1
|
Li HY, Wang J, Xiao T, Gu Q, Fan Y, Ge P, Xu J, Wang C, Xie P, Hu Z. STING immune activation of microglia aggravating neurovascular unit damage in diabetic retinopathy. Free Radic Biol Med 2025; 233:86-101. [PMID: 40158743 DOI: 10.1016/j.freeradbiomed.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness and is pathologically characterized by neuroinflammation and neovascularization. Retinal homeostasis is critically maintained by the retinal neurovascular unit (NVU), which can be disrupted by abnormal activation of microglia in DR. However, the underlying mechanism remains unclear. Here, we provide the first evidence of upregulated stimulator of interferon genes (STING) in microglia within fibrovascular membranes (FVMs) and retinas from oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetic mice. Furthermore, we identified STING upregulation in BV2 cells stimulated with high glucose (HG) or hypoxia, accompanied by mitochondrial dysfunction and cytoplasmic leakage of damaged mitochondrial DNA (mtDNA). Pharmacologic or genetic inhibition of STING in microglia prevented their activation and polarization. Next, we demonstrated that STING-deficient BV2 cells reversed the proangiogenic behavior of endothelial cells and protected retinal ganglion cells (RGCs) from oxidative stress. Finally, intravitreal injection of AAV-STING alleviated retinal neurovascular pathologies in both OIR and STZ mice. This study demonstrated that the release of mtDNA mediates STING immune activation of microglia, which further exacerbates NVU damage in DR. In contrast, immunosuppressing STING in microglia could serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tianhao Xiao
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pengfei Ge
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jingyi Xu
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- School of Materials Science and Engineering & Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Zizhong Hu
- Department of Ophthalmology, The First Afliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Qiu W, Zheng Z, Wang J, Cai Y, Zou J, Huang Z, Yang P, Ye W, Jin M, Zhang D, Little PJ, Zhou Q, Liu Z. Targeting mitochondrial DNA-STING-NF-κB Axis-mediated microglia activation by cryptotanshinone alleviates ischemic retinopathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156779. [PMID: 40279967 DOI: 10.1016/j.phymed.2025.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Ischemic retinopathy, a leading cause of vision impairment, involves oxidative stress and dysregulated inflammation, with microglia playing a key role. Cryptotanshinone (CTS), a bioactive compound from Salvia miltiorrhiza, exhibits anti-inflammatory and antioxidant properties and thus has the potential for development as a therapeutic agent. However, the actual mechanism of action of CTS in ischemic retinopathy is not known. Overactivation of the STING pathway in microglia is critical in ischemic retinopathy pathogenesis and a potential target of CTS. PURPOSE This study aimed to explore whether CTS alleviates ischemic retinopathy by modulating microglial STING signaling. METHODS Oxygen-induced retinopathy (OIR) mice and hypoxia-induced microglial cells were used. CTS efficacy in ischemic retinopathy was evaluated at multiple stages using fluorescein fundus angiography, electroretinogram, H&E staining, and Western blotting of relevant proteins. Network pharmacology and RNA sequencing identified STING as a key target. Furthermore, surface plasmon resonance (SPR), molecular docking, and site-directed mutagenesis were systematically employed to elucidate the precise binding interface between CTS and the STING protein. STING activation and knockout models were employed to further investigate the mechanisms of action of CTS. RESULTS CTS treatment reduced microglial activation and pathological retinal angiogenesis, and protected both retinal function and structure in OIR mice. Network pharmacology, RNA sequencing, and experimental validation demonstrated a significant link between the protective effect of CTS and the inhibition of STING signaling. Mechanistically, CTS suppressed cytosolic mtDNA release, blocked STING translocation from the ER to the Golgi, and enhanced lysosomal STING degradation. These CTS-mediated effects were abolished by STING activation and absent in Sting-deficient OIR mice. Notably, CTS combined with anti-VEGF therapy showed synergistic efficacy in suppressing pathological retinal neovascularization. CONCLUSION CTS, a natural inhibitor of STING, alleviated ischemic retinopathy by inhibiting the mtDNA-STING-NF-κB signaling pathway via multifaceted mechanisms in microglia.
