which is frequently encountered in the clinic. In conclusion, we demonstrate that ME modulates the AMPK/GSK3β axis to regulate the cytoplasmic-nuclear translocation of Nrf2, resulting in Nrf2 nuclear retention and thereby enhancing antioxidant target gene transcription that protects the kidney from oxidative damage.
Collapse
Affiliation(s)
- Bai-Cheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Zhi-Heng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Shuai-Heng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Meng-Qin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Jia-Si Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Kai-Lun Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Hai-Qiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Nian-Qiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
38
|
Current advances on the therapeutic potential of pinocembrin: An updated review. Biomed Pharmacother 2023; 157:114032. [PMID: 36481404 DOI: 10.1016/j.biopha.2022.114032] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Pinocembrin (5,7-dihydroxyflavone) is a major flavonoid found in many plants, fungi and hive products, mainly honey and propolis. Several in vitro and preclinical studies revealed numerous pharmacological activities of pinocembrin including antioxidant, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective and anticancer activities. Here, we comprehensively review and critically analyze the studies carried out on pinocembrin. We also discuss its potential mechanisms of action, bioavailability, toxicity, and clinical investigations. The wide therapeutic window of pinocembrin makes it a promising drug candidate for many clinical applications. We recommend some future perspectives to improve its pharmacokinetic and pharmacodynamic properties for better delivery that may also lead to new therapeutic advances.
Collapse
|
39
|
Liu Z, Chen X, Ye T, Wan W, Yu Y, Zhang C, Yang B. Pinocembrin alleviates the susceptibility to atrial fibrillation in isoproterenol-induced rats. Biochem Biophys Res Commun 2022; 636:33-40. [DOI: 10.1016/j.bbrc.2022.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
40
|
Zeng Y, Fang Z, Lai J, Wu Z, Lin W, Yao H, Hu W, Chen J, Guo X, Chen X. Activation of Sirtuin-1 by Pinocembrin Treatment Contributes to Reduced Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2242833. [PMID: 36439686 PMCID: PMC9683949 DOI: 10.1155/2022/2242833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) as a devastating neurological disorder is closely related to heightened oxidative insults and neuroinflammatory injury. Pinocembrin, a bioflavonoid, exhibits different biological functions, such as immunomodulatory, anti-inflammatory, antioxidative, and cerebroprotective activities. Herein, we examined the protective effects and molecular mechanisms of pinocembrin in a murine model of SAH. Using an endovascular perforation model in rats, pinocembrin significantly mitigated SAH-induced neuronal tissue damage, including inflammatory injury and free-radical insults. Meanwhile, pinocembrin improved behavior function and reduced neuronal apoptosis. We also revealed that sirtuin-1 (SIRT1) activation was significantly enhanced by pinocembrin. In addition, pinocembrin treatment evidently enhanced peroxisome proliferator-activated receptor-γ coactivator expression and suppressed ac-nuclear factor-kappa B levels. In contrast, EX-527, a selective SIRT1 inhibitor, blunted the protective effects of pinocembrin against SAH by suppressing SIRT1-mediated signaling. These results suggested that the cerebroprotective actions of pinocembrin after SAH were through SIRT1-dependent pathway, suggesting the potential application of pinocembrin for the treatment of SAH.
Collapse
Affiliation(s)
- Yile Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhongning Fang
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhe Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weibin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hao Yao
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Junyan Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xieli Guo
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
41
|
Xu J, Li Q, Xu CY, Mao S, Jin JJ, Gu W, Shi Y, Zou CF, Ye L. Obstructive sleep apnea aggravates neuroinflammation and pyroptosis in early brain injury following subarachnoid hemorrhage via ASC/HIF-1α pathway. Neural Regen Res 2022; 17:2537-2543. [PMID: 35535908 PMCID: PMC9120669 DOI: 10.4103/1673-5374.339000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/04/2022] Open
Abstract
Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage. However, the underlying mechanism remains unclear. In this study, we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea. We found that sleep apnea aggravated brain edema, increased hippocampal neuron apoptosis, and worsened neurological function in this mouse model of subarachnoid hemorrhage. Then, we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died, and lactate dehydrogenase release increased, after 48 hours. We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β, interleukin-18, interleukin-6, nuclear factor κB, pyroptosis-related protein caspase-1, pro-caspase-1, and NLRP3, promoted the proliferation of astrocytes, and increased the expression of hypoxia-inducible factor 1α and apoptosis-associated speck-like protein containing a CARD, which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway. We also found that knockdown of hypoxia-inducible factor 1α expression in vitro greatly reduced the damage to HY22 cells. These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis, at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.
