1
|
Choi W, Li C, Chen Y, Wang Y, Cheng Y. Structural dynamics of human fatty acid synthase in the condensing cycle. Nature 2025; 641:529-536. [PMID: 39978408 PMCID: PMC12058526 DOI: 10.1038/s41586-025-08782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Long-chain fatty acids are the building blocks of fat in human bodies. In mammals, fatty acid synthase (FASN) contains multiple enzymatic domains to catalyse all chemical reactions needed for de novo fatty acid synthesis1. Although the chemical reactions carried out by these enzymatic domains are well defined, how the dimeric FASN with an open architecture continuously catalyses such reactions to synthesize a complete fatty acid remains elusive. Here, using a strategy of tagging and purifying endogenous FASN in HEK293T cells for single-particle cryo-electron microscopy studies, we characterized the structural dynamics of endogenous human FASN. We captured conformational snapshots of various functional substates in the condensing cycle and developed a procedure to analyse the particle distribution landscape of FASN with different orientations between its condensing and modifying wings. Together, our findings reveal that FASN function does not require a large rotational motion between its two main functional domains during the condensing cycle, and that the catalytic reactions in the condensing cycle carried out by the two monomers are unsynchronized. Our data thus provide a new composite view of FASN dynamics during the fatty acid synthesis condensing cycle.
Collapse
Affiliation(s)
- Wooyoung Choi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Chengmin Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yifei Chen
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - YongQiang Wang
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Sun X, Chen YL, Xin F, Zhang S. Transcriptome-wide identification and analysis reveals m6A regulation of metabolic reprogramming in shrimp (Marsupenaeus japonicus) under virus infection. BMC Genomics 2024; 25:1103. [PMID: 39563253 PMCID: PMC11575114 DOI: 10.1186/s12864-024-11032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND It has been reported that the most common post-transcriptional modification of eukaryotic RNA is N6-methyladenosine (m6A). Previous studies show m6A is a key regulator for viral infection and immune response. However, whether there is a pathogen stimulus-dependent m6A regulation in invertebrate shrimp has not been studied. RESULTS In this study, we performed a transcriptome-wide profiling of mRNA m6A methylation in shrimp (Marsupenaeus japonicus) after white spot syndrome virus (WSSV) infection by methylated RNA immunoprecipitation sequencing (MeRIP-seq). A total of 15,436 m6A peaks were identified in the shrimp, distributed in 8,108 genes, mainly enriched in the CDS, 3' UTR region and near the stop codon. After WSSV infection, we identified 2,260 m6A peaks with significantly changes, of which 1,973 peaks were significantly up-regulated and 287 peaks were significantly down-regulated. 1,795 genes were identified as differentially methylated genes. GO and KEGG analysis showed that hyper-methylated genes or hypo-methylated genes were highly associated with innate immune process and related to metabolic pathways including HIF-1 signaling pathway, lysine degradation and Wnt signaling pathway. Combined analysis showed a positive correlation between m6A methylation levels and mRNA expression levels. In addition, computational predictions of protein-protein interaction indicated that genes with altered levels of m6A methylation and mRNA expression clustered in metabolism, DNA replication, and protein ubiquitination. ZC3H12A and HIF-1 were two hub genes in protein-protein interaction (PPI) network that involved in immune and metabolism processes, respectively. CONCLUSION Our study explored the m6A methylation pattern of mRNA in shrimp after WSSV infection, exhibited the first m6A map of shrimp at the stage of WSSV induced metabolic reprogramming. These findings may reveal the possible mechanisms of m6A-mediated innate immune response in invertebrates.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361000, PR China
| | - Fan Xin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, P. R. China.
| |
Collapse
|
3
|
Guin S, Ashokan A, Pollack A, Dhar S. Lipid Metabolism Modulatory Cisplatin Prodrug Sensitizes Resistant Prostate Cancer toward Androgen Deprivation Therapy. ACS Pharmacol Transl Sci 2024; 7:2820-2826. [PMID: 39296252 PMCID: PMC11406688 DOI: 10.1021/acsptsci.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 09/21/2024]
Abstract
Mainstream treatment modalities which dominate the therapeutic landscape of prostate cancer (PCa) are prostatectomy, radiation therapy, and androgen deprivation therapy (ADT) or castration. These therapeutic options can extend the life expectancy of the patients but eventually fail to completely cure the disease. Despite undergoing ADT, patients still experience disease recurrence. One of the reasons for this recurrence is the binding of the basal androgens present in blood plasma to the androgen receptor (AR). At this stage, the disease becomes castration-resistant prostate cancer (CRPC) showing resistance to ADT promoting progression, and there is no effective treatment available. Although another male cancer such as testicular cancer responds to cisplatin-based therapy very well, PCa is resistant to cisplatin. In our continued effort to find the pathways that are important for such resistance, we link in this report, tumor metabolism driven androgen regulation and PCa resistance toward cisplatin-based therapy. To delve deeper into understanding how metabolic modulatory cisplatin prodrugs can be used to target the ADT resistant population, we demonstrate that metabolic inhibition by a cisplatin prodrug, Platin-L has the potential to modulate AR activity and resensitize ADT resistant cells toward cisplatin-based chemotherapy as well as ADT. The mode of action for Platin-L is inhibition of fatty acid oxidation (FAO) of prostate cancer cells. We demonstrated that FAO inhibition by Platin-L in PCa cells contribute to AR regulation resulting in altered tumorigenicity of androgen sensitive prostate cancer.