Collapse
Affiliation(s)
- Wanlu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Youran Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ziqing Huang
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Zhu S, Zhang L, Tong P, Chen J, Wang C, Wang Z, Liu J, Duan P, Jiang Q, Zhou Y, Tan G, Zhang X, Jiang B. Nicotinamide Riboside Mitigates Retinal Degeneration by Suppressing Damaged DNA-Stimulated Microglial Activation and STING-Mediated Pyroptosis. Invest Ophthalmol Vis Sci 2025; 66:14. [PMID: 40192637 PMCID: PMC11980955 DOI: 10.1167/iovs.66.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Microglial activation plays a pivotal role in the pathogenesis of retinal degeneration, contributing to neuroinflammation within the retina. Previous studies identified that nicotinamide riboside (NR) mitigated light-induced retinal degeneration (LIRD) and inhibited microglial activation. The cGAS-STING signaling pathway has been recognized as a key mediator of inflammation in response to cellular stress and tissue damage. This study further explores the regulatory impact of NR on microglial activation and STING-mediated pyroptosis in retinal degeneration. Methods Balb/c mice were subjected to bright light exposure to induce retinal degeneration. Bioinformatics analysis was used to identify the upregulated key genes and signaling pathways involved in the progression of retinal degeneration, based on mouse transcriptomes from the LIRD model. Molecular biology techniques and immunofluorescence staining were used to assess cGAS-STING activation and expression of pyroptosis-associated molecules. Retinal function, photoreceptor apoptosis and inflammatory response were evaluated in the presence and absence of NR supplementation. Results Exposure to bright light resulted in mitochondrial dysfunction and the release of dsDNA, significantly triggering the activation of cGAS-STING pathway and microglial pyroptosis. In contrast, NR treatment preserved mitochondrial biosynthesis, inhibited STING expression in reactive microglia, and dampened the pro-inflammatory response. Additionally, intraperitoneal administration of the STING inhibitor H151 reduced light-induced microglial activation and pyroptosis, while improving retinal function and promoting photoreceptor survival. Conclusions These findings suggest that NR confers neuroprotection by attenuating damaged DNA-triggered STING-mediated microglial activation and pyroptosis. Targeting the cGAS-STING pathway presents a promising therapeutic avenue for retinal degeneration.
Collapse
Affiliation(s)
- Shanshan Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jiawei Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Cong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zewei Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Peiyun Duan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yubing Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
4
|
Ge X, Zhu X, Liu W, Li M, Zhang Z, Zou M, Deng M, Cui H, Chen Z, Wang L, Hu X, Ju R, Tang X, Ding X, Gong L. cGAMP promotes inner blood-retinal barrier breakdown through P2RX7-mediated transportation into microglia. J Neuroinflammation 2025; 22:58. [PMID: 40025497 PMCID: PMC11871612 DOI: 10.1186/s12974-025-03391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Impairment of the inner blood-retinal barrier (iBRB) leads to various blinding diseases including diabetic retinopathy (DR). The cGAS-STING pathway has emerged as a driving force of cardiovascular destruction, but its impact on the neurovascular system is unclear. Here, we show that cGAMP, the endogenous STING agonist, causes iBRB breakdown and retinal degeneration thorough P2RX7-mediated transport into microglia. METHODS Extracellular cGAMP and STING pathway were determined in tissue samples from patients with proliferative DR (PDR) and db/db diabetic mice. Histological, molecular, bioinformatic and behavioral analysis accessed effects of cGAMP on iBRB. Single-cell RNA sequencing identified the primary retinal cell type responsive to cGAMP. Specific inhibitors and P2RX7-deficienct mice were used to evaluate P2RX7' role as