Collapse
Affiliation(s)
- Jun Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Li
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen-Yu Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shan Mao
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jia-Jia Jin
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Shi
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chun-Fang Zou
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Respiration, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, Jiangsu Province, China
| | - Liang Ye
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
42
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
43
|
Pinocembrin suppresses oxidized low-density lipoprotein-triggered NLRP3 inflammasome/GSDMD-mediated endothelial cell pyroptosis through an Nrf2-dependent signaling pathway. Sci Rep 2022; 12:13885. [PMID: 35974041 PMCID: PMC9381505 DOI: 10.1038/s41598-022-18297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Pinocembrin (Pin) has been confirmed to exert anti-inflammatory and antiatherosclerotic effects. Here we have explored whether and how Pin would protect vascular endothelial cells against pyroptosis elicited by the exposure to oxidized low density lipoprotein (oxLDL). Our results showed that Pin preconditioning dose-dependently suppressed oxLDL-stimulated HUVEC injury and pyroptosis, which were manifested by improved cell viability, lower lactate dehydrogenase (LDH) levels and DNA damage as well as decreased expression of pyroptosis-related markers, such as NOD-like receptor pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), pro-Caspase-1, cleaved Caspase-1, N-terminus of Gasdermin D-N (GSDMD-N), pro-interleukins-1β (pro-IL-1β), IL-1β and inflammatory cytokines (IL-18 and IL-1β). All of the effects were similar to those of MCC950 (an NLRP3 inhibitor). As expected, Pin distinctly activated the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative signaling pathway assessed through increased expressions of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, after transfection with small interfering RNA of Nrf2, the inhibitory effects of Pin on oxLDL-triggered NLRP3 inflammasome/GSDMD-mediated pyroptosis and oxidative stress in HUVECs were weakened. Additionally, Pin up-regulated Nrf2/HO-1 axis and down-regulated NLRP3 inflammasome/GSDMD-mediated pyroptosis signals in Apoe-/- mice fed with high fat diet. These results contribute to the understanding of the anti-pyroptosis mechanisms of Pin and provide a reference for future research on the anti-atherosclerotic effect of Pin.
Collapse
|
44
|
Huang X, Huang X, Guo H, Li J, Zhou C, Huang Y, Lai C, Zeng W, Tan X, Niu L, Li H, Qi J, Xie C. Intermittent hypoxia-induced METTL3 downregulation facilitates MGLL-mediated lipolysis of adipocytes in OSAS. Cell Death Dis 2022; 8:352. [PMID: 35933406 PMCID: PMC9357002 DOI: 10.1038/s41420-022-01149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Intermittent hypoxia (IH) is the core pathological feature of obstructive sleep apnea syndrome (OSAS), and insulin resistance (IR) is the most common metabolic complication of OSAS. Studies have shown that the levels of free fatty acids (FFAs), which are mainly released from adipocytes by lipolysis, are elevated in OSAS and play an important role in the development of IR. However, whether and how IH regulates adipocyte lipolysis in OSAS is not clear. Here, we revealed that the apnea hypopnea index was positively correlated with the serum levels of FFAs and FFA release from adipocytes in OSAS. In addition, IH facilitated lipolysis and FFA release from adipocytes by downregulating the level of METTL3. METTL3 downregulation impaired N6-methyladenosine (m6A) levels in MGLL mRNA and reduced MGLL expression, thereby promoting lipolysis. In addition, we identified YTHDF2 as the m6A reader that interacts with MGLL mRNA, accelerating its degradation. Furthermore, our data showed reduced levels of METTL3 and elevated levels of MGLL in the adipose tissues of OSAS patients and indicated an effect of METTL3 on lowering FFA levels and improving IR in rats with chronic IH. In conclusion, our study provides new insights into the development and treatment of IR in OSAS.
Collapse
Affiliation(s)
- Xiuji Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xuming Huang
- Department of Thyroid and Vascular Surgery, Maoming People's Hospital, Southern Medical University, Maoming, 525000, P.R. China
| | - Haiyan Guo
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Jin Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Chunxia Zhou
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Yuanli Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Chunliu Lai
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Wan Zeng
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xiaozhen Tan
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Lihong Niu
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Hui Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | - Jian Qi
- Department of Gastroenterology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | - Canmao Xie
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| |
Collapse
|
45
|