Collapse
Affiliation(s)
- Subham Guin
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Akash Ashokan
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Alan Pollack
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
4
|
Suroengrit A, Cao V, Wilasluck P, Deetanya P, Wangkanont K, Hengphasatporn K, Harada R, Chamni S, Leelahavanichkul A, Shigeta Y, Rungrotmongkol T, Hannongbua S, Chavasiri W, Wacharapluesadee S, Prompetchara E, Boonyasuppayakorn S. Alpha and gamma mangostins inhibit wild-type B SARS-CoV-2 more effectively than the SARS-CoV-2 variants and the major target is unlikely the 3C-like protease. Heliyon 2024; 10:e31987. [PMID: 38867992 PMCID: PMC11168321 DOI: 10.1016/j.heliyon.2024.e31987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Background Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CLpro) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors in silico. Objective We aimed to evaluate two active compounds, AM and GM, from Garcinia mangostana for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard methods. Also, we aimed to prove whether 3CLpro and ACE2 neutralization were major targets and explored whether any additional targets existed. Methods We tested the translation and replication efficiencies of SARS-CoV-2 in the presence of AM and GM. Initial and subgenomic translations were evaluated by immunofluorescence of SARS-CoV-2 3CLpro and N expressions at 16 h after infection. The viral genome was quantified and compared with the untreated group. We also evaluated the efficacies and cytotoxicities of AM and GM against four strains of SARS-CoV-2 (wild-type B, B.1.167.2, B.1.36.16, and B.1.1.529) in Vero E6 cells. The potential targets were evaluated using cell-based anti-attachment, time-of-drug addition, in vitro 3CLpro activities, and ACE2-binding using a surrogated viral neutralization test (sVNT). Moreover, additional targets were explored using combinatorial network-based interactions and Chemical Similarity Ensemble Approach (SEA). Results AM and GM reduced SARS-CoV-2 3CLpro and N expressions, suggesting that initial and subgenomic translations were globally inhibited. AM and GM inhibited all strains of SARS-CoV-2 at EC50 of 0.70-3.05 μM, in which wild-type B was the most susceptible strain (EC50 0.70-0.79 μM). AM was slightly more efficient in the variants (EC50 0.88-2.41 μM), resulting in higher selectivity indices (SI 3.65-10.05), compared to the GM (EC50 0.94-3.05 μM, SI 1.66-5.40). GM appeared to be more toxic than AM in both Vero E6 and Calu-3 cells. Cell-based anti-attachment and time-of-addition suggested that the potential molecular target could be at the post-infection. 3CLpro activity and ACE2 binding were interfered with in a dose-dependent manner but were insufficient to be a major target. Combinatorial network-based interaction and chemical similarity ensemble approach (SEA) suggested that fatty acid synthase (FASN), which was critical for SARS-CoV-2 replication, could be a target of AM and GM. Conclusion AM and GM inhibited SARS-CoV-2 with the highest potency at the wild-type B and the lowest at the B.1.1.529. Multiple targets were expected to integratively inhibit viral replication in cell-based system.
Collapse
Affiliation(s)
- Aphinya Suroengrit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- DaNang University of Medical Technology and Pharmacy, DaNang, 50200, Viet Nam
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supot Hannongbua
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University (Chula-VRC), Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Thirion A, Loots DT, Williams ME, Solomons R, Mason S. 1H-NMR metabolomics investigation of CSF from children with HIV reveals altered neuroenergetics due to persistent immune activation. Front Neurosci 2024; 18:1270041. [PMID: 38745940 PMCID: PMC11091326 DOI: 10.3389/fnins.2024.1270041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background HIV can invade the central nervous system (CNS) early during infection, invading perivascular macrophages and microglia, which, in turn, release viral particles and immune mediators that dysregulate all brain cell types. Consequently, children living with HIV often present with neurodevelopmental delays. Methods In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to analyze the neurometabolic profile of HIV infection using cerebrospinal fluid samples obtained from 17 HIV+ and 50 HIV- South African children. Results Nine metabolites, including glucose, lactate, glutamine, 1,2-propanediol, acetone, 3-hydroxybutyrate, acetoacetate, 2-hydroxybutyrate, and myo-inositol, showed significant differences when comparing children infected with HIV and those uninfected. These metabolites may be associated with activation of the innate immune response and disruption of neuroenergetics pathways. Conclusion These results elucidate the neurometabolic state of children infected with HIV, including upregulation of glycolysis, dysregulation of ketone body metabolism, and elevated reactive oxygen species production. Furthermore, we hypothesize that neuroinflammation alters astrocyte-neuron communication, lowering neuronal activity in children infected with HIV, which may contribute to the neurodevelopmental delay often observed in this population.
Collapse
Affiliation(s)
- Anicia Thirion
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Monray E. Williams
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Thirion A, Loots DT, Williams ME, Solomons R, Mason S. An exploratory investigation of the CSF metabolic profile of HIV in a South African paediatric cohort using GCxGC-TOF/MS. Metabolomics 2024; 20:33. [PMID: 38427142 PMCID: PMC10907482 DOI: 10.1007/s11306-024-02098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Because cerebrospinal fluid (CSF) samples are difficult to obtain for paediatric HIV, few studies have attempted to profile neurometabolic dysregulation. AIM AND OBJECTIVE The aim of this exploratory study was to profile the neurometabolic state of CSF from a South African paediatric cohort using GCxGC-TOF/MS. The study included 54 paediatric cases (< 12 years), 42 HIV-negative controls and 12 HIV-positive individuals. RESULTS The results revealed distinct metabolic alterations in the HIV-infected cohort. In the PLS-DA model, 18 metabolites significantly discriminated between HIV-infected and control groups. In addition, fold-change analysis, Mann-Whitney U tests, and effect size measurements verified these findings. Notably, lactose, myo-inositol, and glycerol, although not significant by p-value alone, demonstrated practical significance based on the effect size. CONCLUSIONS This study provided valuable insights on the impact of HIV on metabolic pathways, including damage to the gut and blood-brain barrier, disruption of bioenergetics processes, gliosis, and a potential marker for antiretroviral therapy. Nevertheless, the study recognized certain constraints, notably a limited sample size and the absence of a validation cohort. Despite these limitations, the rarity of the study's focus on paediatric HIV research underscores the significance and unique contributions of its findings.
Collapse
Affiliation(s)
- Anicia Thirion
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Du Toit Loots
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Monray E Williams
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, North West, South Africa.