a cGAMP transporter. The therapeutic effects of P2RX7 inhibitor were tested in db/db mice. RESULTS cGAMP was detected in the aqueous humor of patients with PDR and elevated in the vitreous humor with STING activation in db/db mouse retinas. cGAMP administration led to STING-dependent iBRB breakdown and neuron degeneration. Microglia were the primary cells responding to cGAMP, essential for cGAMP-induced iBRB breakdown and visual impairment. The ATP-gated P2RX7 transporter was required for cGAMP import and STING activation in retinal microglia. Contrary to previous thought that mouse P2RX7 nonselectively transports cGAMP only at extremely high ATP concentrations, human P2RX7 directly binds to cGAMP and activates STING under physiological conditions. Clinically, cGAMP-induced microglial signature was recapitulated in fibrovascular membranes from patients with PDR, with P2RX7 being predominantly expressed in microglia. Inhibiting P2RX7 reduced cGAMP-STING activation, protected iBRB and improved neuron survival in diabetic mouse retinas. CONCLUSIONS Our study reveals a mechanism for cGAMP-mediated iBRB breakdown and suggests that targeting microglia and P2RX7 may mitigate the deleterious effects of STING activation in retinal diseases linked to iBRB impairment.
Collapse
Affiliation(s)
- Xiangyu Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xingfei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Mingsen Li
- Interdisciplinary Eye Research Institute (EYE-X Institute), Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ming Zou
- Health Science Center, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Mi Deng
- Health Science Center, Peking University International Cancer Institute, Peking University, Beijing, China
- Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Haifeng Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ziqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiangcheng Tang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, 518040, Guangdong, China.
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
6
|
Tong F, Wang Y, Xu Y, Zhou Y, He S, Du Y, Yang W, Lei T, Song Y, Gong T, Gao H. MMP-2-triggered, mitochondria-targeted PROTAC-PDT therapy of breast cancer and brain metastases inhibition. Nat Commun 2024; 15:10382. [PMID: 39613781 DOI: 10.1038/s41467-024-54854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Proteolytic targeting chimera (PROTAC) technology is a protein-blocking technique and induces antitumor effects, with potential advantages. However, its effect is limited by insufficient distribution and accumulation in tumors. Herein, a transformable nanomedicine (dBET6@CFMPD) with mitochondrial targeting capacity is designed and constructed to combine PROTAC with photodynamic therapy (PDT). In this work, we demonstrate that dBET6@CFMPD exhibits great biodistribution and retention, and can induce potent antitumor response to suppress primary and metastatic tumors, becoming a nanomedicine with potential in cancer combination therapy.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yujun Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Tang X, Liu W, Liang J, Zhu X, Ge X, Fang D, Ling L, Yuan F, Zeng K, Chen Q, Zhang G, Gong L, Zhang S. Triamcinolone Acetonide Protects Against Light-Induced Retinal Degeneration by Activating Anti-Inflammatory STAT6/Arg1 Signaling in Microglia. Inflammation 2024:10.1007/s10753-024-02152-w. [PMID: 39340587 DOI: 10.1007/s10753-024-02152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Affiliation(s)
- Xiangcheng Tang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Jia Liang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Xingfei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Xiangyu Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Lirong Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China
| | - Fanglan Yuan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Kun Zeng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Qingshan Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510230, Guangdong, China.
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China.