Zhang XB, Chen GP, Huang MH, Chen XX, Zhan FF, He XZ, Cai L, Zeng HQ. Bcl-2 19-kDa Interacting Protein 3 (BNIP3)-Mediated Mitophagy Attenuates Intermittent Hypoxia-Induced Human Renal Tubular Epithelial Cell Injury. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e936760. [PMID: 35836356 PMCID: PMC9295414 DOI: 10.12659/msm.936760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background As a novel pathophysiological characteristic of obstructive sleep apnea, intermittent hypoxia (IH) contributes to human renal tubular epithelial cells impairment. The underlying pathological mechanisms remain unrevealed. The present study aimed to evaluate the influence of Bcl-2 19-kDa interacting protein 3 (BNIP3)-mediated mitophagy on IH-induced renal tubular epithelial cell impairment. Material/Methods Human kidney proximal tubular (HK-2) cells were exposed to IH condition. IH cycles were as follows: 21% oxygen for 25 min, 21% descended to 1% for 35 min, 1% oxygen sustaining for 35 min, and 1% ascended to 21% for 25 min. The IH exposure lasted 24 h with 12 cycles of hypoxia and re-oxygenation. Both the siBNIP3 and BNIP3 vector were transfected to cells. Cell viability and apoptosis, mitochondrial morphology and function, and mitophagy were detected by cell counting kit-8, flow cytometry and TUNEL staining, transmission electron microscopy, western blotting, and immunofluorescence, respectively. Results In the IH-induced HK-2 cells, inhibition of BNIP3 further aggravated mitochondrial structure damage, and decreased mitophagy level, leading to increased cell apoptosis and decreased cell viability. While overexpression of BNIP3 enhanced mitophagy, which protected mitochondrial structure, it can decrease cell death in HK-2 cells exposed to IH. Conclusions The present study showed that BNIP3-mediated mitophagy plays a protective role against IH-induced renal tubular epithelial cell impairment.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Gong-Ping Chen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Mao-Hong Huang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Xiang-Xing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityZhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Feng-Fu Zhan
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityZhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Xiu-Zhen He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Ling Cai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University; The Third Clinical Medical College of Fujian Medical University, Xiamen, Fujian, China (mainland)
| |
Collapse
|
46
|
Han D, Dong W, Jiang W. Pinocembrin alleviates chronic morphine-induced analgesic tolerance and hyperalgesia by inhibiting microglial activation. Neurol Res 2022; 44:946-955. [PMID: 35574904 DOI: 10.1080/01616412.2022.2075656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dongfeng Han
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiping Dong
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Jiang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
47
|
Wang P, Wen C, Olatunji OJ. Anti-Inflammatory and Antinociceptive Effects of Boesenbergia rotunda Polyphenol Extract in Diabetic Peripheral Neuropathic Rats. J Pain Res 2022; 15:779-788. [PMID: 35356266 PMCID: PMC8959722 DOI: 10.2147/jpr.s359766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Peng Wang
- Department of Pharmacy, Wuhu Second People's Hospital, Wuhu City, 241001, Anhui, People’s Republic of China
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu City, 241001, Anhui, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
- Correspondence: Opeyemi Joshua Olatunji, Traditional Thai Medical Research and Innovation Center, Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand, Email
| |
Collapse
|
48
|
Cao P, Chen Q, Shi C, Pei M, Wang L, Gong Z. Pinocembrin ameliorates acute liver failure via activating the Sirt1/PPARα pathway in vitro and in vivo. Eur J Pharmacol 2022; 915:174610. [PMID: 34951978 DOI: 10.1016/j.ejphar.2021.174610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is a life-threatening disease and affects multiple organ systems. Pro-inflammatory factors derived from macrophage plays a key role in septicemia. Pinocembrin is a natural favonoid compound, which can be extracted from honey, propolis and several other plants. Recent investigations demonstrate that Pinocembrin has a variety of pharmacological activities, including anti-inflammatory and antioxidant. To investigate the effects of Pinocembrin on ALF, we explored its possible molecular mechanisms through the experiments in vivo and in vitro. Pre-treatment with Pinocembrin attenuated LPS-induced hepatocyte dysfunction and reduced levels of pro-inflammatory factors and macrophages infiltration. Pinocembrin inhibited the hepatocyte apoptosis and pro-inflammatory reaction of peritoneal macrophages by reducing reactive oxygen species (ROS) via the Sirt1/PPARα signaling pathway. Our study suggests that Pinocembrin might represent a novel therapeutic drug and offers a new method for the treatment of ALF.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
49
|
Filchenko I, Korostovtseva L, Bochkarev M, Sviryaev Y. Brain damage in sleep-disordered breathing: the role of glia (clinical aspects). Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:32-37. [DOI: 10.17116/jnevro202212203132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Abstract
Multiple Sclerosis (MS) is a common neuroinflammatory disorder which is associated with disabling clinical consequences. The MS disease process may involve neural centers implicated in the control of breathing, leading to ventilatory disturbances during both wakefulness and sleep. In this chapter, a brief overview of MS disease mechanisms and clinical sequelae including sleep disorders is provided. The chapter then focuses on obstructive sleep apnea-hypopnea (OSAH) which is the most prevalent respiratory control abnormality encountered in ambulatory MS patients. The diagnosis, prevalence, and clinical consequences as well as data on effects of OSAH treatment in MS patients are discussed, including the impact on the disabling symptom of fatigue and other clinical sequelae. We also review pathophysiologic mechanisms contributing to OSAH in MS, and in turn mechanisms by which OSAH may impact on the MS disease process, resulting in a bidirectional relationship between these two conditions. We then discuss central sleep apnea, other respiratory control disturbances, and the pathogenesis and management of respiratory muscle weakness and chronic hypoventilation in MS. We also provide a brief overview of Neuromyelitis Optica Spectrum Disorders and review current data on respiratory control disturbances and sleep-disordered breathing in that condition.
Collapse
Affiliation(s)
- R John Kimoff
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Marta Kaminska
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Daria Trojan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|