| |
Collapse
|
7
|
Ueland T, Waagsbø B, Berge RK, Trøseid M, Aukrust P, Damås JK. Fatty Acids Composition and HIV Infection: Altered Levels of n-6 Polyunsaturated Fatty Acids Are Associated with Disease Progression. Viruses 2023; 15:1613. [PMID: 37515299 PMCID: PMC10385810 DOI: 10.3390/v15071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Fatty acids (FAs) are important regulators of immune responses and innate defense mechanisms. We hypothesized that disturbed FA metabolism could contribute to the progression of HIV infection. Plasma levels of 45 FAs were analyzed with gas chromatography in healthy controls and HIV-infected patients with regard to Mycobacterium avium complex (MAC) infection. In vitro, we assessed MAC-PPD-induced release of inflammatory cytokines in peripheral and bone marrow mononuclear cells (PBMC and BMMC) according to levels of n-6 polyunsaturated fatty acids (PUFAs). While plasma saturated FAs were higher in HIV infection, PUFAs, and in particular the n-6 PUFA arachidonic acid (AA), were lower in patients with advanced disease. The ratio between AA and precursor dihomo-γ-linolenic acid, reflecting Δ5-desaturase activity, was markedly lower and inversely correlated with plasma HIV RNA levels in these patients. Depletion of AA was observed prior to MAC infection, and MAC-PPD-induced release of TNF and IL-6 in PBMC and BMMC was lower in patients with low plasma AA. Our findings suggest that dysregulated metabolism of n-6 PUFAs may play a role in the progression of HIV infection. While high AA may contribute to chronic inflammation in asymptomatic HIV-infected patients, low AA seems to increase the susceptibility to MAC infection in patients with advanced disease.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, NO-9038 Tromsø, Norway
| | - Bjørn Waagsbø
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, NO-7006 Trondheim, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, NO-5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, NO-0424 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, NO-0424 Oslo, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
8
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
9
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
10
|
Bowman ER, Wilson M, Riedl KM, MaWhinney S, Jankowski CM, Funderburg NT, Erlandson KM. Lipidome Alterations with Exercise Among People With and Without HIV: An Exploratory Study. AIDS Res Hum Retroviruses 2022; 38:544-551. [PMID: 35302400 PMCID: PMC9297322 DOI: 10.1089/aid.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related comorbidities and physical function impairments in aging people with HIV (PWH) can be improved through exercise interventions. The mechanisms underlying these improvements, including lipidomic changes, are unknown. Sedentary adults (50-75 years old) with or without HIV participated in supervised endurance/resistance exercise for 24 weeks. Plasma lipid concentrations (∼1,200 lipid species from 13 lipid classes) at baseline and week 24 were measured by mass spectrometry. Given multiple comparisons, unadjusted and Benjamini-Hochberg corrected p values are reported. Analyses are considered exploratory. Twenty-five PWH and 24 controls had paired samples at baseline and week 24. The change in total triacylglycerol (TAG) concentrations after exercise intervention differed between groups (unadj-p = 0.006, adj-p = 0.078) with concentrations increasing among controls, but not among PWH. Changes in concentrations of TAG species composed of long-chain fatty acids differed between groups (unadj-p < 0.04) with increases among controls, but not among PWH. Changes in total diacylglycerol (DAG) concentration from baseline to week 24 differed between groups (unadj-p = 0.03, adj-p = 0.2) with an increase in PWH and a nonsignificant decrease in controls. Baseline to week 24 changes in DAGs composed of palmitic acid (16:0), palmitoleic acid (16:1), and stearic acid (18:0) differed by serostatus (unadj-p = 0.009-0.03; adj-p 0.10-0.12), with nonsignificant increases and decreases in concentrations in PWH and controls, respectively. Concentrations of individual lysophosphatidylcholine (LPC) and ceramide (CER) species also differed by HIV serostatus (unadj-p < = 0.05). Although exploratory, the effects of exercise on the lipidome may differ among people with and without HIV, potentially due to underlying alterations in lipid processing and fatty acid oxidation in PWH. Clinical Trials NCT02404792.
Collapse
Affiliation(s)
- Emily R. Bowman
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Melissa Wilson
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth M. Riedl
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Samantha MaWhinney
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine M. Jankowski
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Kristine M. Erlandson
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Ferrari D, Rubini M, Burns JS. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Front Immunol 2022; 13:904419. [PMID: 35784277 PMCID: PMC9248768 DOI: 10.3389/fimmu.2022.904419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
A long-shared evolutionary history is congruent with the multiple roles played by purinergic signaling in viral infection, replication and host responses that can assist or hinder viral functions. An overview of the involvement of purinergic signaling among a range of viruses is compared and contrasted with what is currently understood for SARS-CoV-2. In particular, we focus on the inflammatory and antiviral responses of infected cells mediated by purinergic receptor activation. Although there is considerable variation in a patient's response to SARS-CoV-2 infection, a principle immediate concern in Coronavirus disease (COVID-19) is the possibility of an aberrant inflammatory activation causing diffuse lung oedema and respiratory failure. We discuss the most promising potential interventions modulating purinergic signaling that may attenuate the more serious repercussions of SARS-CoV-2 infection and aspects of their implementation.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michele Rubini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses 2022; 14:v14061313. [PMID: 35746785 PMCID: PMC9228482 DOI: 10.3390/v14061313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: HIV infection results in immunometabolic reprogramming. While we are beginning to understand how this metabolic reprogramming regulates the immune response to HIV infection, we do not currently understand the impact of ART on immunometabolism in people with HIV (PWH). Methods: Serum obtained from HIV-infected (n = 278) and geographically matched HIV seronegative control subjects (n = 300) from Rakai Uganda were used in this study. Serum was obtained before and ~2 years following the initiation of ART from HIV-infected individuals. We conducted metabolomics profiling of the serum and focused our analysis on metabolic substrates and pathways assocaited with immunometabolism. Results: HIV infection was associated with metabolic adaptations that implicated hyperactive glycolysis, enhanced formation of lactate, increased activity of the pentose phosphate pathway (PPP), decreased β-oxidation of long-chain fatty acids, increased utilization of medium-chain fatty acids, and enhanced amino acid catabolism. Following ART, serum levels of ketone bodies, carnitine, and amino acid metabolism were normalized, however glycolysis, PPP, lactate production, and β-oxidation of long-chain fatty acids remained abnormal. Conclusion: Our findings suggest that HIV infection is associated with an increased immunometabolic demand that is satisfied through the utilization of alternative energetic substrates, including fatty acids and amino acids. ART alone was insufficient to completely restore this metabolic reprogramming to HIV infection, suggesting that a sustained impairment of immunometabolism may contribute to chronic immune activation and comorbid conditions in virally suppressed PWH.