| |
Collapse
|
8
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
9
|
Zhu R, Zhang L, Zhang H, Hu Z. BRD4 promotes LPS-induced endothelial cells senescence via activating and cooperating STING-IRF3 pathway. Cell Signal 2024; 118:111127. [PMID: 38447881 DOI: 10.1016/j.cellsig.2024.111127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Endothelial cells (ECs) senescence is closely associated with the initiation and development of multiple age-related cardiovascular diseases. It is necessary to explore the underlying molecular mechanisms of ECs senescence, which is not only the basis to decipher cellular senescence, but also a novel therapeutic target for the endothelial senescence-related diseases. BRD4, a key epigenetic regulator, is universally related to gene expression regulation and has been reported to accelerate cell senescence. Besides, emerging evidence has suggested that the stimulator of interferon genes protein (STING) can regulate inflammatory and senescence-related diseases. However, whether STING pathway activation is regulated by BRD4 in the context of ECs senescence remains largely unclear. Here, we observed that elevated BRD4 and activated STING-IRF3 signaling pathway during ECs senescence and further confirmed that BRD4 could abolish STING activation. We demonstrated that BRD4 could inhibit E3 ubiquitin ligase HRD1-mediated ubiquitination degradation of STING via inhibiting HRD1 transcription. In addition to the direct regulatory effect of BRD4 on STING activation, we have confirmed that BRD4 cooperates with IRF3 and P65 to promote SASP gene expression, thereby accelerating ECs senescence. Here, we proposed a novel mechanism underlying BRD4' key dual role in activating the STING pathway during ECs senescence.
Collapse
Affiliation(s)
- Ruigong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City 210023, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang City 550014, China.
| | - Lei Zhang
- The Fifth People's Hospital of Huai'an, Huaiyin Hospital of Huai'an, Huai'an City 223300, China.
| | - Hao Zhang
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong City 226006, China.
| | - Zhifeng Hu
- The Fifth People's Hospital of Huai'an, Huaiyin Hospital of Huai'an, Huai'an City 223300, China.
| |
Collapse
|
10
|
Li D, Chang J, Wang Y, Du X, Xu J, Cui J, Zhang T, Chen Y. Hyperoside mitigates photoreceptor degeneration in part by targeting cGAS and suppressing DNA-induced microglial activation. Acta Neuropathol Commun 2024; 12:76. [PMID: 38755736 PMCID: PMC11097432 DOI: 10.1186/s40478-024-01793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Activated microglia play an important role in driving photoreceptor degeneration-associated neuroinflammation in the retina. Controlling pro-inflammatory activation of microglia holds promise for mitigating the progression of photoreceptor degeneration. Our previous study has demonstrated that pre-light damage treatment of hyperoside, a naturally occurring flavonol glycoside with antioxidant and anti-inflammatory activities, prevents photooxidative stress-induced photoreceptor degeneration and neuroinflammatory responses in the retina. However, the direct impact of hyperoside on microglia-mediated neuroinflammation during photoreceptor degeneration remains unknown. Upon verifying the anti-inflammatory effects of hyperoside in LPS-stimulated BV-2 cells, our results here further demonstrated that post-light damage hyperoside treatment mitigated the loss of photoreceptors and attenuated the functional decline of the retina. Meanwhile, post-light damage hyperoside treatment lowered neuroinflammatory responses and dampened microglial activation in the illuminated retinas. With respect to microglial activation, hyperoside mitigated the pro-inflammatory responses in DNA-stimulated BV-2 cells and lowered DNA-stimulated production of 2'3'-cGAMP in BV-2 cells. Moreover, hyperoside was shown to directly interact with cGAS and suppress the enzymatic activity of cGAS in a cell-free system. In conclusion, the current study suggests for the first time that the DNA sensor cGAS is a direct target of hyperoside. Hyperoside is effective at mitigating DNA-stimulated cGAS-mediated pro-inflammatory activation of microglia, which likely contributes to the therapeutic effects of hyperoside at curtailing neuroinflammation and alleviating neuroinflammation-instigated photoreceptor degeneration.
Collapse
Affiliation(s)
- Daijin Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jie Chang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yujue Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
- Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
11
|
Zhang R, Xie S, Ran J, Li T. Restraining the power of Proteolysis Targeting Chimeras in the cage: A necessary and important refinement for therapeutic safety. J Cell Physiol 2024; 239:e31255. [PMID: 38501341 DOI: 10.1002/jcp.31255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.
Collapse
Affiliation(s)
- Renshuai Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|