Collapse
|
13
|
Yang C, Wang Z, Song Q, Dong B, Bi Y, Bai H, Jiang Y, Chang G, Chen G. Transcriptome Sequencing to Identify Important Genes and lncRNAs Regulating Abdominal Fat Deposition in Ducks. Animals (Basel) 2022; 12:ani12101256. [PMID: 35625102 PMCID: PMC9138122 DOI: 10.3390/ani12101256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Abdominal fat deposition affects the quality of duck meat and the feed conversion ratio. Here, we performed transcriptome sequencing of the abdominal adipose tissue of ducks with high and low abdominal fat rate by RNA sequencing, exploring the key regulatory genes and lncRNAs related to abdominal fat deposition. As a result, several candidate genes, lncRNAs, and pathways related to abdominal fat deposition in ducks were retrieved. This study lays the foundations for exploring molecular mechanisms underlying the regulation of abdominal fat deposition in ducks, providing a theoretical reference for breeding high-quality meat-producing ducks. Abstract Abdominal fat deposition is an important trait in meat-producing ducks. F2 generations of 304 Cherry Valley and Runzhou Crested White ducks were studied to identify genes and lncRNAs affecting abdominal fat deposition. RNA sequencing was used to study abdominal fat tissue of four ducks each with high or low abdominal fat rates. In all, 336 upregulated and 297 downregulated mRNAs, and 95 upregulated and 119 downregulated lncRNAs were identified. Target gene prediction of differentially expressed lncRNAs identified 602 genes that were further subjected to Gene Ontology and KEGG pathway analysis. The target genes were enriched in pathways associated with fat synthesis and metabolism and participated in biological processes, including Linoleic acid metabolism, lipid storage, and fat cell differentiation, indicating that these lncRNAs play an important role in abdominal fat deposition. PPAPA, FOXO3, FASN, PNPLA2, FKBP5, TCF7L2, BMP2, FGF2, LIFR, ZBTB16, SIRT, GYG2, NCOR1, and NR3C1 were involved in the regulation of abdominal fat deposition. PNPLA2, TCF7L2, FGF2, LIFR, BMP2, FKBP5, GYG2, and ZBTB16 were regulated by the lncRNAs TCONS_00038080, TCONS_0033547, TCONS_00066773, XR_001190174.3, XR_003492471.1, XR_003493494.1, XR_001192142.3, XR_002405656.2, XR_002401822.2, XR_003497063.1, and so on. This study lays foundations for exploring molecular mechanisms underlying the regulation of abdominal fat deposition in ducks and provides a theoretical basis for breeding high-quality meat-producing ducks.
Collapse
Affiliation(s)
| | - Zhixiu Wang
- Correspondence: (Z.W.); (G.C.); Tel.: +86-514-87997206 (Z.W. & G.C.)
| | | | | | | | | | | | | | - Guohong Chen
- Correspondence: (Z.W.); (G.C.); Tel.: +86-514-87997206 (Z.W. & G.C.)
| |
Collapse
|
14
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. BIOLOGY 2022; 11:biology11010114. [PMID: 35053112 PMCID: PMC8772958 DOI: 10.3390/biology11010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The current coronavirus disease 2019 pandemic turned the attention of researchers to developing novel strategies to counteract virus infections. Despite several antiviral drugs being commercially available, there is an urgent need to identify novel molecules efficacious against viral infections that act through different mechanisms of action. In this context, our attention is focused on novel compounds acting on nuclear receptors, whose activity could be beneficial in viral infections, including coronavirus, hepatitis C virus, and cytomegalovirus. Abstract The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.
Collapse
|
16
|
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int J Biol Sci 2021; 17:4223-4237. [PMID: 34803494 PMCID: PMC8579454 DOI: 10.7150/ijbs.64046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease; Department of liver Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
17
|
Corley MJ, Pang APS, Rasmussen TA, Tolstrup M, Søgaard OS, Ndhlovu LC. Candidate host epigenetic marks predictive for HIV reservoir size, responsiveness to latency reversal, and viral rebound. AIDS 2021; 35:2269-2279. [PMID: 34482353 PMCID: PMC8563431 DOI: 10.1097/qad.0000000000003065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to identify candidate host epigenetic biomarkers predicting latency reversal agents (LRA) efficacy and HIV-1 rebound kinetics during analytical treatment interruption (ATI). DESIGN Retrospective longitudinal epigenetic profiling study from 13 people with HIV (PWH) on virologically suppressive antiretroviral therapy (ART) that participated in a LRA (HDAC inhibitor) clinical trial (NCT01680094) and a subsequent optional ATI to monitor for viral recrudescence after ART cessation. METHODS Genome-wide DNA methylation (DNAm) in purified CD4+ T cells was measured at single-nucleotide resolution using the Infinium MethylationEPIC array. HIV-1 DNA and RNA measures were previously assessed by PCR-based methods and the association of DNAm levels at regulatory sites of the human genome were examined with reservoir size, responsiveness to LRA, and time to viral rebound following ATI. RESULTS A distinct set of 15 candidate DNAm sites in purified CD4+ T cells at baseline pre-LRA and pre-ATI significantly correlated with time to viral rebound. Eight of these DNAm sites occurred in genes linked to HIV-1 replication dynamics including (SEPSECS, cg19113954), (MALT1, cg15968021), (CPT1C, cg14318858), (CRTAM, cg10977115), (B4GALNT4, cg04663285), (IL10, cg16284789), (TFPI2, cg19645693), and (LIFR, cg26437306); with the remaining sites at intergenic regions containing regulatory elements. Moreover, baseline DNAm states related to total HIV-1 DNA levels and the fold change in unspliced cell-associated HIV RNA following LRA treatment. CONCLUSION Preexisting host epigenetic states may determine HIV-1 rebound kinetics and reservoir maintenance. These findings suggest integrating a suite of DNA methylation markers to improve optimal participant selection and drug regimen in future HIV cure clinical trials.
Collapse
Affiliation(s)
- Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Alina PS Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Rasmussen
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
18
|
Bavaro DF, Laghetti P, Poliseno M, De Gennaro N, Di Gennaro F, Saracino A. A Step Closer to the "Fourth 90": A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV. Diagnostics (Basel) 2021; 11:2047. [PMID: 34829394 PMCID: PMC8618448 DOI: 10.3390/diagnostics11112047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
The quality of life of people living with HIV (PLWH) has remarkably increased thanks to the introduction of combined antiretroviral therapy. Still, PLWH are exposed to an increased risk of cardiovascular diseases, diabetes, chronic kidney disease, and liver disease. Hence, the purpose of this review is to summarize the current knowledge about diagnosis and nutritional management with specific indication of macro and micronutrients intake for the main comorbidities of PLWH. In fact, a prompt diagnosis and management of lifestyle behaviors are fundamental steps to reach the "fourth 90". To achieve an early diagnosis of these comorbidities, clinicians have at their disposal algorithms such as the Framingham Score to assess cardiovascular risk; transient elastography and liver biopsy to detect NAFLD and NASH; and markers such as the oral glucose tolerance test and GFR to identify glucose impairment and renal failure, respectively. Furthermore, maintenance of ideal body weight is the goal for reducing cardiovascular risk and to improve diabetes, steatosis and fibrosis; while Mediterranean and low-carbohydrate diets are the dietetic approaches proposed for cardioprotective effects and for glycemic control, respectively. Conversely, diet management of chronic kidney disease requires different nutritional assessment, especially regarding protein intake, according to disease stage and eventually concomitant diabetes.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, 70124 Bari, Italy; (P.L.); (N.D.G.); (F.D.G.); (A.S.)
| | - Paola Laghetti
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, 70124 Bari, Italy; (P.L.); (N.D.G.); (F.D.G.); (A.S.)
| | | | - Nicolò De Gennaro
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, 70124 Bari, Italy; (P.L.); (N.D.G.); (F.D.G.); (A.S.)
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, 70124 Bari, Italy; (P.L.); (N.D.G.); (F.D.G.); (A.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, 70124 Bari, Italy; (P.L.); (N.D.G.); (F.D.G.); (A.S.)
| |
Collapse
|
19
|
A bioorthogonal chemical reporter for fatty acid synthase-dependent protein acylation. J Biol Chem 2021; 297:101272. [PMID: 34606827 PMCID: PMC8551652 DOI: 10.1016/j.jbc.2021.101272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian cells acquire fatty acids (FAs) from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers of the breast, prostate, and liver, among others, and is required during the replication of many viruses, such as dengue virus, hepatitis C, HIV-1, hepatitis B, and severe acute respiratory syndrome coronavirus 2, among others. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo FA synthesis contributes to host or viral protein acylation has been traditionally difficult to study. Here, we describe a cell-permeable and click chemistry-compatible alkynyl acetate analog (alkynyl acetic acid or 5-hexynoic acid [Alk-4]) that functions as a reporter of FASN-dependent protein acylation. In an FASN-dependent manner, Alk-4 selectively labels the cellular protein interferon-induced transmembrane protein 3 at its known palmitoylation sites, a process that is essential for the antiviral activity of the protein, and the HIV-1 matrix protein at its known myristoylation site, a process that is required for membrane targeting and particle assembly. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.
Collapse
|
20
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
21
|
Fatty Acid Synthase Is Involved in Classical Swine Fever Virus Replication by Interaction with NS4B. J Virol 2021; 95:e0078121. [PMID: 34132567 DOI: 10.1128/jvi.00781-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, relies on host machinery to complete its life cycle. Previous studies have shown a close connection between virus infection and fatty acid biosynthesis, mainly regulated by fatty acid synthase (FASN). However, the molecular action of how FASN participates in CSFV replication remains to be elucidated. In this study, two chemical inhibitors of the fatty acid synthesis pathway [5-(tetradecyloxy)-2-furoic acid (TOFA) and tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic acid (C75)] significantly impaired the late stage of viral propagation, suggesting CSFV replication required fatty acid synthesis. We next found that CSFV infection stimulated the expression of FASN, whereas knockdown of FASN inhibited CSFV replication. Furthermore, confocal microscopy showed that FASN participated in the formation of replication complex (RC), which was associated with the endoplasmic reticulum (ER). Interestingly, CSFV NS4B interacted with FASN and promoted overexpression of FASN, which is regulated by functional Rab18. Moreover, we found that FASN regulated the formation of lipid droplets (LDs) upon CSFV infection, promoting virus proliferation. Taken together, our work provides mechanistic insight into the role of FASN in the viral life of CSFV, and it highlights the potential antiviral target for the development of therapeutics against pestiviruses. IMPORTANCE Classical swine fever, caused by classical swine fever virus (CSFV), is one of the notifiable diseases by the World Organization for Animal Health (OIE) and causes significant financial losses to the pig industry globally. CSFV, like other (+)-strand RNA viruses, requires lipid and sterol biosynthesis for efficient replication. However, the role of lipid metabolism in CSFV replication remains unknown. Here, we found that fatty acid synthase (FASN) was involved in viral propagation. Moreover, FASN is recruited to CSFV replication sites in the endoplasmic reticulum (ER) and interacts with NS4B to regulate CSFV replication that requires Rab18. Furthermore, we speculated that lipid droplet (LD) biosynthesis, indirectly regulated by FASN, ultimately promotes CSFV replication. Our results highlight a critical role for de novo fatty acid synthesis in CSFV infection, which might help control this devastating virus.
Collapse
|
22
|
Gabriel CL, Ye F, Fan R, Nair S, Terry JG, Carr JJ, Silver H, Baker P, Hannah L, Wanjalla C, Mashayekhi M, Bailin S, Lima M, Woodward B, Izzy M, Ferguson JF, Koethe JR. Hepatic Steatosis and Ectopic Fat Are Associated With Differences in Subcutaneous Adipose Tissue Gene Expression in People With HIV. Hepatol Commun 2021; 5:1224-1237. [PMID: 34278171 PMCID: PMC8279464 DOI: 10.1002/hep4.1695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
Persons with human immunodeficiency virus (PWH) have subcutaneous adipose tissue (SAT) dysfunction related to antiretroviral therapy and direct viral effects, which may contribute to a higher risk of nonalcoholic fatty liver disease compared with human immunodeficiency virus-negative individuals. We assessed relationships between SAT expression of major adipocyte regulatory and lipid storage genes with hepatic and other ectopic lipid deposits in PWH. We enrolled 97 PWH on long-term antiretroviral therapy with suppressed plasma viremia and performed computed tomography measurements of liver attenuation, a measure of hepatic steatosis, skeletal muscle (SM) attenuation, and the volume of abdominal subcutaneous, visceral, and pericardial adipose tissue. Whole SAT gene expression was measured using the Nanostring platform, and relationships with computed tomography imaging and fasting lipids were assessed using multivariable linear regression and network mapping. The cohort had a mean age of 47 years, body mass index of 33.4 kg/m2, and CD4 count of 492 cells/mm3. Lower liver attenuation, a marker of greater steatosis, was associated with differences in SAT gene expression, including lower lipoprotein lipase and acyl-CoA dehydrogenase, and higher phospholipid transfer protein. Lower liver attenuation clustered with lower visceral adipose tissue (VAT) attenuation and greater VAT volume, pericardial fat volume and triglycerides, but no relationship was observed between liver attenuation and SAT volume, SM attenuation, or low-density lipoprotein. Conclusion: Liver attenuation was associated with altered SAT expression of genes regulating lipid metabolism and storage, suggesting that SAT dysfunction may contribute to nonalcoholic fatty liver disease in PWH. SAT gene-expression relationships were similar for VAT volume and attenuation, but not SM, indicating that ectopic lipid deposition may involve multiple pathways.
Collapse
Affiliation(s)
- Curtis L. Gabriel
- Division of Gastroenterology, Hepatology and NutritionVanderbilt University Medical CenterNashvilleTNUSA
- Tennessee Center for AIDS ResearchVanderbilt University Medical CenterNashvilleTNUSA
| | - Fei Ye
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Run Fan
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Sangeeta Nair
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTNUSA
| | - James G. Terry
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTNUSA
| | - John Jeffrey Carr
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTNUSA
| | - Heidi Silver
- Division of Gastroenterology, Hepatology and NutritionVanderbilt University Medical CenterNashvilleTNUSA
- Veterans Affairs Tennessee Valley Healthcare SystemNashvilleTNUSA
| | - Paxton Baker
- Vanderbilt Technologies for Advanced GenomicsVanderbilt University Medical CenterNashvilleTNUSA
| | - LaToya Hannah
- Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical CenterNashvilleTNUSA
| | - Celestine Wanjalla
- Tennessee Center for AIDS ResearchVanderbilt University Medical CenterNashvilleTNUSA
- Division of Infectious DiseasesVanderbilt University Medical CenterNashvilleTNUSA
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical CenterNashvilleTNUSA
| | - Sam Bailin
- Division of Infectious DiseasesVanderbilt University Medical CenterNashvilleTNUSA
| | - Morgan Lima
- Tennessee Center for AIDS ResearchVanderbilt University Medical CenterNashvilleTNUSA
| | - Beverly Woodward
- Tennessee Center for AIDS ResearchVanderbilt University Medical CenterNashvilleTNUSA
| | - Manhal Izzy
- Division of Gastroenterology, Hepatology and NutritionVanderbilt University Medical CenterNashvilleTNUSA
| | - Jane F. Ferguson
- Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - John R. Koethe
- Tennessee Center for AIDS ResearchVanderbilt University Medical CenterNashvilleTNUSA
- Veterans Affairs Tennessee Valley Healthcare SystemNashvilleTNUSA
- Division of Infectious DiseasesVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
23
|
Sumbria D, Berber E, Mathayan M, Rouse BT. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front Immunol 2021; 11:594963. [PMID: 33613518 PMCID: PMC7887310 DOI: 10.3389/fimmu.2020.594963] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
When viruses infect cells, they almost invariably cause metabolic changes in the infected cell as well as in several host cell types that react to the infection. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Several examples are discussed in this review, which include effects on energy metabolism, glutaminolysis and fatty acid metabolism. The response of the immune system also involves metabolic changes and manipulating these may change the outcome of infection. This could include changing the status of herpesviruses infections from productive to latency. The consequences of viral infections which include coronavirus disease 2019 (COVID-19), may also differ in patients with metabolic problems, such as diabetes mellitus (DM), obesity, and endocrine diseases. Nutrition status may also affect the pattern of events following viral infection and examples that impact on the pattern of human and experimental animal viral diseases and the mechanisms involved are discussed. Finally, we discuss the so far few published reports that have manipulated metabolic events in-vivo to change the outcome of virus infection. The topic is expected to expand in relevance as an approach used alone or in combination with other therapies to shape the nature of virus induced diseases.
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Manikannan Mathayan
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
24
|
Kim B, Arcos S, Rothamel K, Jian J, Rose KL, McDonald WH, Bian Y, Reasoner S, Barrows NJ, Bradrick S, Garcia-Blanco MA, Ascano M. Discovery of Widespread Host Protein Interactions with the Pre-replicated Genome of CHIKV Using VIR-CLASP. Mol Cell 2020; 78:624-640.e7. [PMID: 32380061 PMCID: PMC7263428 DOI: 10.1016/j.molcel.2020.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.
Collapse
Affiliation(s)
- Byungil Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah Arcos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jeffrey Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Yuqi Bian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth Reasoner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nicholas J Barrows
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shelton Bradrick
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Bowman E, Funderburg NT. Lipidome Abnormalities and Cardiovascular Disease Risk in HIV Infection. Curr HIV/AIDS Rep 2020; 16:214-223. [PMID: 30993515 DOI: 10.1007/s11904-019-00442-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Human immunodeficiency virus (HIV) infection and its treatment with antiretroviral therapy (ART) are associated with lipid abnormalities that may enhance cardiovascular disease risk (CVD). RECENT FINDINGS Chronic inflammation persists in HIV+ individuals, and complex relationships exist among lipids and inflammation, as immune activation may be both a cause and a consequence of lipid abnormalities in HIV infection. Advances in mass spectrometry-based techniques now allow for detailed measurements of individual lipid species; improved lipid measurement might better evaluate CVD risk compared with the prognostic value of traditional assessments. Lipidomic analyses have begun to characterize dynamic changes in lipid composition during HIV infection and following treatment with ART, and further investigation may identify novel lipid biomarkers predictive of adverse outcomes. Developing strategies to improve management of comorbidities in the HIV+ population is important, and statin therapy and lifestyle modifications, including diet and exercise, may help to improve lipid levels and mitigate CVD risk.
Collapse
Affiliation(s)
- Emily Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University College of Medicine, 453 W. 10th Ave. 535A Atwell Hall, Columbus, OH, 43210, USA
| | - Nicholas T Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University College of Medicine, 453 W. 10th Ave. 535A Atwell Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Gojanovich GS, Shikuma CM, Milne C, Libutti DE, Chow DC, Gerschenson M. Subcutaneous Adipocyte Adenosine Triphosphate Levels in HIV Infected Patients. AIDS Res Hum Retroviruses 2020; 36:75-82. [PMID: 31407586 DOI: 10.1089/aid.2019.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipoatrophy, or fat wasting, remains a syndrome plaguing HIV+ patients receiving antiretroviral (ARV) therapy. Both HIV infection per se and certain ARV are associated with lowered adipose tissue mitochondrial deoxyribonucleic acid (mtDNA) and mitochondrial ribonucleic acid (mtRNA) levels, but effects on adenosine triphosphate (ATP) production are unclear. We hypothesized that such alterations would accompany lowering of ATP levels in fat of HIV+ patients and would be worse in those displaying lipoatrophy. Gluteal-fold, subcutaneous adipose tissue was obtained from HIV seronegative control patients, from HIV+ ARV-naive patients, and those on ARV with or without lipoatrophy. Cellular ATP was measured in isolated adipocytes and preadipocyte fraction cells by bioluminescence. mtDNA copies/cell and oxidative phosphorylation (OXPHOS) mtRNA transcripts were evaluated by quantitative polymerase chain reactions. ATP levels were consistently higher in preadipocyte fraction cells than adipocytes, but values strongly correlated with each other (r = 0.66, p < .001). ATP levels in adipocytes were higher in both ARV-naive and nonlipoatrophic HIV+ patients compared to seronegative controls, but significantly lower in adipocytes and preadipocytes of lipoatrophic versus other HIV+ patients. Fat mtDNA copies/cell and OXPHOS mtRNA transcripts were lower in lipoatrophic patient samples compared to HIV seronegative. The ratio of specific OXPHOS transcripts to each other was significantly higher in nonlipoatrophic patients versus all groups, and this ratio correlated significantly with ATP levels in adipocytes. Thus, HIV infection is associated with an increase in adipose tissue ATP stores. Decreases in adipose mtDNA and OXPHOS mtRNA are found in those with HIV on ARV; however, ATP level is effected only in patients displaying lipoatrophy.
Collapse
Affiliation(s)
- Greg S. Gojanovich
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Cecilia M. Shikuma
- Department of Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Cris Milne
- Department of Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Daniel E. Libutti
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Dominic C. Chow
- Department of Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
27
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
28
|
Ma S, Mao Q, Chen W, Zhao M, Wu K, Song D, Li X, Zhu E, Fan S, Yi L, Ding H, Zhao M, Chen J. Serum Lipidomics Analysis of Classical Swine Fever Virus Infection in Piglets and Emerging Role of Free Fatty Acids in Virus Replication in vitro. Front Cell Infect Microbiol 2019; 9:410. [PMID: 31850242 PMCID: PMC6901794 DOI: 10.3389/fcimb.2019.00410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Lipids metabolism plays a significant role in cellular responses to virus pathogens. However, the impact of lipids metabolism in CSFV infection is not yet confirmed. In the present study, for the fist time, we performed serum lipidomics analysis of piglets infected with CSFV based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), and identified 167 differentially expressed lipid metabolites. Interestingly, free fatty acids (FFAs) accumulated significantly in these metabolites, accompanied by an increase in sphingolipids and a decrease in glycerolipids and glycerophospholipids, suggesting that CSFV infection markedly changed the serum lipid metabolism of piglets. FFAs are the principal constituents of many complex lipids and are essential substrates for energy metabolism. Based on this, we focused on whether FFAs play a prominent role in CSFV infection. We found that CSFV infection induced FFAs accumulation in vivo and in vitro, which is due to increased fatty acid biosynthesis. Meanwhile, we discovered that alteration of cellular FFAs accumulation by a mixture of FFAs or inhibitors of fatty acid biosynthesis affects progeny virus production in vitro. Furthermore, in the absence of glucose or glutamine, CSFV still has replication capacity, which is significantly reduced with the addition of fatty acid beta oxidation inhibitors, suggesting that the process of FFAs enter the mitochondria for beta oxidation to produce ATP is necessary for virus replication. Finally, we demonstrated CSFV induced FFAs accumulation results in impaired type I IFN signaling-mediated antiviral responses by down-regulating RIG-I-like receptors (RLRs) signaling molecules, which may represent a mechanism of CSFV replication. Taken together, these findings provide the first data on lipid metabolites during CSFV infection and reveal a new view that CSFV infection requires FFAs to enhance viral replication.
Collapse
Affiliation(s)
- Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Front Immunol 2019; 10:1533. [PMID: 31333664 PMCID: PMC6617997 DOI: 10.3389/fimmu.2019.01533] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host–pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Mesquita I, Estaquier J. Viral Manipulation of the Host Metabolic Network. EXPERIENTIA. SUPPLEMENTUM 2019; 109:377-401. [PMID: 30535606 DOI: 10.1007/978-3-319-74932-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Viruses are intracellular parasites that rely on host machinery to replicate and achieve a successful infection. Viruses have evolved to retain a broad range of strategies to manipulate host cell metabolism and metabolic resources, channeling them toward the production of virion components leading to viral production. Although several viruses share similar strategies for manipulating host cell metabolism, these processes depend on several factors, namely, the viral life cycle and the metabolic and energetic status of the infected cell. Based on this knowledge, the development of new therapeutic approaches that circumvent viral spread through the target of altered metabolic pathways is an opportunity to tackle the infection. However, finding effective broad-spectrum strategies that aim at restoring to homeostasis the metabolic alterations induced upon virus infection is still a Holy Grail quest for antiviral therapies. Here, we review the strategies by which viruses manipulate host metabolism for their own benefit, with a particular emphasis on carbohydrate, glutamine, and lipid metabolism.
Collapse
Affiliation(s)
- Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada. .,CNRS FR 3636, Université Paris Descartes, Paris, France.
| |
Collapse
|
31
|
Valle-Casuso JC, Angin M, Volant S, Passaes C, Monceaux V, Mikhailova A, Bourdic K, Avettand-Fenoel V, Boufassa F, Sitbon M, Lambotte O, Thoulouze MI, Müller-Trutwin M, Chomont N, Sáez-Cirión A. Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4 + T Cells and Offers an Opportunity to Tackle Infection. Cell Metab 2019; 29:611-626.e5. [PMID: 30581119 DOI: 10.1016/j.cmet.2018.11.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/04/2018] [Accepted: 11/23/2018] [Indexed: 01/01/2023]
Abstract
HIV persists in long-lived infected cells that are not affected by antiretroviral treatment. These HIV reservoirs are mainly located in CD4+ T cells, but their distribution is variable in the different subsets. Susceptibility to HIV-1 increases with CD4+ T cell differentiation. We evaluated whether the metabolic programming that supports the differentiation and function of CD4+ T cells affected their susceptibility to HIV-1. We found that differences in HIV-1 susceptibility between naive and more differentiated subsets were associated with the metabolic activity of the cells. Indeed, HIV-1 selectively infected CD4+ T cells with high oxidative phosphorylation and glycolysis, independent of their activation phenotype. Moreover, partial inhibition of glycolysis (1) impaired HIV-1 infection in vitro in all CD4+ T cell subsets, (2) decreased the viability of preinfected cells, and (3) precluded HIV-1 amplification in cells from HIV-infected individuals. Our results elucidate the link between cell metabolism and HIV-1 infection and identify a vulnerability in tackling HIV reservoirs.
Collapse
Affiliation(s)
- José Carlos Valle-Casuso
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mathieu Angin
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique - C3BI, USR 3756 IP CNRS, Paris, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Anastassia Mikhailova
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Katia Bourdic
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fenoel
- Université Paris Descartes, Sorbonne Paris Cité, 7327 Paris, France; Assistance Publique Hôpitaux de Paris, Laboratoire de Virologie, CHU Necker-Enfants Malades, Paris, France
| | - Faroudy Boufassa
- INSERM U1018, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Olivier Lambotte
- Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre, France; CEA, Université Paris Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department/IBFJ, Fontenay-aux-Roses, France
| | | | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal H2X 0A9, Canada
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
32
|
Zhang N, Zhao H, Zhang L. Fatty Acid Synthase Promotes the Palmitoylation of Chikungunya Virus nsP1. J Virol 2019; 93:e01747-18. [PMID: 30404808 PMCID: PMC6340048 DOI: 10.1128/jvi.01747-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to people by mosquitoes, and CHIKV infection causes fever and joint pain. Fatty acid synthase (FASN) has been identified as a proviral factor for CHIKV. How FASN participates in CHIKV replication remains to be elucidated. In this study, we demonstrated that palmitic acid (PA) can restore the suppression of CHIKV replication by FASN inhibitors. The palmitoylation and plasma membrane localization of CHIKV nsP1 were reduced by FASN inhibitors. Triple mutation of Cys417, Cys418, and Cys419 in nsP1 blocked its palmitoylation and severely disrupted CHIKV replication. Furthermore, two zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), ZDHHC2 and ZDHHC19, promoted nsP1 palmitoylation and CHIKV replication. Our results not only identified the key enzymes for the palmitoylation of nsP1 but also provided mechanistic insights into the roles of FASN in CHIKV replication.IMPORTANCE S-palmitoylation is an important form of lipid posttranslational modification, which affects the function of proteins by regulating their transport, stability, and localization. Previous studies have shown that FASN is critical for CHIKV replication; however, the mechanism for this function of FASN remains unknown. The key zinc finger DHHC domain-containing palmitoyltransferases involved in the palmitoylation of nsP1 are not clear. We demonstrated that FASN promoted CHIKV replication through nsP1 palmitoylation. ZDHHC2 and ZDHHC19 were identified as the major enzymes for nsP1 palmitoylation. Since nsP1 proteins are conserved in alphaviruses, our results highlight the mechanisms by which alphavirus nsP1 is palmitoylated.
Collapse
Affiliation(s)
- Na Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongjian Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Medicine and Biotechnology of Qingdao, Department of Microbiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Zhuang X, Magri A, Hill M, Lai AG, Kumar A, Rambhatla SB, Donald CL, Lopez-Clavijo AF, Rudge S, Pinnick K, Chang WH, Wing PAC, Brown R, Qin X, Simmonds P, Baumert TF, Ray D, Loudon A, Balfe P, Wakelam M, Butterworth S, Kohl A, Jopling CL, Zitzmann N, McKeating JA. The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nat Commun 2019; 10:377. [PMID: 30670689 PMCID: PMC6343007 DOI: 10.1038/s41467-019-08299-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERBα in regulating flavivirus replication.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Michelle Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Simon Rudge
- The Babraham Institute, Cambridge CB22 3AT, UK
| | - Katherine Pinnick
- Oxford Centre for Diabetes Endocrinology Metabolism, University of Oxford, Oxford OX3 9DU, UK
| | - Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ryan Brown
- Department of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Ximing Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France
| | - David Ray
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Andrew Loudon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Peter Balfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NT, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
34
|
Application of immobilized ATP to the study of NLRP inflammasomes. Arch Biochem Biophys 2019; 670:104-115. [PMID: 30641048 DOI: 10.1016/j.abb.2018.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023]
Abstract
The NLRP proteins are a subfamily of the NOD-like receptor (NLR) innate immune sensors that possess an ATP-binding NACHT domain. As the most well studied member, NLRP3 can initiate the assembly process of a multiprotein complex, termed the inflammasome, upon detection of a wide range of microbial products and endogenous danger signals and results in the activation of pro-caspase-1, a cysteine protease that regulates multiple host defense pathways including cytokine maturation. Dysregulated NLRP3 activation contributes to inflammation and the pathogenesis of several chronic diseases, and the ATP-binding properties of NLRPs are thought to be critical for inflammasome activation. In light of this, we examined the utility of immobilized ATP matrices in the study of NLRP inflammasomes. Using NLRP3 as the prototypical member of the family, P-linked ATP Sepharose was determined to be a highly-effective capture agent. In subsequent examinations, P-linked ATP Sepharose was used as an enrichment tool to enable the effective profiling of NLRP3-biomarker signatures with selected reaction monitoring-mass spectrometry (SRM-MS). Finally, ATP Sepharose was used in combination with a fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen to identify potential competitive inhibitors of NLRP3. The identification of a novel benzo[d]imidazol-2-one inhibitor that specifically targets the ATP-binding and hydrolysis properties of the NLRP3 protein implies that ATP Sepharose and FLECS could be applied other NLRPs as well.
Collapse
|
35
|
Krovi SA, Gallovic MD, Keller AM, Bhat M, Tiet P, Chen N, Collier MA, Gurysh EG, Pino EN, Johnson MM, Shamim Hasan Zahid M, Cottrell ML, Pirone JR, Kashuba AD, Kwiek JJ, Bachelder EM, Ainslie KM. Injectable long-acting human immunodeficiency virus antiretroviral prodrugs with improved pharmacokinetic profiles. Int J Pharm 2018; 552:371-377. [PMID: 30308272 DOI: 10.1016/j.ijpharm.2018.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
While highly active antiretroviral therapy (HAART) has significantly reduced mortality rates in patients with human immunodeficiency virus type 1 (HIV-1), its efficacy may be impeded by emergence of drug resistance caused by lack of patient adherence. A therapeutic strategy that requires infrequent drug administration as a result of sustained release of antiretroviral drugs would put less burden on the patient. Long-acting antiretroviral prodrugs for HIV therapy were synthesized through modification of the active drugs, emtricitabine (FTC) and elvitegravir (EVG), with docosahexaenoic acid (DHA) in one-step, one-pot, high-yielding reactions. The in vitro drug release profiles of these synthetic conjugates demonstrated sustained and controlled release of the active drug over a period of 3-4 weeks attributable to the hydrolysis of the chemical linker in conjunction with the hydrophilicity of the parent drug. Both conjugates exhibited superior antiviral activities in tissue culture models of HIV replication as compared to those of the free drugs, strengthening their role as potent prodrugs for HIV therapy. Pharmacokinetic analysis in CD1 mice further confirmed the long-acting aspect of these conjugates with released drug concentrations in plasma detected at their respective IC90/IC95 values over a period of 2 weeks and discernable amounts of active drug even at 6 weeks. Our findings suggest that the injectable small molecule conjugates could be used as long-acting controlled release of FTC and EVG in attempts to mitigate adherence-related HIV resistance.
Collapse
Affiliation(s)
- Sai Archana Krovi
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Matthew D Gallovic
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Austin M Keller
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Menakshi Bhat
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | - Naihan Chen
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | | | - Elizabeth G Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Erica N Pino
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Monica M Johnson
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Mackenzie L Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Jason R Pirone
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Angela D Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Jesse J Kwiek
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Li J, Sun Y, Li Y, Liu X, Yue Q, Li Z. Inhibition of cellular fatty acid synthase impairs replication of budded virions of Autographa californica multiple nucleopolyhedrovirus in Spodoptera frugiperda cells. Virus Res 2018; 252:41-47. [PMID: 29746884 DOI: 10.1016/j.virusres.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
Abstract
Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells.
Collapse
Affiliation(s)
- Jingfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ximeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Qi Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|